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GENERALIZATION OF TITCHMARCH’S THEOREM FOR THE JACOBI
TRANSFORM
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Abstract. In this paper, we prove the generalization of Titchmarsh’s theorem for the
Jacobi transform for functions satisfying the k-Jacobi Lipschitz condition in the space
L2(R+,Δα,β(t)dt).

Keywords: Titchmarsh’s theorem, Jacobi Lipschitz condition, Jacobi Transform, Lipschitz
condition.

1. Introduction and preliminaries

The Jacobi transform can be regarded as a generalization of the Helgason-
Fourier transform of the radial function on the Riemannian symmetric spaces of
the noncompact type and rank one. For more details about this transform see
[1, 6, 7].

In this paper, we prove the generalization of Titchmarsh’s theorem for the Jacobi
transform for functions satisfying the k-Jacobi Lipschitz condition in the space
L2(R+,Δα,β(t)dt). For this purpose, we use the generalized translation operator.
This operator is one of the most important generalized translations on the half-line
R+ = [0,∞) (see [5]).

In [3] we proved an analog of Titchmarsh’s theorem for the Jacobi transform in
the space L2(R+,Δα,β(t)dt) for functions satisfying the Jacobi-Lipschitz condition.
In this paper, we prove the generalization of this result for functions satisfying the
k-Jacobi Lipschitz class (k ∈ {1, 2, ..}).

In this section, we collect some basic facts of the Jacobi transform. More about
the Jacobi transform can be found in [7].

Let
(a)0 = 1, (a)m = a(a + 1)...(a+m − 1).
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The Gaussian hypergeometric function is defined by

F(a, b, c, z) =
∞∑

m=0

(a)m(b)m

(c)mm!
zm, |z| < 1,

where a, b, z ∈ C and c � −N.

The function z −→ F(a, b, c, z) is a unique solution to the differential equation

z(1 − z)u′′(z) + (c − (a + b + 1)z)u′(z) − abu(z) = 0,

which is regular in 0 and equals 1 there.

The Jacobi function ϕ(α,β)
λ (t) is defined by

ϕλ(t) = ϕ(α,β)
λ

(t) = F(
1
2

(ρ − iλ),
1
2

(ρ + iλ), α + 1,− sinh2 t),

where α ≥ − 1
2 , α > β ≥ − 1

2 and ρ = α + β + 1.

The Jacobi operator

D = Dα,β =
d2

dt2 + ((2α+ 1) coth t + (2β + 1) tanh t)
d
dt
.

By means of which the Jacobi function ϕλ may alternatively be characterized as
a unique solution to

Dϕ + (λ2 + ρ2)ϕ = 0,

on R+ satisfying
ϕλ(0) = 1, ϕ′λ(0) = 0

and λ −→ ϕλ(t) is analytic for all t ≥ 0.

Lemma 1.1. The following inequalities are valid for a Jacobi function ϕλ(t), (λ, t ∈ R+) :

1. |ϕλ(t)| ≤ 1

2. 1 − ϕλ(t) ≤ t2(λ2 + ρ2)

3. there is a constant c > 0 such that

1 − ϕλ(t) ≥ c

for λt ≥ 1

Proof. Analog of Lemmas 3.1-3.2 in [8]
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Consider the Hilbert space

L2
(α,β)(R

+) = L2(R+,Δα,β(t)dt)

with the norm

‖ f ‖ = ‖ f ‖2,(α,β) =
(∫ ∞

0
| f (x)|2Δα,β(x)dx

)1/2

,

where
Δα,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1.

For a function f ∈ L2
(α,β)(R

+), the Jacobi transform is defined by the formula

f̂ (λ) =
∫ ∞

0
f (t)ϕλ(t)Δα,β(t)dt.

The inversion formula (cf. [7])

f (t) =
1

2π

∫ ∞

0
f̂ (λ)ϕλ(t)dμ(λ),

where dμ(λ) = |C(λ)|−2dλ and the C-function C(λ) is defined by

C(λ) =
2ρΓ(iλ)Γ( 1

2 (1 + iλ))

Γ( 1
2 (ρ + iλ))Γ( 1

2 (ρ + iλ) − β) ,

where α ≥ − 1
2 and α > β ≥ − 1

2 .

