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ON UNIQUE RANGE SET OF MEROMORPHIC FUNCTIONS WITH
DEFICIENT POLES

Abhijit Banerjee∗ and Sujoy Majumder

Abstract. With the aid of the notion of weighted sharing of sets we deal with the problem
of Unique Range Sets for meromorphic functions and obtain a result which improves and
extends some previous results. We exhibit two examples to show that a condition in one
of our results is the best possible.
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1. Introduction Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. It will be convenient to let E denote any set of
positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h)
any quantity satisfying

S(r, h) = o(T(r, h)) (r −→ ∞, r � E).

We denote by T(r) the maximum of T(r, f ) and T(r, �). The notation S(r) denotes
any quantity satisfying S(r) = o(T(r)) as r −→ ∞, r � E.

We adopt the standard notations of the Nevanlinna theory of meromorphic
functions as explained in [5]. For a ∈ C ∪ {∞}, we define

Θ(a; f ) = 1 − lim sup
r−→∞

N(r, a; f )
T(r, f )

.

Let f and � be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and � share a CM, provided that f −a and �−a have
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the same zeros with the same multiplicities. Similarly, we say that f and � share a
IM, provided that f − a and � − a have the same zeros ignoring multiplicities. In
addition, we say that f and � share∞ CM, if 1/ f and 1/� share 0 CM, and we say
that f and � share∞ IM, if 1/ f and 1/� share 0 IM.

Let S be a set of distinct elements of C ∪ {∞} and E f (S) =
⋃

a∈S{z : f (z) = a},
where each point is counted according to its multiplicity. If we do not count the
multiplicity, the set

⋃
a∈S{z : f (z) = a} is denoted by E f (S). If E f (S) = E�(S), we say

that f and � share the set S CM. On the other hand, if E f (S) = E�(S), we say that f
and � share the set S IM. Evidently, if S contains only one element, then it coincides
with the usual definition of CM (respectively, IM) shared values. First of all, we
recall the following definitions.

A set S ⊂ C is called a unique range set for meromorphic functions (URSM), if for
any two non-constant meromorphic functions f and � the condition Ef (S) = E�(S)
implies f ≡ �. If this holds merely for entire functions, the set S will be termed as
a unique range set for entire functions (URSE).

In 1926, R. Nevanlinna showed that a meromorphic function on the complex
plane C is uniquely determined by the images, ignoring multiplicities, of 5 distinct
values. A few years later, he showed that when multiplicities are considered, 4
points are sufficient (with one exceptional situation). A related problem, asked by
Gross [4], is to find a finite set S so that an entire function is determined by the
single pre-image, counting multiplicities of S.

The first example of URS for entire functions was found by F. Gross and C. C.
Yang in 1982, that is

S = {z ∈ C : ez + z = 0}.
Note that as S is an infinite set, the above result does not answer the question of

Gross. Since then, there have been many efforts to study the problem of constructing
unique range sets. The problem of determining a meromorphic (or entire) function
on C by its single pre-images, counting with multiplicities, of finite sets cause an
increasing interest among the researchers and naturally it has been investigated by
many mathematicians. There are two main problems related to the study of unique
range sets. The first problem is determining the minimum cardinality of a unique
range set for entire and also for meromorphic functions. The second problem is
characterizing unique range sets.

H. Fujimoto [3] first made a major contribution by highlighting a special prop-
erty of monic polynomial of degree n with simple zeros which generates a U.R.S.
So to study the behaviour of those monic polynomials which does not satisfy Fuji-
moto’s condition will be of increasing interest. For these polynomials the zero sets
will also form a U.R.S. provided we suppose some extra supposition on deficiency
condition. In fact, examples of unique range sets given by most authors are sets of
the form {z ∈ C : zn + azr + b = 0} under suitable conditions on the constants a and
b and on the positive integers n and r.

Answer to the question of Gross [4] and the analogous question for meromor-
phic functions onCwere given by Yi [15] and Li and Yang [13, 14] who investigated
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the zero sets of polynomials P of the form

P(z) = zn + azn−m + b,

where n > m ≥ 1 and a and b are so chosen so that P has n distinct roots. Addressing
the question of Gross, in 1995 Yi [15] and independently Li-Yang [13] proved the
following result for entire functions.

Theorem A. Let S = {z : z7 − z6 − 1 = 0}. If f and � are two non-constant entire
functions satisfying Ef (S) = E�(S) then f ≡ �.

