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Ser. Math. Inform. 28, No 1 (2013), 17–26

ON THE GROWTH OF SOLUTIONS TO NON-HOMOGENOUS LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS HAVING THE

SAME ORDER ∗

Benharrat Belaı̈di and Habib Habib

Abstract. In this paper, we investigate the order of solutions to the non-homogeneous
linear differential equation

f (k) + Bk−1 f (k−1) + · · · + Bl f (l) + · · · + B1 f ′ + B0 f = F,

where k � 2, Bj (z)
(
j = 0, 1, . . . , k − 1

)
and F (z) are entire functions of finite order.

Keywords: Differential equation, characteristic function, meromorphic function, complex
number.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution theory
[5, 9]. In what follows, we give the necessary notations and basic definitions.

Definition 1.1. (see [5, 9]) Let f be a meromorphic function. Then the orderρ
(
f
)

of
f (z) is defined by

ρ
(
f
)
= lim sup

r−→+∞
log T

(
r, f
)

log r
,

where T
(
r, f
)
is the Nevanlinna characteristic function of f . If f is an entire function,

then the order ρ
(
f
)

of f (z) is defined by

ρ
(
f
)
= lim sup

r−→+∞
log T

(
r, f
)

log r
= lim sup

r−→+∞
log log M

(
r, f
)

log r
,

where M
(
r, f
)
= max|z|=r

∣∣∣ f (z)
∣∣∣ .
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Definition 1.2. (See [5, 9]) Let f be a meromorphic function. Then the exponent
of convergence of the sequence of zeros of f (z) is defined by

λ
(
f
)
= lim sup

r−→+∞

log N
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the counting function of zeros of f (z) in {z : |z| < r}. Similarly, the

exponent of convergence of the sequence of distinct zeros of f (z) is defined by

λ
(
f
)
= lim sup

r−→+∞

log N
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {z : |z| < r}.

In [8], Wang and Laine have investigated the growth of solutions to higher order
non-homogeneous linear differential equations and obtained the following result.

Theorem 1.1. (See [8] )Suppose that

Aj (z) = hj (z) ePj(z), ( j = 0, · · · , k − 1),

where
Pj(z) = aj,nzn + · · · + aj,0, ( j = 0, 1, · · · , k − 1)

are polynomials with degree n � 1,

hj(z) (� 0), ( j = 0, 1, . . . , k − 1)

are entire functions with order less than n, and that H(z) � 0 is an entire function of order
less than n. If aj,n ( j = 0, 1, · · · , k− 1) are distinct complex numbers, then every solution f
of the differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = H (z)

is of infinite order.

In [7], Peng and Chen have investigated the order and hyper-order of solutions
to some second order linear differential equations and have proved the following
result.

Theorem 1.2. Let Aj (z) (� 0)
(
j = 1, 2

)
be entire functions with ρ

(
Aj

)
< 1, a1, a2 be

complex numbers such that a1a2 � 0, a1 � a2 (suppose that |a1| � |a2|). If arg a1 � π or
a1 < −1, then every solution f � 0 of the differential equation

f ′′ + e−z f ′ + (A1ea1z + A2ea2z) f = 0

is of infinite order and hyper-order

ρ2
(
f
)
= lim sup

r−→+∞
log log T

(
r, f
)

log r
= 1.
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The main purpose of this paper is to extend and improve Theorems 1.1-1.2 to
some higher order linear differential equations. In fact we will prove the following
results.

Theorem 1.3. Let k � 2 be an integer, I j ⊂N ( j = 0, 1, · · · , k− 1) be finite sets such that
Ij ∩ Im = ∅ ( j � m) and I = ∪k−1

j=0Ij. Suppose that

Bj =
∑
i∈Ij

AiePi(z), ( j = 0, 1, · · · , k − 1)

where Ai (z) (� 0) , (i ∈ I) are entire functions with

max{ρ (Ai) , i ∈ I} < n, Pi (z) = ainzn + · · · + ai1z + ai0, (i ∈ I)

are polynomials with degree n � 1 and that F(z) � 0 is an entire function with ρ (F) < n.
If ain (i ∈ I) are distinct complex numbers, then every solution f of the differential equation

(1.1) f (k) + Bk−1 f (k−1) + · · · + Bl f (l) + · · · + B1 f ′ + B0 f = F

satisfies ρ
(
f
)
= +∞.

Theorem 1.4. Under the hypotheses of Theorem 1.3, suppose further that ϕ(z)� 0 is an
entire, then every solution f � 0 of (1.1) satisfies

λ
(
f − ϕ) = λ ( f − ϕ) = ρ( f ) = +∞.

