
FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. 28, No 1(2013), 27–42

PROBABILITY GRAPHS

Igor Ševo

Abstract. Here, I propose the idea of using graphs (graph theory) for modeling, analysis
and solving problems from probability theory. Here, algorithms are proposed which
allow finding the most probable sequences of events in a given set of events. Also, an
idea of modeling probability problems with graphs is proposed.

Keywords: Probability, graph, simplification, transition matrix, weight, Floyd-Warshall
algorithm.

1. Introduction

In a model of a system of random events, there exist mutual relations between
individual events [1]. Each two events from a given set of events have some relation,
whether it is causality or inclusion. For different problems, different systems are
modeled differently, but generally they all have some similar properties.

The idea proposed here is that each such system can be modeled using a graph.
It is known that for a given system of events there exists a transition matrix which
describes transition probabilities between given events [1, 2]. By combining au-
tomata theory [3] and probability theory, graph systems can be deduced which can
model systems of random events.

If events are represented via nodes (vertices) of a graph, then edges of a graph
would represent relations between individual events. From the transition matrix
of a system of events, a graph of the system can be modeled such that the edges
of that graph have weights corresponding to the transition probabilities between
related events. To model an event system more accurately, the definition of the
graph can be modified so that it contains more properties of the given random
event system. Moreover, as the topic is random events systems, search algorithms
need to be modified according to properties of random event systems. In this case
the complete path (probability) between two given events would be obtained by

Received August 08, 2012.; Accepted January 23, 2013.
2010 Mathematics Subject Classification. Primary 60A99; Secondary 60J99, 05C85

27

28 I. Ševo

multiplication of weights of edges that lead from one node to another (as opposed
to summing the edge weights).

By applying automata theory and graph theory I deduce some rules for ma-
nipulation and analysis of graphs that describe random events systems. As the
definition of a graph is modified here, graphs used here are named probability
graphs.

2. Mathematical model

Definition 2.1. For n events Ai ⊂ Ω, i = 1, n, event system is an ordered pair
S = (Ms,X), where X is a set such that X = {A1,A2 . . .An}, and Ms is a causality
matrix (transition matrix) defined as:

Ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12
P21 P22

· · · P1n

P2n
...

. . .
...

Pn1 Pn2 · · · Pnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Pij = P(AiAj) is the occurrence probability of the event Ai immediately after
the occurrence of the event Aj.

Definition 2.2. Event system S is closed if:

n∑
i=1

Pij = 1

for j = 1, n i Pij ∈Ms ∈ S.

Definition 2.3. For each event system S there exists a directed, weighted graph
Gs which is called the probability graph of the event system S, which completely
describes the system S and which is defined in the following way:

Gs = (V,E), where V is a set of graph vertices, where each vertex corresponds
to a single event in S, |V| = |X|,X ∈ S; and E is a set of graph edges, where each
edge is defined as a tuple (x, y, p), so that p = P(AyAx), that is p = P(AyAx) = Pyx ∈
Ms ∈ S, where p > 0, meaning there are no relations between vertices for which the
corresponding events have a zero transition probability.

Weight of edge (x, y, p) is defined as δ(x, y) = p = P(AyAx), that is, weight of
edge (x, y, p) is equal to the value of the third member of the given tuple, so it is
equal to the occurrence probability of y-th event with occurrence of x-th event.

Probability Graphs 29

Definition 2.4. Let S(i, j) ∈ Gs be a walk in a probability graph Gs. The weight of
the walk S(i, j) is written as ω(S(i, j)) and computed as:

ω(S(i, j)) =
∏

(p,q,·)∈S(i, j)

δ(p, q)

Theorem 2.1. Let Gs be a probability graph which describes event system S. The occur-
rence probability of the event Aj starting from event Ai, for Aj,Ai ∈ X ∈ S, is equal to the
sum of weights of all walks from i-th to j-th vertex in a graph, that is:

P(AjAi) =
∑

S(i, j)∈Gs

ω(S(i, j))

Proof. Every vertex from graph Gs corresponds to an event in S, and every edge
corresponds to the transitional probability between two events corresponding to
the vertices it connects. For two events Ax and Ay, for which holds P(AyAx) = 0
exists no edge in graph Gs which connects Ax with Ay, that is the edge (x, y, ·) does
not exist.