Naturally one will be inquisitive about the case of meromorphic functions in
the above theorem. In this direction in 1996 Yi proved the following theorem which
also deals with the question of Gross.

Theorem B. [16] Let S = {z : zn + azn−m + b = 0}, where m, n are two positive
integers such that m and n have no common factor, n > 2m + 8 (m ≥ 2) and a, b
are nonzero constants such that the algebraic equation zn + azn−m + b = 0 has no
multiple root. Then Ef (S) = E�(S) implies f ≡ �.

It is clear from the above theorem that a URS of meromorphic function of the
form as given in Theorem B consists of atleast 13 elements. So far, the smallest
unique range set for meromorphic functions has 11 elements and was given by
Frank and Reinders in [2]. We note that in [16] and [2] both polynomials whose
zeros generate the U.R.S. satisfies Fujimoto’s condition.

In [16] Yi asked the following question:

What can be said if m = 1 in Theorem B?

In connection to his question Yi [16] proved the following theorem.

Theorem C. [16] Let

S = {z : zn + azn−1 + b = 0},
where n (≥ 11) is an integer, a and b are two nonzero constants such that the
algebraic equation zn + azn−1 + b = 0 has no multiple root. If f and � are non-
constant meromorphic functions satisfying Ef (S) = E�(S) then either f ≡ � or

f = −ah(hn−1 − 1)
hn − 1

, � = −a(hn−1 − 1)
hn − 1

,

where h = f
� .

In the meantime Fang and Hua [1] extended Theorem A to meromorphic func-
tions with the help of some additional conditions imposing on the ramification
indexes of f and �. Fang and Hua [1] proved the following theorem.

Theorem D. [1] Let S = {z : z7 − z6 − 1 = 0}. If two meromorphic functions f
and � are such that Θ(∞; f ) > 11

12 , Θ(∞; �) > 11
12 and Ef (S) = E�(S) then f ≡ �.
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To proceed further we require the following definition known as weighted
sharing of sets and values which renders a useful tool for the purpose of relaxation
of the nature of sharing the sets.

Definition 1.1. [7, 8] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f ) the set of all a-points of f , where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f ) = Ek(a; �), we say
that f , � share the value a with weight k. We write f , � share (a, k) to mean that f , �
share the value a with weight k. Clearly if f , � share (a, k) then f , � share (a, p) for
any integer p, 0 ≤ p < k. Also we note that f , � share a value a IM or CM if and
only if f , � share (a, 0) or (a,∞) respectively.

Definition 1.2. [7] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =

⋃
a∈S Ek(a; f ).

Clearly E f (S) = E f (S,∞) and Ef (S) = E f (S, 0).
Improving Theorem D, Lahiri [9] proved the following theorem.

Theorem E. [9] Let S be defined as in Theorem D. If for two non-constant mero-
morphic functions f and �,Θ(∞; f )+Θ(∞; �) > 3

2 and Ef (S, 2) = E�(S, 2) then f ≡ �.
In 2004 Lahiri-Banerjee [10] further improved Theorem C in a more compact and

convenient way and obtained the following result.

Theorem F. [10] Let
S = {z : zn + azn−1 + b = 0},

where n (≥ 9) be an integer and a, b be two nonzero constants such that zn+azn−1+b =
0 has no multiple root. If Ef (S, 2) = E�(S, 2) andΘ(∞; f )+Θ(∞; �) > 4

n−1 then f ≡ �.
We now give the following example which establishes the fact that the set S

in Theorems E-F cannot be replaced by any arbitrary set containing six distinct
elements.

Example 1.1. Let

f (z) =
√
αβγ ez, �(z) =

√
αβγ e− z

and
S = {α√

β, α
√
γ, β
√
α, β
√
γ, γ
√
α, γ

√
β},

where α, β and γ are three nonzero distinct complex numbers. Clearly E f (S,∞) =
E�(S,∞) but f � �.

So it remains an open problem for investigations whether the degree of the
equation defining S in Theorem F can be reduced to six and at the same time the
conditions over ramification indexes can be further weakened. In the paper we
are taking up this problem and provide a solution in this regard. Actually the
purpose of the paper is to continue the investigations of further improvement and
extensions of theorems E- F. The following theorem is the main result of the paper.