2. Preliminary lemmas

Lemma 2.1. (See [3]) Let P1,P2, · · · ,Pn (n � 1) be non-constant polynomials with degree
d1, d2, · · · , dn, respectively, such that deg

(
Pi − Pj

)
= max

{
di, dj

}
for i � j. Let

A (z) =
n∑

j=1

Bj (z) ePj(z)

where Bj (z) (� 0) are entire functions with ρ
(
Bj

)
< dj. Then

ρ (A) = max
1� j�n
{dj}.

Lemma 2.2. (See [2]) Suppose that P (z) =
(
α + iβ

)
zn + · · · (α, β are real numbers,

|α| +
∣∣∣β∣∣∣ � 0) is a polynomial with degree n � 1, that A (z) (� 0) is an entire function with

ρ (A) < n. Set

� (z) = A (z) eP(z), z = reiθ, δ (P, θ) = α cos nθ − β sin nθ.
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Then for any given ε > 0, there is a set E1 ⊂ [0, 2π) that has linear measure zero, such that
for any

θ ∈ [0, 2π)� (E1 ∪ E2) ,

there is R > 0, such that for |z| = r > R, we have

(i) if δ (P, θ) > 0, then

(2.1) exp {(1 − ε) δ (P, θ) rn} �
∣∣∣∣� (reiθ

)∣∣∣∣ � exp {(1 + ε) δ (P, θ) rn} ;

(ii) if δ (P, θ) < 0, then

(2.2) exp {(1 + ε) δ (P, θ) rn} �
∣∣∣∣� (reiθ

)∣∣∣∣ � exp {(1 − ε) δ (P, θ) rn} ,

where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 2.3. (See [4]) Let f be a transcendental meromorphic function of finite order ρ.
Let ε > 0 be a constant, k and j be integers satisfying k > j � 0. Then the following two
statements hold:

(i) There exists a set E3 ⊂ (1,+∞) which has finite logarithmic measure, such that for all z
satisfying |z| � E3 ∪ [0, 1], we have

∣∣∣∣∣∣∣
f (k) (z)

f ( j) (z)

∣∣∣∣∣∣∣ � |z|(k− j)(ρ−1+ε) .

(ii) There exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that ifθ ∈ [0, 2π)\E4,
then there is a constant R = R (θ) > 0 such that (2.3) holds for all z satisfying arg z = θ
and |z| � R.

Lemma 2.4. (See [8])Let f (z) be an entire function and suppose that

G (z) :=
log+

∣∣∣ f (k) (z)
∣∣∣

|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite
sequence of points

zn = rneiθ, (n = 1, 2, · · · ) ,
where rn → +∞, such that G (zn)→∞ and

∣∣∣∣∣∣∣
f ( j) (zn)

f (k) (zn)

∣∣∣∣∣∣∣ �
1(

k − j
)
!

(1 + o (1)) rk− j
n , j = 0, 1, · · · , k − 1

as n→ +∞.
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Lemma 2.5. (See [8]) Let f (z) be an entire function with ρ
(
f
)
= ρ < +∞. Suppose that

there exists a set E5 ⊂ [0, 2π) which has linear measure zero, such that log+
∣∣∣∣ f (reiθ

)∣∣∣∣ �Mrσ

for any ray arg z = θ ∈ [0, 2π) \ E5, where M is a positive constant depending on θ, while
σ is a positive constant independent of θ. Then ρ

(
f
)
� σ.

Lemma 2.6. (See [1]) Let

Aj
(
j = 0, 1, · · · , k − 1

)
, F � 0

be finite order meromorphic functions. If f (z) is an infinite order meromorphic solution of
the differential equation

f (k) + Ak−1 f (k−1) + · · · + A1 f ′ + A0 f = F,

then f satisfies
λ
(
f
)
= λ
(
f
)
= ρ
(
f
)
= ∞.

3. Proof of Theorem 1.3

Proof. First we prove that every solution of (1.1) satisfies ρ
(
f
)
� n. We assume that

ρ
(
f
)
< n. Rewrite (1.1) as

(3.1)
∑
i∈Ik−1

Ai f (k−1)ePi(z) + · · · +
∑
i∈I1

Ai f ′ePi(z) +
∑
i∈I0

Ai f ePi(z) = F − f (k).

Since ain (i ∈ I) are distinct complex numbers, then by (3.1) and the Lemma 2.1, we
have

n = ρ

⎧⎪⎪⎨⎪⎪⎩
∑
i∈Ik−1

Ai f (k−1)ePi(z) + · · · +
∑
i∈I0

Ai f ePi(z)

⎫⎪⎪⎬⎪⎪⎭ = ρ
{
F − f (k)

}
< n.

This is a contradiction. Hence, ρ
(
f
)
� n. Therefore f is a transcendental solution

of equation (1.1).
Now we prove that ρ

(
f
)
= +∞. Suppose that ρ

(
f
)
= ρ < +∞. Since ρ (F) < n,

then for any given ε
(
0 < 2ε < min

{
1, n − ρ (F)

})
and for sufficiently large r, we have

(3.2) |F (z)| � exp
{
rρ(F)+ε

}
.

