GENERALIZATION OF TITCHMARCH'S THEOREM FOR THE JACOBI TRANSFORM

A. Abouelaz, R. Daher and M. El Hamma

Abstract

In this paper, we prove the generalization of Titchmarsh's theorem for the Jacobi transform for functions satisfying the k-Jacobi Lipschitz condition in the space $\mathrm{L}^{2}\left(\mathbb{R}^{+}, \Delta_{\alpha, \beta}(t) d t\right)$. Keywords: Titchmarsh's theorem, Jacobi Lipschitz condition, Jacobi Transform, Lipschitz condition.

1. Introduction and preliminaries

The Jacobi transform can be regarded as a generalization of the HelgasonFourier transform of the radial function on the Riemannian symmetric spaces of the noncompact type and rank one. For more details about this transform see [1, 6, 7].

In this paper, we prove the generalization of Titchmarsh's theorem for the Jacobi transform for functions satisfying the k-Jacobi Lipschitz condition in the space $\mathrm{L}^{2}\left(\mathbb{R}^{+}, \Delta_{\alpha, \beta}(t) d t\right)$. For this purpose, we use the generalized translation operator. This operator is one of the most important generalized translations on the half-line $\mathbb{R}^{+}=[0, \infty)$ (see [5]).

In [3] we proved an analog of Titchmarsh's theorem for the Jacobi transform in the space $\mathrm{L}^{2}\left(\mathbb{R}^{+}, \Delta_{\alpha, \beta}(t) d t\right)$ for functions satisfying the Jacobi-Lipschitz condition. In this paper, we prove the generalization of this result for functions satisfying the k-Jacobi Lipschitz class ($k \in\{1,2, .$.$\}).$

In this section, we collect some basic facts of the Jacobi transform. More about the Jacobi transform can be found in [7].

Let

$$
(a)_{0}=1,(a)_{m}=a(a+1) \ldots(a+m-1) .
$$

Received June 20, 2012.; Accepted March 06, 2013.
2010 Mathematics Subject Classification. Primary 43A90; Secondary 42C15

The Gaussian hypergeometric function is defined by

$$
F(a, b, c, z)=\sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m} m!} z^{m},|z|<1,
$$

where $a, b, z \in \mathbb{C}$ and $c \notin-\mathbb{N}$.
The function $z \longrightarrow F(a, b, c, z)$ is a unique solution to the differential equation

$$
z(1-z) u^{\prime \prime}(z)+(c-(a+b+1) z) u^{\prime}(z)-a b u(z)=0
$$

which is regular in 0 and equals 1 there.
The Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is defined by

$$
\varphi_{\lambda}(t)=\varphi_{\lambda}^{(\alpha, \beta)}(t)=\mathrm{F}\left(\frac{1}{2}(\rho-i \lambda), \frac{1}{2}(\rho+i \lambda), \alpha+1,-\sinh ^{2} t\right),
$$

where $\alpha \geq-\frac{1}{2}, \alpha>\beta \geq-\frac{1}{2}$ and $\rho=\alpha+\beta+1$.
The Jacobi operator

$$
\mathrm{D}=\mathrm{D}_{\alpha, \beta}=\frac{d^{2}}{d t^{2}}+((2 \alpha+1) \operatorname{coth} t+(2 \beta+1) \tanh t) \frac{d}{d t} .
$$

By means of which the Jacobi function φ_{λ} may alternatively be characterized as a unique solution to

$$
\mathrm{D} \varphi+\left(\lambda^{2}+\rho^{2}\right) \varphi=0,
$$

on \mathbb{R}^{+}satisfying

$$
\varphi_{\lambda}(0)=1, \varphi_{\lambda}^{\prime}(0)=0
$$

and $\lambda \longrightarrow \varphi_{\lambda}(t)$ is analytic for all $t \geq 0$.
Lemma 1.1. The following inequalities are valid for a Jacobi function $\varphi_{\lambda}(t),\left(\lambda, t \in \mathbb{R}^{+}\right)$:

1. $\left|\varphi_{\lambda}(t)\right| \leq 1$
2. $1-\varphi_{\lambda}(t) \leq t^{2}\left(\lambda^{2}+\rho^{2}\right)$
3. there is a constant $c>0$ such that

$$
1-\varphi_{\lambda}(t) \geq c
$$

for $\lambda t \geq 1$
Proof. Analog of Lemmas 3.1-3.2 in [8]

Consider the Hilbert space

$$
\mathrm{L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)=\mathrm{L}^{2}\left(\mathbb{R}^{+}, \Delta_{\alpha, \beta}(t) d t\right)
$$

with the norm

$$
\|f\|=\|f\|_{2,(\alpha, \beta)}=\left(\int_{0}^{\infty}|f(x)|^{2} \Delta_{\alpha, \beta}(x) d x\right)^{1 / 2},
$$

where

$$
\Delta_{\alpha, \beta}(t)=(2 \sinh t)^{2 \alpha+1}(2 \cosh t)^{2 \beta+1} .
$$

For a function $f \in \mathrm{~L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$, the Jacobi transform is defined by the formula

$$
\widehat{f}(\lambda)=\int_{0}^{\infty} f(t) \varphi_{\lambda}(t) \Delta_{\alpha, \beta}(t) d t
$$

The inversion formula (cf. [7])

$$
f(t)=\frac{1}{2 \pi} \int_{0}^{\infty} \widehat{f}(\lambda) \varphi_{\lambda}(t) d \mu(\lambda),
$$

where $d \mu(\lambda)=|C(\lambda)|^{-2} d \lambda$ and the C-function $C(\lambda)$ is defined by

$$
C(\lambda)=\frac{2^{\rho} \Gamma(i \lambda) \Gamma\left(\frac{1}{2}(1+i \lambda)\right)}{\Gamma\left(\frac{1}{2}(\rho+i \lambda)\right) \Gamma\left(\frac{1}{2}(\rho+i \lambda)-\beta\right)},
$$

where $\alpha \geq-\frac{1}{2}$ and $\alpha>\beta \geq-\frac{1}{2}$.
From [7], the Plancherel formula for the Jacobi transform is written as

$$
\|f\|=\|f\|_{L^{2}\left(\mathbb{R}^{+}, \Delta_{\alpha, \beta}(t) d t\right)}=\| \widehat{\left.f \|_{L^{2}\left(\mathbb{R}^{+}\right.}, \frac{1}{2 \pi} d \mu(\lambda)\right)} \text {. }
$$

We have

$$
\begin{equation*}
\widehat{(D f)}(\lambda)=-\left(\lambda^{2}+\rho^{2}\right) \widehat{f}(\lambda) \tag{1.1}
\end{equation*}
$$

The generalized translation operator was defined by Flensted-Jensen and Koornwinder ([4], Formula (5.1)) given by

$$
\mathrm{T}_{h} f(x)=\int_{0}^{\infty} f(z) K(x, h, z) \Delta_{\alpha, \beta}(z) d z,
$$

where K is an explicitly known kernel function such that

$$
\varphi_{\lambda}(x) \varphi_{\lambda}(y)=\int_{0}^{\infty} \varphi_{\lambda}(z) K(x, y, z) \Delta_{\alpha, \beta}(z) d z
$$

with the kernel

$$
\begin{aligned}
K(x, y, z) & =\frac{2^{-2 \rho} \Gamma(\alpha+1)(\cosh x \cosh y \cosh z)^{\alpha-\beta-1}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\alpha+\frac{1}{2}\right)(\sinh x \sinh y \sinh z)^{2 \alpha}}\left(1-B^{2}\right)^{\alpha-\frac{1}{2}} \\
& \times F\left((\alpha+\beta), \alpha-\beta, \alpha+\frac{1}{2}, \frac{1}{2}(1-B)\right)
\end{aligned}
$$

for $|x-y|<z<x+y$ and $K(x, y, z)=0$ elsewhere and

$$
B=\frac{\cosh ^{2} x+\cosh ^{2} y+\cosh ^{2} z-1}{2 \cosh x \cosh y \cosh z}
$$