Theorem 1.1. Let
S = {z : zn + azn−1 + b = 0},
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where n (≥ 6) be an integer and a, b be two nonzero constants such that

zn + azn−1 + b = 0

has no multiple root. Suppose that f and � are two non-constant meromorphic
functions satisfying Ef (S,m) = E�(S,m). If

(i) m ≥ 2 and Θ f + Θ� > max{ 10−n
2 ,

4
n−1 }

(ii) or if m = 1 and Θ f + Θ� > max{ 11−n
2 ,

4
n−1 }

(iii) or if m = 0 and Θ f + Θ� > max{ 16−n
3 ,

4
n−1 }

then f ≡ �, where Θ f = Θ(0; f ) + Θ(∞; f ) and Θ� can be similarly defined.

The following examples show that the condition Θ f + Θ� >
4

n−1 is sharp in
Theorem 1.1. when n ≥ 9 and m ≥ 2.

Example 1.2. {[10], Example 2} Let

f = −a
1 − hn−1

1 − hn , � = −ah
1 − hn−1

1 − hn ,

where

h =
α2(ez − 1)

ez − α , α = exp(
2πi
n

)

and n(≥ 3) is an integer.

Then T(r, f ) = (n− 1)T(r, h)+O(1) and T(r, �) = (n− 1)T(r, h)+O(1) and T(r, h) =
T(r, ez) + O(1). Further we see that h � α, α2 and so for any complex number
γ � α, α2, N(r, γ; h) ∼ T(r, h). We also note that a root of h = 1 is not a pole and zero
of f and �. Hence Θ(∞; f ) = Θ(∞; �) = 2

n−1 . On the other hand

Θ(0, f ) = 1 − lim sup
r−→∞

n−2∑
k=1

N(r, βk; h) +N(r,∞; h)

(n − 1)T(r, h)+O(1)
= 0

and

Θ(0, �) = 1 − lim sup
r−→∞

n−2∑
k=1

N(r, βk; h) +N(r, 0; h)

(n − 1)T(r, h) +O(1)
= 0,

where β = exp ( 2πi
n−1 ). Clearly E f (S,∞) = E�(S,∞) because f n−1( f + a) ≡ �n−1(� + a)

but f � �.

Example 1.3. Let f and � be given as in Example 1.2, where

h =
α(αez − 1)

ez − 1
, α = exp(

2πi
n

)
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and n(≥ 3) is an integer.

We now explain some definitions and notations which are used in the paper.

Definition 1.3. [6] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer m we denote by

N(r, a; f |≤ m)(N(r, a; f |≥ m))

the counting function of those a-points of f whose multiplicities are not greater(less)
than m where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m)(N(r, a; f |≥ m)) are defined similarly, where in counting the a-
points of f we ignore the multiplicities.

Also

N(r, a; f |< m),N(r, a; f |> m),N(r, a; f |< m) and N(r, a; f |> m).

are defined analogously.

Definition 1.4. [17] Let f and � be two non-constant meromorphic functions
such that f and � share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-point
of � with multiplicity q. We denote by NL(r, a; f ) the reduced counting function of
those a-points of f and � where p > q, by N1)

E (r, a; f ) the counting function of those

a-points of f and � where p = q = 1, by N
(2
E (r, a; f ) the reduced counting function

of those a-points of f and � where p = q ≥ 2. In the same way we can define

NL(r, a; �), N1)
E (r, a; �), N

(2
E (r, a; �). In a similar manner we can define NL(r, a; f ) and

NL(r, a; �) for a ∈ C ∪ {∞}.
When f and � share (a,m), m ≥ 1 then N1)

E (r, a; f ) = N(r, a; f |= 1).

Definition 1.5. We denote by N(r, a; f |= k) the reduced counting function of
those a-points of f whose multiplicities are exactly k, where k ≥ 2 is an integer.

Definition 1.6. [7, 8] Let f , � share (a, 0). We denote by N∗(r, a; f , �) the re-
duced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of �.

Clearly N∗(r, a; f , �) ≡ N∗(r, a; �, f ) and N∗(r, a; f , �) = NL(r, a; f ) +NL(r, a; �).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F
and G be two non-constant meromorphic functions defined as follows:

(2.1) F =
f n−1( f + a)
−b

,G =
�n−1(� + a)
−b

.
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Henceforth we shall denote by H the following function

(2.2) H =

(
F
′′

F′
− 2F

′

F − 1

)
−

(
G
′′

G′ − 2G
′

G − 1

)
.