From [7], the Plancherel formula for the Jacobi transform is written as

‖ f ‖ = ‖ f ‖L2(R+,Δα,β(t)dt) = ‖ f̂ ‖L2(R+, 1
2π dμ(λ)).

We have

(1.1) (̂D f )(λ) = −(λ2 + ρ2) f̂ (λ).

The generalized translation operator was defined by Flensted-Jensen and Koorn-
winder ([4], Formula (5.1)) given by

Th f (x) =
∫ ∞

0
f (z)K(x, h, z)Δα,β(z)dz,

where K is an explicitly known kernel function such that
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ϕλ(x)ϕλ(y) =
∫ ∞

0
ϕλ(z)K(x, y, z)Δα,β(z)dz,

with the kernel

K(x, y, z) =
2−2ρΓ(α + 1)(cosh x cosh y cosh z)α−β−1

Γ( 1
2 )Γ(α + 1

2 )(sinh x sinh y sinh z)2α
(1 − B2)α−

1
2

× F((α + β), α− β, α + 1
2
,
1
2

(1 − B))

for |x − y| < z < x + y and K(x, y, z) = 0 elsewhere and

B =
cosh2 x + cosh2 y + cosh2 z − 1

2 cosh x cosh y cosh z

In [2], we have

(1.2) (̂Th f )(λ) = ϕλ(h) f̂ (λ).

The finite differences of the first and higher orders are defined as follows:

Δh f (x) = Th f (x) − f (x) = (Th − E) f (x),

(1.3) Δk
h f (x) = Δh(Δk−1

h f (x)) = (Th − E)k f (x) =
k∑

i=0

(−1)k−i(k
i )T

i
h f (x),

where

T0
h f (x) = f (x), Ti

h f (x) = Th(Ti−1
h f (x)), (i = 1, 2, ..., k ; k = 1, 2, ....)

and E is a unit operator in L2
(α,β)(R

+).

Let Wk
2,α,β be the Sobolev space constructed by the Jacobi operator D, i.e.,

Wk
2,α,β = { f ∈ L2

(α,β)(R
+); D j f ∈ L2

(α,β)(R
+), j = 1, 2, ..., k}.

In [3], we have the following result:

Theorem 1.1. Let δ ∈ (0, 1) and assume that f ∈ L2
(α,β)(R

+). Then the following are
equivalents

1. ‖Th f (x) − f (x)‖L2
(α,β)(R

+) = O(hδ) as h −→ 0,

2.
∫ ∞

r
| f̂ (λ)|2dμ(λ) = O(r−2δ) as r −→ +∞.

The main aim of this paper is to establish an analog of Theorem 1.1.
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2. Main Results

In this section we present the main result of this paper. We first need to define
the k-Jacobi Lipschitz class.

Definition 2.1. Let δ ∈ (0, 1). A function f ∈ Wk
2,α,β is said to be in the k-Jacobi

Lipschitz class, denoted by Lip(δ, 2, k, r), if

‖Δk
hDr f (x)‖ = O(hδ) as h −→ 0,

where r = 0, 1, ...., k.

Lemma 2.1. Let f ∈Wk
2,α,β. Then

‖Δk
hDr f (x)‖2 =

∫ ∞

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ),

where r = 0, 1, ...., k.

Proof. From formula (1.1), we obtain

(2.1) (̂Dr f )(λ) = (−1)r(λ2 + ρ2)r f̂ (λ).

From formulas (1.2) and (2.1), we conclude that

(2.2) ̂(Ti
hDr f )(λ) = (−1)r(λ2 + ρ2)rϕi

λ(h) f̂ (λ)

From formulas (1.3) and (2.2) follows that the Jacobi transform of

Δk
hDr f (x)

is (−1)r(λ2 + ρ2)r(1 − ϕλ(h))k f̂ (λ).