Therefore, every sequence of events AiAk1Ak2 . . .AkrAj with probability

P(Aj|Akr |Akr−1 | · · · |Ak2 |Ak1 |Ai) > 0

exists as a walk in the graph Gs . If P(Aj|Akr |Akr−1 | · · · |Ak2 |Ak1 |Ai) = 0 holds for
each sequence, then there exists at least one probability P(AnAm) = 0 in the given
sequence, for which in graph Gs a corresponding edge does not exist, hence for
impossible sequences of events a corresponding walk in the graph does not exist.

For sequence of events AiAk1Ak2 . . .Akr Aj there exists a walk with the weight
equal to the probability of the given sequence, that is if:

P(Aj|Akr |Akr−1 | · · · |Ak2 |Ak1 |Ai)=P(AjAkr) · P(AkrAkr−1) · · ·P(Ak2Ak1) · P(Ak1Ai)

definition Gsyields:

P(Aj|Akr |Akr−1 | · · · |Ak2 |Ak1 |Ai) = pjkr · pkrkr−1 · · · pk2k1 · pk1i

= ω((j, kr, ·), (kr, kr−1, ·) . . . (k2, k1, ·), (k1, i, ·)),
where (j, kr, ·), (kr, kr−1, ·) . . . (k2, k1, ·), (k1, i, ·) is a walk in the graph Gs, written via
edges of the graph.

As one walk corresponds to only one sequence of events and as the occurrence
probability of event Aj starting from event Ai is equal to the sum of probabilities of
all sequences of events which in the given system begin with Ai and end with Aj, it
follows that the sought probability is equal to the sum of weights of corresponding
walks in the graph Gs, and therefore:

P(AjAi) =
∑

S(i, j)∈Gs

ω(S(i, j))

which proves the assertion.

30 I. Ševo

Theorem 2.2. Let graph Gs be the probability graph which describes event system S.
Probability of event sequenceAk1 Ak2Ak3 . . .Akn, for Ak1 ,Ak2 ,Ak3 . . .Akn ∈ X ∈ S, is equal
to the ration of weight of walk k1k2k3 . . . kn and sum of weights of all walks from vertex k1
to vertex kn in graph Gs.

Proof. Theorem directly follows from geometric definition of probability [4, 2]. As
the probability of occurrence of some event is equal to the ratio of value of favorable
outcomes to the value of all possible outcomes, the probability of some sequence
of events is equal to the ratio of value of that sequence of events and value of all
sequences of events with the same starting and ending event. In graph Gs value of
a sequence is the weight of the walk, and hence the probability is:

P(Ak1Ak2Ak3 . . .Akn) =
ω(k1k2k3 . . . kn)∑
S(i,j)∈Gs

ω(S(i, j))

Corollary 2.1. In case of three vertices, the given formula reduces to Bayes’ theorem.

Theorem 2.3. Let Gs be the probability graph which describes event system S. Occurrence
probability of event Aj starting from event Ai, for Aj,Ai ∈ X ∈ S, so that between events
Ai and Aj events Ak1 ,Ak2 ,Ak3 . . .Akn ∈ X ∈ S occurred, is equal to the ratio of the sum of
weights of all walks in graph Gs which start with vertex i, end with vertex j and contain
vertices k1, k2, k3 . . . kn and the sum of weights of all walks in Gs which start with vertex i
and end with vertex j.