Lemma 2.1. [12] Let f be a non-constant meromorphic function and let

R( f ) =

n∑
k=0

ak f k

m∑
j=0

bj f j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an � 0 and bm � 0. Then

T(r,R( f )) = dT(r, f ) + S(r, f ),

where d = max{n,m}.
Lemma 2.2. [17] If F, G are two non-constant meromorphic functions such that

they share (1,0) and H � 0 then

N1)
E (r, 1; F |= 1) = N1)

E (r, 1; G |= 1) ≤ N(r,∞; H)+ S(r, F) + S(r,G).

Lemma 2.3. Let
S = {z : zn + azn−1 + b = 0},

where a, b are nonzero constants such that

zn + azn−1 + b = 0

has no repeated root, n (≥ 3) is an integer and F, G be given by (2.1). If for two
non-constant meromorphic functions f and � Ef (S, 0) = E�(S, 0) and H � 0 then

N(r,∞; H)
≤ N(r, 0, f ) +N(r, 0; �) +N(r,∞; f ) +N(r,∞; �) +N(r, 0; n f + a(n − 1))

+N(r, 0; n� + a(n − 1)) +N∗(r, 1; F,G) +N0(r, 0; f
′
) +N0(r, 0; �

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which are

not the zeros of f and (F − 1) and N0(r, 0; �
′
) is similarly defined.

Proof. Since E f (S, 0) = E�(S, 0) it follows that F and G share (1, 0). We have from
(2.1) that

F
′
=

[
n f + (n − 1)a

]
f n−2 f

′
/(−b)

and
G
′
=

[
n� + (n − 1)a

]
�n−2�

′
/(−b).
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We can easily verify that possible poles of H occur at

(i) zeros of f and �,

(ii) zeros of n f + a(n − 1) and n� + a(n − 1),

(iii) poles of f and �,

(iv) those 1-points of F and G with different multiplicities,

(v) zeros of f
′
which are not the zeros of f (F− 1), (v) zeros of �

′
which are not zeros

of �(G − 1). Since H has only simple poles, the lemma follows from above. This
proves the lemma.

Lemma 2.4. ([10], Lemma 1) Let f , � be two nonconstant meromorphic func-
tions. Then f n−1( f + a)�n−1(� + a) � b, where a, b are nonzero finite constants and
n (≥ 5) is an integer.

Lemma 2.5. Let f , � be two non-constant meromorphic functions such that

Θ(0; f ) + Θ(∞; f ) + Θ(0; �)+ Θ(∞; �) >
4

n − 1

then f n−1( f + a) ≡ �n−1(� + a) implies f ≡ �, where n (≥ 3) is an integer and a is a
nonzero finite constant.

Proof. Let

f n−1( f + a) ≡ �n−1(� + a)(2.3)

and suppose f � �. We consider two cases:

Case I. Let y = �

f be a constant. Then from (2.3) it follows that y � 1, yn−1 � 1,

yn � 1 and f ≡ −a 1−yn−1

1−yn , a constant, which is impossible.

Case II. Let y = �f be non-constant. Then

f ≡ −a
1 − yn−1

1 − yn ≡ a
(

yn−1

1 + y + y2 + . . . + yn−1
− 1

)
.(2.4)

From (2.4) we see by Lemma 2.1 that

T(r, f ) = T(r,
n−1∑
j=0

1
yj

) +O(1)

= (n − 1) T(r,
1
y

) + S(r, y)

= (n − 1) T(r, y) + S(r, y).
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We first note that the zeros of 1 + y + y2 + . . . + yn−2 contribute to the zeros of
both f and �. In addition to this, the poles of y contribute to the zeros of f and
since � = f y the zeros of y contribute to the zeros of �. So from (2.4) we see that

n−2∑
j=1

N(r, vj; y) +N(r,∞; y) ≤ N(r, 0; f ),
n−1∑
k=1

N(r, uk; y) ≤ N(r,∞; f )

where

uk = exp (
2kπi

n
), k = 1, 2, . . . , n − 1

vj = exp (
2 jπi
n − 1

) j = 1, 2, . . . , n − 2.

