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Abstract. In this paper, we prove the generalization of Titchmarsh’s theorem for the
Jacobi transform for functions satisfying the k-Jacobi Lipschitz condition in the space
L2(R*, Agp(t)dt).
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1. Introduction and preliminaries

The Jacobi transform can be regarded as a generalization of the Helgason-
Fourier transform of the radial function on the Riemannian symmetric spaces of
the noncompact type and rank one. For more details about this transform see
[1, 6, 7].

In this paper, we prove the generalization of Titchmarsh’s theorem for the Jacobi
transform for functions satisfying the k-Jacobi Lipschitz condition in the space
L2(]R+,Aa,ﬁ(t)dt). For this purpose, we use the generalized translation operator.
This operator is one of the most important generalized translations on the half-line
R* = [0, o) (see [5]).

In [3] we proved an analog of Titchmarsh’s theorem for the Jacobi transform in
the space L2(]R+,Aa,ﬁ(t)dt) for functions satisfying the Jacobi-Lipschitz condition.
In this paper, we prove the generalization of this result for functions satisfying the
k-Jacobi Lipschitz class (k € {1, 2, ..}).

In this section, we collect some basic facts of the Jacobi transform. More about
the Jacobi transform can be found in [7].

Let
@o=1 @m=a@+1..a+m-1).
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The Gaussian hypergeometric function is defined by

(o)

Fabc2)=) GLIULPLIHPES

~ (C)mm!

wherea,b,ze Candc ¢ —IN.

The function z — F(a, b, ¢, 2) is a unique solution to the differential equation

zL-2)u” (@) +(c—(a+b+1)2)u’(z) —abu(z) =0,

which is regular in 0 and equals 1 there.

The Jacobi function ¢ (t) is defined by

Pa®) = oP(t) = F(%(p —in), %(p +iM),a + 1, —sinh?1),
wherea > -3, a>B>—-fandp=a+p+1

The Jacobi operator

d? d
D=Dgs= e + (2 + 1) cotht + (28 + 1)tanht)&.

By means of which the Jacobi function ¢, may alternatively be characterized as
a unique solution to

Do + (A% + p?)p = 0,

on IR* satisfying
1(0)=1, ¢3(0)=0
and A — @, (t) is analytic for all t > 0.

Lemma1.1. The following inequalities are valid for a Jacobi function @ (t), (A, t € R") :
L |pa<1
2. 1—qa(t) < t?(A% + p?)
3. there is a constant ¢ > 0 such that
1-pa)>c

forAt>1

Proof. Analog of Lemmas 3.1-3.2in[8] O
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Consider the Hilbert space
Lfa/ﬁ)(]RJf) = L%(RY, Anp(t)dt)
with the norm

1/2

= 1Fll2 ) = (f |f(X)|2Aa,ﬁ(X)dX) ,
0

where
Agp(t) = (2sinh t)***1(2 cosh t)#+1,

For a function f € L%a M]R*), the Jacobi transform is defined by the formula

) = fo F(Opa (A 500

The inversion formula (cf. [7])

1 =
0= 5- [ piose,
where du(A) = |C(A)|~2dA and the C-function C(A) is defined by

2PTANI( (1 +i4))
T(3(p +iANT(3(p +iA) - )’

c(\) =
wherea > -1 anda > g > -1.

From [7], the Plancherel formula for the Jacobi transform is written as

1= 1 Fllzre g0y = 1z 2 auy-

We have

—

(1.1) OH(A) = -(A2 + pA)T(A).

The generalized translation operator was defined by Flensted-Jensen and Koorn-
winder ([4], Formula (5.1)) given by

Thf(x) = f ) f(2)K(x, h,2)Ay p(2)dz,
0

where K is an explicitly known kernel function such that
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PA()paly) = f PA(DK(X, Y, 2)Ay p(2)dz,
0
with the kernel

272°T'(a + 1)(cosh x cosh y cosh z)4~F-1
I'(3)[(a + 3)(sinhxsinh y sinh z)2

1

(1-B?)%2

K(x,y,2)

X F(a+pa-pa+s50-8)
for [x —y| <z < x+ yandK(x,Yy,z) = 0 elsewhere and

_ cosh?x + cosh’y + cosh’z— 1
a 2 cosh x cosh y cosh z

In [2], we have

(1.2) T H() = A F(A).

The finite differences of the first and higher orders are defined as follows:

Anf(x) = Taf(x) = £(x) = (Th — E)f(X),

k
(1.3) ART(X) = Ap(AFTH (X)) = (Th — E)*f(x) = Z(—l)k_i(ik)TLf(X),
i=0

where
T (x) = f(x), TLf(Q) = Ta(Ty (X)), (i=1,2,...k; k=1,2,..)
and E is a unit operator in Lfa/ﬁ)(]RJf).

Let Wg wp be the Sobolev space constructed by the Jacobi operator D, i.e.,

Ko 2
WZ,a,ﬁ ={fe L(aﬁ)

In [3], we have the following result:

(R*); DIf € Lfa/ﬁ)(mw, i=1,2,..,k.