By Parseval’s identity we have the result

Theorem 2.1. Let f ∈Wk
2,α,β. Then the following are equivalents

1. f ∈ Lip(δ, 2, k, r),

2.
∫ ∞

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) = O(s−2δ) as s −→ +∞.
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Proof. 1) =⇒ 2) Assume that f ∈ Lip(δ, 2, k, r). Then we have

‖Δk
hDr f (x)‖ = O(hδ) as h −→ 0.

From Lemma 2.1, we have

‖Δk
hDr f (x)‖2 =

∫ ∞

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ).

If λ ∈ [ 1
h ,

2
h ] then λh ≥ 1 and (3) of Lemma 1.1 implies that

1 ≤ 1
c2k
|1 − ϕλ(h)|2k.

Then

∫ 2/h

1/h
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) ≤ 1

c2k

∫ 2/h

1/h
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ)

≤ 1
c2k

∫ ∞

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ)

= O(h2δ).

Therefore

(2.3)
∫ 2s

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) = O(s−2δ) as s −→ +∞

It follows from (2.3) that

∫ 2s

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) ≤ c1s−2δ,

where c1 > 0 is some constant. From this inequality we obtain

∫ ∞

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) =

∞∑
j=0

∫ 2 j+1s

2 js
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ)

≤ c1

∞∑
j=0

(2 js)−2δ

≤ c2s−2δ.

This proves that
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∫ ∞

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) = O(s−2δ) as s −→ +∞.

2) =⇒ 1) Suppose now that

∫ ∞

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) = O(s−2δ) as s −→ +∞.

We have to show that

∫ ∞

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ) = O(h2δ) as h −→ 0.

We write

∫ ∞

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ) = I1 + I2,

where

I1 =

∫ 1/h

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ)

and

I2 =

∫ ∞

1/h
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ)

Estimate the summands I1 and I2 from above. It follows from (1) of Lemma 1.1
that

I2 ≤ 4k
∫ ∞

1/h
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ) = O(h2δ).

To estimate I1, we use the inequalities (1.1) and (2) of Lemma 1.1

I1 =

∫ 1/h

0
(λ2 + ρ2)2r|1 − ϕλ(h)|2k| f̂ (λ)|2dμ(λ)

≤ 22k
∫ 1/h

0
(λ2 + ρ2)2r|1 − ϕλ(h)|| f̂ (λ)|2dμ(λ)

≤ 4kh2
∫ 1/h

0
(λ2 + ρ2)2r(λ2 + ρ2)| f̂ (λ)|2dμ(λ) = I3 + I4,

where
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I3 = 4kρ2h2
∫ 1/h

0
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ)

and

I4 = 4kh2
∫ 1/h

0
λ2(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ)

Note that

I3 ≤ 4kρ2h2
∫ ∞

0
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ)

= 4kρ2h2‖Dr f (x)‖2 = O(h2δ),

since 2δ < 2.

For a while, we put

ψ(s) =
∫ ∞

s
(λ2 + ρ2)2r| f̂ (λ)|2dμ(λ).

Using integration by parts, we find that

I4 = 4kh2
∫ 1/h

0
(−s2ψ′(s))ds

= 4kh2

(
− 1

h2ψ(
1
h

) + 2
∫ 1/h

0
sψ(s)ds

)

= −4kψ(
1
h

) + 2 × 4kh2
∫ 1/h

0
sψ(s)ds.

Since ψ(s) = O(s−2δ), we have sψ(s) = O(s1−2δ) and

∫ 1/h

0
sψ(s)ds = O

(∫ 1/h

0
s1−2δds

)
= O(h2δ−2).

Then

I4 ≤ 2 × 4kC3h2h2δ−2.

Finally

I4 = O(h2δ),

which completes the proof of the theorem
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Corollary 2.1. Let f ∈Wk
2,α,β, and let

f ∈ Lip(δ, 2, k, r).

Then

∫ ∞

s
| f̂ (λ)|2dμ(λ) = O(s−4r−2δ) as s −→ +∞.
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