By the second fundamental theorem we get

(2n − 4) T(r, y)

≤ N(r,∞; y) +
n−2∑
j=1

N(r, vj; y) +
n−1∑
k=1

N(r, uk; y) + S(r, y)

≤ N(r, 0; f ) +N(r,∞; f ) + S(r, y)
≤ (

2 −Θ(0; f ) −Θ(∞; f ) + ε
)

T(r, f ) + S(r, y)
= (n − 1)

(
2 −Θ(0; f ) −Θ(∞; f ) + ε

)
T(r, y) + S(r, y)

i.e.,

2n − 4
n − 1

T(r, y) ≤ (2 −Θ(0; f ) −Θ(∞; f ) + ε) T(r, y) + S(r, y),(2.5)

where 0 < 2ε < Θ(0; f ) + Θ(∞; f ) + Θ(0; �) + Θ(∞; �).
Again noting that

n−2∑
j=1

N(r, vj; y) +N(r, 0; y) ≤ N(r, 0; �),

by the second fundamental theorem we get

(2n − 3) T(r, y)

≤ N(r,∞; y) +N(r, 0; y) +
n−2∑
j=1

N(r, vj; y) +
n−1∑
k=1

N(r, uk; y) + S(r, y)

≤ N(r,∞; y) +N(r, 0; �)+N(r,∞; �) + S(r, y)

≤ N(r,∞; y) + (n − 1)
(
2 −Θ(0; �) −Θ(∞; �)+ ε

)
T(r, y) + S(r, y)

i.e.,

2n − 4
n − 1

T(r, y) ≤ (2 −Θ(0; �)−Θ(∞; �) + ε) T(r, y) + S(r, y),(2.6)
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Adding (2.5) and (2.6) we get

(4n − 8
n − 1

− 4 + Θ(0; f ) + Θ(∞; f ) + Θ(0; �)+ Θ(∞; �) − 2ε
)

T(r, y) ≤ S(r, y),

which is a contradiction.
Hence f ≡ � and this proves the lemma.

Lemma 2.6. [11] If N(r, 0; f (k) | f � 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity then

N(r, 0; f (k) | f � 0) ≤ kN(r,∞; f ) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f ).

3. Proof Proof of Theorem 1.1.

We know from the assumption that the zeros of zn + azn−1 + b are simple and we
denote them by wj, j = 1, 2, . . .n. Let F, G and H be given by (2.1) and (2.2). Since
Ef (S,m) = E�(S,m) it follows that F, G share (1,m).

Case 1. If possible let us suppose that H � 0.

Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 2.6 we note that

N0(r, 0; �
′
) +N(r, 1; G |≥ 2) +N∗(r, 1; F,G)

≤ N0(r, 0; �
′
) +N(r, 1; G |≥ 2) +N(r, 1; G |≥ 3)(3.1)

≤ N0(r, 0; �
′
) +

n∑
j=1

{N(r, ω j; � |= 2) + 2N(r, ω j; � |≥ 3)}

≤ N(r, 0; �
′ | � � 0) + S(r, �) ≤ N(r, 0; �) +N(r,∞; �)+ S(r, �).

Hence using (3.1), Lemmas 2.2 and 2.3 we get from second fundamental theorem
for ε > 0 that

nT(r, f )(3.2)

≤ N(r, 0; f ) +N(r,∞; f ) +N(r, 1; F |= 1) +N(r, 1; F |≥ 2) −N0(r, 0; f
′
)

+S(r, f )

≤ 2
{
N(r, 0; f ) +N(r,∞; f )

}
+N(r, 0; �) +N(r,∞; �) +N(r, 0; n f + a(n − 1))

+N(r, 0; n� + a(n − 1)) +N(r, 1; G |≥ 2) +N ∗(r, 1; F,G)+N0(r, 0; �
′
)

+S(r, f ) + S(r, �)

≤ 2
{
N(r, 0; f ) +N(r,∞; f ) +N(r, 0; �) +N(r,∞; �)

}
+ T(r, f ) + T(r, �)

+S(r, f ) + S(r, �)
≤ (

10 − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)+ ε
)
T(r) + S(r).
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In a similar way we can obtain

n T(r, �)(3.3)
≤ (

10 − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)+ ε
)
T(r) + S(r).

Combining (3.2) and (3.3) we see that

(
n − 10 + 2Θ(0; f ) + 2Θ(∞; f ) + 2Θ(0; �)+ 2Θ(∞; �)− ε ) T(r) ≤ S(r).(3.4)

Since ε > 0, (3.4) leads to a contradiction.