In [2], we have

$$
\begin{equation*}
\widehat{\left(\mathrm{T}_{h} f\right)}(\lambda)=\varphi_{\lambda}(h) \widehat{f}(\lambda) . \tag{1.2}
\end{equation*}
$$

The finite differences of the first and higher orders are defined as follows:

$$
\begin{gather*}
\Delta_{h} f(x)=\mathrm{T}_{h} f(x)-f(x)=\left(\mathrm{T}_{h}-\mathrm{E}\right) f(x), \\
\Delta_{h}^{k} f(x)=\Delta_{h}\left(\Delta_{h}^{k-1} f(x)\right)=\left(\mathrm{T}_{h}-\mathrm{E}\right)^{k} f(x)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} \mathrm{~T}_{h}^{i} f(x), \tag{1.3}
\end{gather*}
$$

where

$$
\mathrm{T}_{h}^{0} f(x)=f(x), \mathrm{T}_{h}^{i} f(x)=\mathrm{T}_{h}\left(\mathrm{~T}_{h}^{i-1} f(x)\right),(i=1,2, \ldots, k ; k=1,2, \ldots .)
$$

and E is a unit operator in $\mathrm{L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$.
Let $W_{2, \alpha, \beta}^{k}$ be the Sobolev space constructed by the Jacobi operator D, i.e.,

$$
\mathrm{W}_{2, \alpha, \beta}^{k}=\left\{f \in \mathrm{~L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right) ; \mathrm{D}^{j} f \in \mathrm{~L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right), j=1,2, \ldots, k\right\}
$$

In [3], we have the following result:
Theorem 1.1. Let $\delta \in(0,1)$ and assume that $f \in \mathrm{~L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$. Then the following are equivalents

1. $\left\|\mathrm{T}_{h} f(x)-f(x)\right\|_{\mathrm{L}_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)}=O\left(h^{\delta}\right)$ as $h \longrightarrow 0$,
2. $\int_{r}^{\infty}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(r^{-2 \delta}\right)$ as $r \longrightarrow+\infty$.

The main aim of this paper is to establish an analog of Theorem 1.1.

2. Main Results

In this section we present the main result of this paper. We first need to define the k-Jacobi Lipschitz class.

Definition 2.1. Let $\delta \in(0,1)$. A function $f \in W_{2, \alpha, \beta}^{k}$ is said to be in the k-Jacobi Lipschitz class, denoted by $\operatorname{Lip}(\delta, 2, k, r)$, if

$$
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|=O\left(h^{\delta}\right) \text { as } h \longrightarrow 0
$$

where $r=0,1, \ldots ., k$.

Lemma 2.1. Let $f \in \mathrm{~W}_{2, \alpha, \beta}^{k}$. Then

$$
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|^{2}=\int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

where $r=0,1, \ldots ., k$.

Proof. From formula (1.1), we obtain

$$
\begin{equation*}
\widehat{\left(\mathrm{D}^{r} f\right)}(\lambda)=(-1)^{r}\left(\lambda^{2}+\rho^{2}\right)^{r} \widehat{f}(\lambda) \tag{2.1}
\end{equation*}
$$

From formulas (1.2) and (2.1), we conclude that

$$
\begin{equation*}
\left(\widehat{\mathrm{T}_{h}^{i} \mathrm{D}^{r}} f\right)(\lambda)=(-1)^{r}\left(\lambda^{2}+\rho^{2}\right)^{r} \varphi_{\lambda}^{i}(h) \widehat{f}(\lambda) \tag{2.2}
\end{equation*}
$$