Theorem 1.1. Let 6 € (0,1) and assume that f € Lf

aﬁ)(lRJf). Then the following are
equivalents

L T f0) = F00llz ey = O(W%) ash — 0,

2. [7 I1f(A)2du(A) = Or2) as r —> +oo.

The main aim of this paper is to establish an analog of Theorem 1.1.
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2. Main Results

In this section we present the main result of this paper. We first need to define
the k-Jacobi Lipschitz class.

Definition 2.1. Let 6 € (0,1). A function f € W'gaﬁ is said to be in the k-Jacobi
Lipschitz class, denoted by Lip(o, 2, k, r), if

IAKD" f ()l = O(h®) ash — 0,

wherer =0,1, ..., k.
Lemma2.l. Letfe W‘;,a/ﬁ. Then
IAKDT F (7 = f (A2 + Y11 - AP TN,
0
wherer=0,1, ...,k

Proof. From formula (1.1), we obtain

_—

(2.1) O HA) = (1A% + pA) F(A).

From formulas (1.2) and (2.1), we conclude that

(22) (TiD' () = (~1)'(A? + p&)'g}, (N T (1)
From formulas (1.3) and (2.2) follows that the Jacobi transform of
AXD"f(x)

is (—1)(A2 + p?)(1 - AT (A).
By Parseval’s identity we have the result O

Theorem 2.1, Let f € W‘; wp Then the following are equivalents

1. f eLip(5,2,k,r),

2. [T(A2 + p2)?F(A)du(A) = O(s ) as s —> +oo,
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Proof. 1) = 2) Assume that f € Lip(6, 2,k, r). Then we have
IAKD" f ()l = O(h?®) ash — 0.
From Lemma 2.1, we have
IARD" f(X)I° = fo (A% +p?)* |1 - @A(h)IZKIRA)Izdu(M

If A € [}, 2] then Ah > 1 and (3) of Lemma 1.1 implies that

1
1< —1-ga(h)l*

Then
2/h . 1 2/h .
, (A% + ) f(D)Pdu() < & o (A% + P21 = pa(n)* £ (V) Pdp(A)
1 1
1 ~
s [ @RI PP
0
= 0O(h%®).
Therefore
25 -
(2.3) (A% + p?)¥[F(A)Pdu(A) = O(s™) as s — +oo

S

It follows from (2.3) that

25 -
(A2 + P IF)PduL) < crs?,
S

where ¢; > 0 is some constant. From this inequality we obtain

e8]

2itlg
2, f, (A2 + P2 |F (1) Pdp(A)

j:0 2ls

01 ) (@9
j=0

—20

jﬁ(A2+p%”HEnFmAA)

IN

IN

CoS

This proves that
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f (A*+ PZ)Zrlm)qu()\) =0(s ) ass — +oo.
S
2) = 1) Suppose now that
f (A2 + p?)2" F(1)dp(A) = O(s2) as s —> +oo.
S

We have to show that

f (02 + 1L - AP TPdu(1) = O™) ash — 0.
0

We write
fom(/\2 + P21 = AP F)Pdu(A) = 11 + 1z,
where
1/h .
I = , (A2 + P27 1L = @AM f (A)Pdp(A)
and

= | (A% + p?)7I1 - @A) F(1)Pdp(A)
1/h

49

Estimate the summands I; and I, from above. It follows from (1) of Lemma 1.1

that

I, < 4 f M(AZ + P2 E(A)Pdu(d) = O(h?).
1/h

To estimate 11, we use the inequalities (1.1) and (2) of Lemma 1.1

1/h .
I = (A% + P2 11 = @A) F(D)Pdu(A)
0

1/h .
2% ; (A% + P11 = @a(MIIF(D)Pdp(A)

IA

IA

1/h _
4 f (A2 + P2 (A2 + ) FOAYd(A) = I + 1,
0

where
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1/h .
I3 = 4%p?h? (A% + p?)*[F(A)Pdp(A)
0

and
1/h .
ls = 4n? f A2(A% + p?)* [ F(A)Pdu(A)
0
Note that
o< a2 I TRdu)
0
= 4’ ID" (I = O(h*),
since 26 < 2.

For a while, we put
00 = [ 0%+ TR
S
Using integration by parts, we find that

1/h
Iy = 4kn? (—s?y/(s))ds
0

1/h
4kh2(—$¢(%)+2f0 sw(s)ds)

1 1/h
—4k¢(ﬁ) +2 X 44n? f sy(s)ds.
0

Since y(s) = O(s~%), we have sy(s) = O(s}?) and
1/h 1/h
f sy(s)ds = o( f 31‘25ds) = O(h%7?).
0 0

l4 < 2 X 4%C3h?h%-2,

Then

Finally

|4 = O(hzé)/
which completes the proof of the theorem O
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Corollary 2.1. Letf € W‘;aﬁ, and let

f e Lip(o,2,k,r).

Then

f 1F(D)2dp(A) = O™ ?) as's —> +oo.
S
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