Proof. Theorem directly follows from the geometric definition of probability. Oc-
currence probability of each event is equal to the ratio of value of favorable out-
comes to the value of all possible outcomes. The outcome is favorable if events
Ak1 ,Ak2 ,Ak3 . . .Akn occurred, that is if k1, k2, k3 . . . kn are part of a walk from i to j.
The value of favorable events is, therefore, the sum of weights of all walks from i to
j which contain the given vertices. Analogously, the value of all events is the sum
of weights of all walks from i to j, and therefore the assertion is proven, since the
probability of occurrence of event is equal to the ratio of value of favorable to all
possible outcomes, that is:

P(Ak1Ak2Ak3 . . .Akn) =

∑
S(i,j)∈Gs∧{k1,k2...kn}∈S(i,j)

ω(S(i, j))

∑
S(i,j)∈Gs

ω(S(i, j))

Lemma 2.1. If probability graph Gs describes a closed event system S, then the sum of all
exiting edges for each vertex in Gs is equal to 1.

Probability Graphs 31

Proof. As
n∑

i=1
Pij = 1 , for each j ∈ 1, 2, 3 . . .n and Pij = P(AiAj) then

n∑
i=1
δ(j, i) = 1 , and

as the number of vertices in a graph is n all edges with the starting vertex j are in
the sum. The sum of exiting weights for each vertex j in graph Gs is equal to 1, and
as j ∈ 1, 2, 3 . . .n, the sum of exiting weights for any vertex of graph Gs is equal to
1.

Theorem 2.4. Let Gs be the probability graph which describes the event system S. If Gs is
acyclic then the following algorithm finds the most probable sequence of events for all pairs
of vertices:

• Edges of zero weight are added to graph Gsto from a complete graph.

• A matrix W = [wij] is formed containing elements which are the weights of edges in
graph Gs, that is, it is the weight matrix of graph Gs.

• A predecessor matrix T = [ti j] is formed with the same number of rows and columns
as W and initialized:

ti j =

{
0, i = j
i, i � j

• A relaxation is performed on each vertex k in graph Gs over all pairs of vertices i and
j from Gs in the following way:

If the condition wij < wik · wkj is satisfied then:

ti j: = tkj

wij: = wik · wkj

• The resulting matrix W is the probability matrix of the most probable sequences of
events (wij is the probability of the most probable sequence of events starting from
i-th and ending with j-th event).

• Tuple Dij = (d1, d2, d3 . . . dn) is the most probable sequence of events from i-th to j-th
event and is obtained using the recursive algorithm:

f (i, j, x) =
{

dx: = i; i = j
dx := j, f (i, ti j, x + 1); i � j

with starting parameter x = 1, that is, the most probable sequence of events is obtained
starting with f (i, j, 1).

Proof. Proof of the theorem (algorithm) reduces to proving analogousness with
Floyd-Warshall algorithm [5]. The formed matrix W is analogous to the shortest
distance matrix. As graph Gs is a complete graph, there exists no pair (i, j) such
that edge (i, j, p) ∈ E, so the initialization of the matrix W is identical to the initial-
ization in Floyd-Warshall algorithm. As there exists no pair (i, j) such that wij = ∞

32 I. Ševo

according to Floyd-Warshall algorithm, the initialization of the predecessor matrix
is analogous to the initialization in the Floyd-Warshall algorithm.

Fig. 2.1: First relaxation is Floyd-Warshall, the second is our algorithm.

In this algorithm (Figure 2.1), relaxation is done when the probability of the
sequence of events AiAj is less than probability of sequence AiAjAk. In order for
the given algorithm to be completely analogous with the Floyd-Warshall algorithm,
it is necessary to prove the analogy between the relaxation principles of the given
algorithm and the Floyd-Warshall algorithm.

As graph Gs is an acyclic graph and as the weight of the path between i-th and
j-th vertex is limited by 0 and 1, it is possible to search for a path of maximum
weight (the product of numbers in interval [0, 1] is in that interval).