By Lemma 2.2, there exists a set E ⊂ [0, 2π) of linear measure zero, such that
whenever θ ∈ [0, 2π) \ E, then δ (Pi, θ) � 0 for all i ∈ I and δ (Pi, θ) � δ (Pm, θ) for all
i, m with m < i (i,m ∈ I). If z = reiθ has r large enough, then each Ai (z) ePi(z) satisfies
either (2.1) or (2.2). By Lemma 2.3, there exists a set E4 ⊂ [0, 2π) which has linear
measure zero, such that if θ ∈ [0, 2π) \ E4, then there is a constant R = R (θ) > 1
such that for all z satisfying arg z = θ and |z| � R, we have

(3.3)

∣∣∣∣∣∣∣
f ( j) (z)
f (i) (z)

∣∣∣∣∣∣∣ � |z|kρ , 0 � i < j � k.



22 B. Belaı̈di, H. Habib

Since ain (i ∈ I) are distinct complex numbers, then for any fixed

θ ∈ [0, 2π) \ (E ∪ E4) ,

there exists exactly one s ∈ I such that

δ (Ps, θ) = δ = max {δ (Pi, θ) , i ∈ I}
and there exists l ∈ {0, 1, · · · , k − 1} such that s ∈ Il. Set

δ1 = max{δ (Pi, θ) : i � s, i ∈ I},
then δ1 < δ and δ � 0. We now discuss two cases separately.

Case 1: Suppose that δ > 0. By Lemma 2.2, for any given εwith

0 < 2ε < min
{
δ − δ1

δ
, n − ρ (F)

}
,

we obtain

(3.4)
∣∣∣As (z) ePs(z)

∣∣∣ � exp {(1 − ε) δrn} , s ∈ Il,

(3.5)
∣∣∣Ai (z) ePi(z)

∣∣∣ � exp {(1 + ε) δ1rn}
for i � s and for sufficiently large r. We now prove that

log+
∣∣∣ f (l) (z)

∣∣∣ / |z|ρ(F)+ε

is bounded on the ray arg z = θ. We assume that

log+
∣∣∣ f (l) (z)

∣∣∣ / |z|ρ(F)+ε

is unbounded on the ray arg z = θ. Then by Lemma 2.4, there is a sequence of
points zm = rmeiθ, such that rm → +∞, and that

(3.6)
log+

∣∣∣ f (l) (zm)
∣∣∣

rρ(F)+ε
m

→ +∞,

(3.7)

∣∣∣∣∣∣∣
f ( j) (zm)
f (l) (zm)

∣∣∣∣∣∣∣ �
1(

l − j
)
!

(1 + o (1)) rl− j
m ,
(
j = 0, · · · , l − 1

)
.

From (3.2) and (3.6), we get

(3.8)

∣∣∣∣∣∣ F (zm)
f (l) (zm)

∣∣∣∣∣∣→ 0
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for m is large enough. From (1.1), we obtain

∣∣∣AsePs(zm)
∣∣∣ �

∣∣∣∣∣∣
f (k) (zm)
f (l) (zm)

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∑
i∈Ik−1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣
f (k−1) (zm)
f (l) (zm)

∣∣∣∣∣∣

+ · · · +
∣∣∣∣∣∣∣
∑
i∈Il+1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣
f (l+1) (zm)
f (l) (zm)

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣
∑

i∈Il,i�s

AiePi(zm)

∣∣∣∣∣∣∣∣(3.9)

+

∣∣∣∣∣∣∣
∑
i∈Il−1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣
f (l−1) (zm)
f (l) (zm)

∣∣∣∣∣∣ + · · · +
∣∣∣∣∣∣∣
∑
i∈I1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣

f ′ (zm)
f (l) (zm)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑
i∈I0

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣

f (zm)
f (l) (zm)

∣∣∣∣∣∣ +
∣∣∣∣∣∣

F (zm)
f (l) (zm)

∣∣∣∣∣∣ .

Substituting (3.3), (3.4), (3.5), (3.7) and (3.8) into (3.9), we have

(3.10) exp
{
(1 − ε) δrn

m
}
�M0 exp

{
(1 + ε) δ1rn

m
}
rM1
m ,

where M0 > 0 and M1 > 0 are some constants. By 0 < ε < δ−δ1
2δ and (3.10), we can

get

exp
{

(δ − δ1)2

2δ
rn
m

}
�M0rM1

m

which is a contradiction. Therefore,

log+
∣∣∣ f (l) (z)

∣∣∣ / |z|ρ(F)+ε

is bounded, and we have ∣∣∣ f (l) (z)
∣∣∣ �M exp

{
rρ(F)+ε

}

on the ray arg z = θ. By the same reasoning as in the proof of Lemma 3.1 in [6], we
immediately conclude that∣∣∣ f (z)

∣∣∣ � (1 + o (1)) rl
∣∣∣ f (l) (z)

∣∣∣
� (1 + o (1)) Mrl exp

{
rρ(F)+ε

}
�M exp

{
rρ(F)+2ε

}

on the ray arg z = θ.
Case 2: Suppose now that δ < 0. From (1.1), we get

(3.11) − 1 = Bk−1
f (k−1)

f (k)
+ · · · + B1

f ′

f (k)
+ B0

f

f (k)
− F

f (k)
.