From formulas (1.3) and (2.2) follows that the Jacobi transform of

$$
\Delta_{h}^{k} \mathrm{D}^{r} f(x)
$$

is $(-1)^{r}\left(\lambda^{2}+\rho^{2}\right)^{r}\left(1-\varphi_{\lambda}(h)\right)^{k} \widehat{f}(\lambda)$.
By Parseval's identity we have the result
Theorem 2.1. Let $f \in \mathrm{~W}_{2, \alpha, \beta}^{k}$. Then the following are equivalents

1. $f \in \operatorname{Lip}(\delta, 2, k, r)$,
2. $\int_{s}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(s^{-2 \delta}\right)$ as $\longrightarrow+\infty$.

Proof. 1) $\Longrightarrow 2)$ Assume that $f \in \operatorname{Lip}(\delta, 2, k, r)$. Then we have

$$
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|=O\left(h^{\delta}\right) \text { as } h \longrightarrow 0
$$

From Lemma 2.1, we have

$$
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|^{2}=\int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

If $\lambda \in\left[\frac{1}{h}, \frac{2}{h}\right]$ then $\lambda h \geq 1$ and (3) of Lemma 1.1 implies that

$$
1 \leq \frac{1}{c^{2 k}}\left|1-\varphi_{\lambda}(h)\right|^{2 k}
$$

Then

$$
\begin{aligned}
\int_{1 / h}^{2 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) & \leq \frac{1}{c^{2 k}} \int_{1 / h}^{2 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& \leq \frac{1}{c^{2 k}} \int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& =O\left(h^{2 \delta}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\int_{s}^{2 s}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(s^{-2 \delta}\right) \text { as } s \longrightarrow+\infty \tag{2.3}
\end{equation*}
$$

It follows from (2.3) that

$$
\int_{s}^{2 s}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \leq c_{1} s^{-2 \delta}
$$

where $c_{1}>0$ is some constant. From this inequality we obtain

$$
\begin{aligned}
\int_{s}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) & =\sum_{j=0}^{\infty} \int_{2 j_{s}}^{2^{j+1} s}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& \leq c_{1} \sum_{j=0}^{\infty}\left(2^{j} s\right)^{-2 \delta} \\
& \leq c_{2} s^{-2 \delta}
\end{aligned}
$$

This proves that

$$
\int_{s}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(s^{-2 \delta}\right) \text { as } s \longrightarrow+\infty
$$

2) $\Longrightarrow 1$) Suppose now that

$$
\int_{s}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(s^{-2 \delta}\right) \text { as } s \longrightarrow+\infty .
$$

We have to show that

$$
\int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(h^{2 \delta}\right) \text { as } h \longrightarrow 0
$$

We write

$$
\int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

where

$$
\mathrm{I}_{1}=\int_{0}^{1 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

and

$$
\mathrm{I}_{2}=\int_{1 / h}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

Estimate the summands I_{1} and I_{2} from above. It follows from (1) of Lemma 1.1 that

$$
\mathrm{I}_{2} \leq 4^{k} \int_{1 / h}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(h^{2 \delta}\right)
$$

To estimate I_{1}, we use the inequalities (1.1) and (2) of Lemma 1.1

$$
\begin{aligned}
\mathrm{I}_{1} & =\int_{0}^{1 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right|^{2 k}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& \leq 2^{2 k} \int_{0}^{1 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left|1-\varphi_{\lambda}(h)\right||\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& \leq 4^{k} h^{2} \int_{0}^{1 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}\left(\lambda^{2}+\rho^{2}\right)|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=\mathrm{I}_{3}+\mathrm{I}_{4}
\end{aligned}
$$

where

$$
\mathrm{I}_{3}=4^{k} \rho^{2} h^{2} \int_{0}^{1 / h}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

and

$$
\mathrm{I}_{4}=4^{k} h^{2} \int_{0}^{1 / h} \lambda^{2}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

Note that

$$
\begin{aligned}
\mathrm{I}_{3} & \leq 4^{k} \rho^{2} h^{2} \int_{0}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda) \\
& =4^{k} \rho^{2} h^{2}\left\|\mathrm{D}^{r} f(x)\right\|^{2}=O\left(h^{2 \delta}\right),
\end{aligned}
$$

since $2 \delta<2$.