From above it follows that the relaxation condition is correct, and the principle
of relaxation is valid, and hence the principle of relaxation is analogous with the
principle of relaxation in the Floyd-Warshall algorithm [5], which proves the theo-
rem about the most probable sequences of events in acyclic probability graphs.

Theorem 2.5. Let Gs be the probability graph describing event system S. Then the
following algorithm finds the most probable sequence of events in the system, with the n-th
event as starting event and m-th event as ending event:

• A graph GI is formed, identical to graph Gs, but with a sequence of events corre-
sponding to the vertices of the edge added to the edge, that is for edge (x, y, p) there
exists a sequence AxAy

• Graph GI is reduced to a graph with two vertices, n and m, such that the most probable
sequence of events is added to that event. The reduction is done in the following way:

For each vertex k in graph GI we find all pairs of vertices i and j over which the
reduction is done by the pattern in Figure 2.2.

Probability Graphs 33

Fig. 2.2: Vertex relaxations

Where Ai, Aj and Akare events or sequences of events. Reduction is done over vertices
n and m, since these vertices are the starting and ending vertex.

34 I. Ševo

The order of vertex deletion is given by the pseudo code:
for all k in GI where k � n, k � m do

for all i in GI where i � k, i � n, i � m do
for all j in GIwhere j � i, j � k, j � n, j � m do

Reduction(i, k, j);
end for

end for
end for

• The resulting graph GI contains two vertices and one edge. The weight of the edge is
the probability of the most probable sequence of events starting with Ai and ending
with Aj, and the sequence of events added to the edge is the most probable sequence
of events starting with event Ai and ending with event Aj.

Proof. The proof of the theorem (algorithm) reduces to proving the analogousness
with the algorithm for converting pushdown automata into regular expressions.
The formed graph GI is equivalent to the pushdown automaton with one starting
and one ending state (vertices n and m from graph GS respectively).

For PDA-RE algorithm [3] reductions are given in Figure 2.3.

Fig. 2.3: PDA-RE algorithm reductions.

The first is analogous with the given algorithm. In order for the given algorithm
to be analogous with the PDA-RE algorithm, it is necessary to solve the problem
of repeating the event Ak.

Evidently, event Ak must occur a finite number of times. The most probable
number of repetitions of event Ak with probability pkk can be obtained in the
following way:

Let X be a random variable which counts the number of repetitions of event Ak

with the repetition stopping probability p = 1 − pkk, then:

X :
(

1
p

2
(1 − p)p

3
(1 − p)2p

· · · n
(1 − p)n−1p

)

Probability Graphs 35

The most probable number of repetitions of event Ak is the expected value of
random value X.

E(X) =
+∞∑
n=1

n(1 − p)n−1p = p
+∞∑
n=1

n(1 − p)n−1

= p

⎡⎢⎢⎢⎢⎢⎣
+∞∑
n=1

(1 − p)n−1 +

+∞∑
n=2

(1 − p)n−1 +

+∞∑
n=3

(1 − p)n−1 + · · ·
⎤⎥⎥⎥⎥⎥⎦ =

= p

[
1
p
+ (1 − p)

1
p
+ (1 − p)2 1

p
+ · · ·

]

= 1 + (1 − p) + (1 − p)2 + · · ·
= lim

n→+∞
1 − (1 − p)n

1 − (1 − p)
=

1
p
=

1
1 − pkk

Therefore, the second step of the reduction is analogous to the PDA-RE algo-
rithm.

Fig. 2.4: PDA-RE algorithm reductions

As ”+” is the ” or” operation, in the given algorithm it is necessary to determine
whether EF or H is more probable, that is whether AiAkAj or AiAj is more probable,
which can be determined from the truthfulness of the relation pij < pik · pkj, so that
only one of the given two sequences remains, which is analogous with the PDA-
RE algorithm. As the first three steps of reduction are analogous to the PDA-RE
algorithm, this step is analogous to the PDA-RE algorithm, since the application of
this step reduces to the application of the previous two. These reductions are given
in Figure 2.4.