By Lemma 2.2, for any given εwith

0 < 2ε < min
{
1, n − ρ (F)

}
,
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we have

(3.12)
∣∣∣Ai (z) ePi(z)

∣∣∣ � exp {(1 − ε) δrn} , i ∈ I

for sufficiently large r. We now prove that

log+
∣∣∣ f (k) (z)

∣∣∣ / |z|ρ(F)+ε

is bounded on the ray arg z = θ. We assume that

log+
∣∣∣ f (k) (z)

∣∣∣ / |z|ρ(F)+ε

is unbounded on the ray arg z = θ. Then by Lemma 2.4 there is a sequence of points
zm = rmeiθ, such that rm → +∞, and that

(3.13)
log+

∣∣∣ f (k) (zm)
∣∣∣

rρ(F)+ε
m

→ +∞,

(3.14)

∣∣∣∣∣∣∣
f ( j) (zm)
f (k) (zm)

∣∣∣∣∣∣∣ �
1(

k − j
)
!

(1 + o (1)) rk− j
m ,
(
j = 0, . . . , k − 1

)
.

From (3.2) and (3.13), we get

(3.15)

∣∣∣∣∣∣
F (zm)
f (k) (zm)

∣∣∣∣∣∣→ 0

for m is large enough. Substituting (3.12), (3.14) and (3.15) into (3.11), we get

(3.16) 1 �

∣∣∣∣∣∣∣
∑
i∈Ik−1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣
f (k−1) (zm)
f (k) (zm)

∣∣∣∣∣∣ + · · · +
∣∣∣∣∣∣∣
∑
i∈I1

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣

f ′ (zm)
f (k) (zm)

∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
∑
i∈I0

AiePi(zm)

∣∣∣∣∣∣∣
∣∣∣∣∣∣

f (zm)
f (k) (zm)

∣∣∣∣∣∣ +
∣∣∣∣∣∣

F (zm)
f (k) (zm)

∣∣∣∣∣∣ �M2 exp
{
(1 − ε) δrn

m
}
rM3
m ,

where M2 > 0 and M3 > 0 are some constants. By δ < 0, we have

M2 exp
{
(1 − ε) δrn

m
}
rM3
m → 0

as rm → +∞. From (3.16), we get 1 � 0 as rm → +∞, which is a contradiction.
Hence, we have

∣∣∣ f (k) (z)
∣∣∣ � M exp

{
rρ(F)+ε

}
on the ray arg z = θ. This implies, as in

Case 1, that

(3.17)
∣∣∣ f (z)

∣∣∣ �M exp
{
rρ(F)+2ε

}
.

Therefore, for any givenθ ∈ [0, 2π)\(E ∪ E4), we have got (3.17) on the ray arg z = θ,
provided that r is large enough. Then by Lemma 2.5, we have ρ

(
f
)
� ρ (F)+2ε < n,

which is a contradiction. Hence every transcendental solution f of (1.1) must be of
infinite order.
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4. Proof of Theorem 1.4

Proof. Suppose that f is a solution of equation (1.1). Then, by Theorem 1.3 we have
ρ
(
f
)
= +∞. Set

� (z) = f (z) − ϕ (z) ,

� (z) is an entire function and

ρ
(
�
)
= ρ
(
f
)
= +∞.

Substituting f = � + ϕ into (1.1), we have

(4.1) �(k) + Bk−1�
(k−1) + · · · + B1�

′ + B0� = D,

where
D = F −

[
ϕ(k) + Bk−1ϕ

(k−1) + · · · + B1ϕ
′ + B0ϕ

]
.

We prove that D � 0. In fact, if D ≡ 0, then

ϕ(k) + Bk−1ϕ
(k−1) + · · · + B1ϕ

′ + B0ϕ = F.

Hence ρ
(
ϕ
)
= +∞, which is a contradiction. Therefore D � 0. We know that the

functions Bj
(
j = 0, · · · , k − 1

)
, D are of finite order. By Lemma 2.6 and (4.1) we

have
λ
(
�
)
= λ
(
�
)
= ρ(�) = ρ( f ) = +∞.

Therefore
λ
(
f − ϕ) = λ ( f − ϕ) = ρ( f ) = +∞,

which completes the proof.
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