For a while, we put

$$
\psi(s)=\int_{s}^{\infty}\left(\lambda^{2}+\rho^{2}\right)^{2 r}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)
$$

Using integration by parts, we find that

$$
\begin{aligned}
\mathrm{I}_{4} & =4^{k} h^{2} \int_{0}^{1 / h}\left(-s^{2} \psi^{\prime}(s)\right) d s \\
& =4^{k} h^{2}\left(-\frac{1}{h^{2}} \psi\left(\frac{1}{h}\right)+2 \int_{0}^{1 / h} s \psi(s) d s\right) \\
& =-4^{k} \psi\left(\frac{1}{h}\right)+2 \times 4^{k} h^{2} \int_{0}^{1 / h} s \psi(s) d s .
\end{aligned}
$$

Since $\psi(s)=O\left(s^{-2 \delta}\right)$, we have $s \psi(s)=O\left(s^{1-2 \delta}\right)$ and

$$
\int_{0}^{1 / h} s \psi(s) d s=O\left(\int_{0}^{1 / h} s^{1-2 \delta} d s\right)=O\left(h^{2 \delta-2}\right)
$$

Then

$$
\mathrm{I}_{4} \leq 2 \times 4^{k} C_{3} h^{2} h^{2 \delta-2}
$$

Finally

$$
\mathrm{I}_{4}=O\left(h^{2 \delta}\right)
$$

which completes the proof of the theorem

Corollary 2.1. Let $f \in \mathrm{~W}_{2, \alpha, \beta^{\prime}}^{k}$ and let

$$
f \in \operatorname{Lip}(\delta, 2, k, r)
$$

Then

$$
\int_{s}^{\infty}|\widehat{f}(\lambda)|^{2} d \mu(\lambda)=O\left(s^{-4 r-2 \delta}\right) \text { as } s \longrightarrow+\infty
$$

REFERENCES

1. N. B. Anderson, Hardy's theorem for the Jacobi transform, Hiroshima. Math. J. 33 (2003), 229-251.
2. W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity , Journal of Functional Analysis 255 (2008), 2265-2285.
3. R. Daher and M. El Hamma, An Analog of Titchmarsh's Theorem of the Jacobi Transform, Int. Journal of Math. Analysis, Vol. 6, no. 20 (2012), 975-981.
4. M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245-262.
5. L. Hörmander, Estimates for translation invariant operators in L_{p} spaces, Acta Math.104, (1960) 93-140.
6. T. Kawazoe and J. Liu, Heat kernel and Hardy's theorem for the Jacobi transform, Chinese Ann. Math. 3 (2003), 359-366.
7. T. H. Koornwinder, Jacobi functions and analysis on noncompact semi simple Lie groups, Special Functions: Group Theoretical aspects and applications, Math Appl., Reidel, Dordrecht, 1984, pp. 1-85.
8. S. S. Platonov, Approxomation of functions in the L_{2}-metric on noncompact rank 1 symmetric spaces, Algebra. Analiz, 11, No. 1 (1999), 244-270.
A. Abouelaz

University of Hassan II
Faculty of Science Aïn Chock
Department of Mathematics and Informatics
Casablanca, Morocco
a.abouelaz@fsac.ac.ma
R. Daher

University of Hassan II
Faculty of Science Aïn Chock
Department of Mathematics and Informatics
Casablanca, Morocco
rjdaher024@gmail.com
M. El Hamma

University of Hassan II
Faculty of Science Aïn Chock
Department of Mathematics and Informatics
Casablanca, Morocco
m_elhamma@yahoo.fr