36 I. Ševo

By showing the analogousness of the given algorithm with PDA-RE algorithm,
its correctness is proved, thus the proof is done.

3. Discussion

The application of the given algorithms is not limited only to the systems which
are closed. If we observe the subsystem of a larger system for which all parameters
are not known, we can conduct analysis and modeling on the basis of the known
parameters. The closure property guarantees that the obtained solution will be
correct in the given system (that is, the solution will be correct for the given sys-
tem/mathematical model). If we observe some isolated part of the system, then the
closure property is not relevant, and the solution of such system (its analysis) will
yield the result according to the probability theory. In such a case, it is possible that
the sum of entering paths in some vertex is not 1, which is still correct considering
the probability theory, since the sum excludes the cases not encapsulated by the
observed subsystem of a larger system. Analogously, the same is true for the sum
of weights of exiting edges from a vertex in a chosen subsystem.

A modified Floyd-Warshall algorithm (theorem 2.4) will, in case of an incom-
plete system (a system without the closure property) yield a correct result for the
given derived model (model represented by the given subsystem), in case that the
probability graph is acyclic.

In the case of a cyclic graph, the application of theorem 2.4 is limited only to the
specific cases. Generally, if a probability graph contains a cycle then the solution
will be correct only in case the number of repetitions in the cycle, for each walk
containing the cycle, is equal to zero or one (that is, the probability of multiple
repetition of a sequence of events from the cycle is less than the probability of its
one or no repetition). In the case of a set of successive events (event system for
which the probability graph does not contain a cycle) the algorithm will yield a
correct result with the execution time of O(n3) which is equivalent to the execution
time of Floyd-Warshall algorithm.

Unlike theorem 2.4, theorem 2.5 is applicable to cyclic graphs. The execution
time (time complexity) of this algorithm should theoretically be O(n4), with the
assumption that the reduction time is O(n). As for the mathematical correctness,
the order of reduction is irrelevant, since all vertices are reduced the same way, and
hence the obtained result will be the same, regardless of the order of reduction.
From the aspect of practical implementation of this algorithm, one of the possible
implementations is representing the graph as a set of vertices and edges (according
to the mathematical definition), where vertices (or, possibly, edges) are indexed
for immediate access. This way the algorithm execution time can be reduced. In
the index structure, vertices can be sorted by their internal number or number of
edges that connect them to other vertices. Depending on the implementation of the
reduction itself, execution time of the algorithm can vary. If the implementation
is as above, then the reduction could be executed in O(1), since the indexing

Probability Graphs 37

would enable passing the values by reference, and hence the execution time of the
algorithm would be O(n3).

In addition to mentioned theorems (algorithms), some of algorithms applicable
to standard graphs are applicable to probability graphs. For example, it is possible
to use breadth and depth search on probability graphs in order to find relations
between events. By using the breadth-first search one can obtain the least number
of events over which two events from the observed system are connected. Also,
one can obtain all possible sequences of events from a system using breadth-first
and depth-first search. Breadth-first and depth-first search algorithms do not re-
quire modifications in terms of functionality in order to be applied to probability
graphs. Algorithms for finding the minimum spanning tree and flow maximization
would require more significant modifications in order to be applicable to proba-
bility graphs. Depending on the problem modeled using a probability graph, the
application of specific algorithms on such graph can change.

Probability graphs can be applied to some problems in which there are an
infinite number of events or graph vertices. Problem modeled with a graph with
infinite vertices could be analyzed or solved using graph properties (using the
properties of probability graphs). For analysis of probability graphs with infinite
number of vertices the closure property is useful (if the modeled system or some
part of it has that property) which guarantees that the sum of weights of exiting
edges for each vertex will be equal to 1.

3.1. Graphs, Markov Chains and Automata

In graph theory, a structure containing mutually connected nodes (vertices) is
defined as a graph. Graph is a general structure, which has many specific variants
(e.g. directed and undirected graph; a tree is a directed graph such that for each
node except for the root node exists only one other node connected to it). From
the principle of polymorphism it can be derived that a Markov chain is, in fact, a
variant of graph. Same can apply for a finite automaton.

Given two variants of a graph, principles of generalization and association
allow some methods of analysis from one of the variants to be applied to the
other and to the general graph structure. Generalization also implies that methods
applicable to all graphs are applicable to specific variants of the same. Hence it
can be derived that, if both Markov chains and finite automata are graphs, analysis
methods applied to general graphs can be applied to both Markov chains and finite
automata, and, more importantly, that there exist analysis methods applicable to
finite automata which can be applied to Markov chains.

As for the visual representation of Markov chains, it may not be of much
significance whether they are represented as graphs or state diagrams. However, it
might be a good practice to represent Markov chains according to the context they
are used in. As graph representation is suitable for traversing nodes, this approach
might be more suitable in traversing events in a Markov chain.

38 I. Ševo

Furthermore, visual representation can vary depending on the context of the
problem. For example, for a problem with an infinite number of states some meta-
graph structure might be more suitable. The idea is to use a specific principle
for a specific problem, that is, to apply the most adequate variant of a graph to
a problem. Methods from specific graph variants could also be applied to other
graph variants. Graph structures are also suitable and used for computer analysis
of large datasets in certain mathematical problems.

4. Examples

Example 4.1. A fighter and bomber are in an aerial combat. First, the fighter fires at the
bomber with hit probability of 0.8. If he misses, then bomber returns fire with hit probability
of 0.3.

1. If the bomber misses, then fighter fires again with hit probability of 0.5.

2. If the bomber misses, then the cycle continues until either bomber or fighter is hit.

What is the probability of bomber going down and what is the probability of the fighter
going down?

Solution:

1. Let A be the starting event, C the event of fighter missing the first shot, and D the
event of bomber missing the first shot (that is, the state where the fighter shoots the
second time). Events L and B are events of fighter going down and bomber going
down, respectively (Figure 4.1).

Fig. 4.1: Probability graph

From the closure property for vertices (events A and C) weights of edges a and b can
be obtained, which are thus: a = 0.2 and b = 0.7. As the probability of some event is
equal to the sum of weights of all walks leading from the starting event to that event, it
is P(B) = 0.8+ a ·b ·0.5 = 0.8+0.2 ·0.7 ·0.5 = 0.87 and P(L) = a ·0.3 = 0.2 ·0.3 = 0.06. The
reason for the closure property not being applied to vertex D is that the probability
of failure of hitting either plane is not required and hence it is not necessary to model
that part of the problem.

Probability Graphs 39

2. The given situation can be modeled with the probability graph given in Figure 4.2.

Fig. 4.2: Probability graph

In this case it is necessary to sum the weights of all walks from vertex A to the
corresponding vertex (B or L). Weights of edges a and b are the same as in the first
case due to the closure of the system. From theorem 1, probabilities of events B and L

are: P(B) = 0.8 · +∞∑
i=0

(a · b)i and P(L) = a · 0.3 · +∞∑
i=0

(b · a)i , that is

P(B) = 0.8 · 1
1 − a · b = 0.93

and

P(L) = a · 0.3 · 1
1 − b · a = 0.07.

As only two outcomes are possible it is P(B) + P(L) = 1.

Example 4.2. Meteorological events are representedwith A−G (A is rain, B weak rain, C fog,
D cloudy, E mildly cloudy, F somewhat cloudy and G sunny). Their mutual dependence is
given with a graph in Figure 4.3. Find the most probable sequence of meteorological events
and its probability so that the starting event is rain and the ending event is sunny weather.

Fig. 4.3: Dependency graph

Solution: Reduction is done according to the theorem 5.

40 I. Ševo

Fig. 4.4: Reduction step 1

After eliminating vertices B and E from the graph, vertex C is eliminated, while the
added sequences of events are maintained for each edge (Figure 4.4).

Fig. 4.5: Reduction step 2

Elimination of vertex D will cause repetition of event D three times, according to the
formula in theorem 5, and the probability added to the edge will be (0.9 ·0.9 ·0.9)3 (Figure 4.5).

Fig. 4.6: Reduction step 3

Further reduction will reduce the graph to two vertices and one edge, so that the values
added to the edge will be the solution, that is Pmax(AG) = 0.0141 = 1.41%, with the sequence
of events ABDCBDCBDCBDCEFG (Figure 4.6).

Example 4.3. Let X1,X2, . . . be the sequence of independent random variables such that

Xk :
(−1 1

1
2

1
2

)
, k = 1, 2, . . .

Probability Graphs 41

and

X =
+∞∑
k=1

Xk

2k

Determine the distribution of the variable X.
Solution: If a graph which describes all values that random variable X can have is

modeled, we get a tree with one starting vertex (node) and infinite number of leafs as given
in Figure 4.7. On each level of the graph, probability of occurrence for each event of that
level is equal, since the number of different walks from root to an individual vertex on a
given level is equal to 1 (or, possibly, 2 on level N∞), and weights of these walks are also
equal. It follows that the distribution is uniform on some interval. The boundaries of that
interval are the values of vertices of the graph in case that every Xk has value -1 (or 1, for the
upper boundary of the interval), and hence the sought interval is:

⎛⎜⎜⎜⎜⎜⎝−
+∞∑
k=1

1
2k
,
+∞∑
k=1

1
2k

⎞⎟⎟⎟⎟⎟⎠ = (−1, 1)

Therefore, variable X has uniform distribution on the interval (−1, 1).

Fig. 4.7: Infinite probability graph

5. Conclusion

From the above analysis, it is evident that graph theory can be efficiently utilized
as a probabilistic and/or combinatorial method for analyzing event systems.

An algorithmic approach to analyzing event sequences and systems was demon-
strated. Evidently, the algorithms and data structures used in graph theory are ap-
plicable to discrete event systems. Several adaptations of classic graph algorithms
were demonstrated. It is likely that other graph algorithms can be adapted for use
in analysis of these systems.

Few common probabilistic problems were solved using the probability graphs
approach.

42 I. Ševo

Probability graphs are another utility for solving complex probabilistic prob-
lems and computer analysis of large event systems, as demonstrated. Since graph
theory is a proven tool in computer science, probability graphs offer the diversity
of this tools’ application in the probabilistic analysis.

R E F E R E N C E S

1. D. A. Levin, Y. Peres and E. L. Wilmer: Markov Chains and Mixing Times. American
Mathematical Society, 2009.

2. N. Elazović: Theory of probability (in Croatian). Zagreb, 1995.

3. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and
Computation (2nd Edition). Addison-Wesley, 2001.

4. W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, 1968.

5. M. Tomašević: Algorithms and Data Structures (in Serbian). Akademska misao, 2008.

6. M. V. Ćelić and B. Sukara-Ćelić: Linear algebra (in Serbian). Banja Luka: Glas Srpski
Grafika, 2010.

7. D. Cvetković and S. Simić: Discreete mathematics – mathematics for computer sciences
(in Serbian). Naučna knjiga, 1990/1997.

8. P. Hotomski and D. Malbaški: Mathematical logic and the principles of programming
(in Serbian). TF Zrenjanin, 2003.

9. E. Parzen: Stochastic Processes. Holden-Day, 1962.

10. M. Sipser: Introduction to the Theory of Computation. PWS Publishing Company, 1997.

Igor Ševo
Faculty of Electrical Engineering
Department of Informatics and Computer Science
78000 Banja Luka, Republika Srpska, Bosnia and Herzegovina

igor@igorsevo.com

	Introduction
	Mathematical model
	Discussion
	Graphs, Markov Chains and Automata

	Examples
	Conclusion