While m = 1, using Lemma 2.6, (3.1) changes to

N0(r, 0; �
′
) +N(r, 1; G |≥ 2) +N∗(r, 1; F,G)(3.5)

≤ N0(r, 0; �
′
) +N(r, 1; G |≥ 2) +NL(r, 1; G) +N(r, 1; F |≥ 3)

≤ N(r, 0; �) +N(r,∞; �) +
1
2

n∑
j=1

{N(r, ω j; f ) −N(r, ω j; f )}

≤ N(r, 0; �) +N(r,∞; �) +
1
2
{N(r, 0; f ) +N(r,∞; f )} + S(r, f ) + S(r, �).

So using (3.5), Lemmas 2.2 and 2.3 and proceeding as in (3.2) we get from second
fundamental theorem for ε > 0 that

nT(r, f )(3.6)

≤ 2
{
N(r, 0; f ) +N(r,∞; f ) +N(r, 0; �) +N(r,∞; �)

}
+

1
2
{N(r, 0; f )

+N(r,∞; f )} + T(r, f ) + T(r, �) + S(r, f ) + S(r, �)

≤ 2
{
N(r, 0; f ) +N(r,∞; f ) +N(r, 0; �) +N(r,∞; �)

}
+ 2T(r, f ) + T(r, �)

+S(r, f ) + S(r, �)
≤ (

11 − 2Θ(0; f ) − 2Θ(0; �)− 2Θ(∞; f ) − 2Θ(∞; �)+ ε
)
T(r) + S(r).

Similarly we can obtain

nT(r, �)(3.7)
≤ (

11 − 2Θ(0; f ) − 2Θ(0; �)− 2Θ(∞; f ) − 2Θ(∞; �)+ ε
)
T(r) + S(r).

Combining (3.6) and (3.7) we see that

(
n − 11 + 2Θ(0; f ) + 2Θ(∞; f ) + 2Θ(0; �)+ 2Θ(∞; �)− ε) T(r) ≤ S(r).(3.8)

Since ε > 0, (3.8) leads to a contradiction.
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Subcase 1.2. m = 0. Using Lemma 2.6 we note that

N0(r, 0; �
′
) +N

(2
E (r, 1; F) + 2NL(r, 1; G) + 2NL(r, 1; F)(3.9)

≤ N0(r, 0; �
′
) +N

(2
E (r, 1; G) +NL(r, 1; G) +NL(r, 1; G) + 2NL(r, 1; F)

≤ N0(r, 0; �
′
) +N(r, 1; G |≥ 2) +NL(r, 1; G) + 2NL(r, 1; F)

≤ N(r, 0; �
′ | � � 0) +N(r, 1; G |≥ 2) + 2N(r, 1; F |≥ 2)

≤ 2{N(r, 0; �)+N(r,∞; �) +N(r, 0; f ) +N(r,∞; f )} + S(r, f ) + S(r, �)

Hence using (3.9), Lemmas 2.2 and 2.3 we get from the second fundamental theorem
for ε > 0 that

n T(r, f )(3.10)

≤ N(r, 0; f ) +N(r,∞; f ) +N1)
E (r, 1; F) +NL(r, 1; F) +NL(r, 1; G)

+N
(2
E (r, 1; F) −N0(r, 0; f

′
) + S(r, f )

≤ 2
{
N(r, 0; f ) +N(r,∞; f )

}
+N(r, 0; �) +N(r,∞; �)+ T(r, f ) + T(r, �)

+N
(2
E (r, 1; F) + 2NL(r, 1; G) + 2NL(r, 1; F) +N0(r, 0; �

′
) + S(r, f ) + S(r, �)

≤ 4
{
N(r, 0; f ) +N(r,∞; f )

}
+ 3{N(r, 0; �) +N(r,∞; �)}+ T(r, f ) + T(r, �)

+S(r, f ) + S(r, �)
≤ (

16 − 3Θ(0; f ) − 3Θ(∞; f ) − 3Θ(0; �)− 3Θ(∞; �)+ ε
)
T(r) + S(r).

In a similar manner we can obtain

n T(r, �)(3.11)
≤ (

16 − 3Θ(0; f ) − 3Θ(∞; f ) − 3Θ(0; �)− 3Θ(∞; �)+ ε
)
T(r) + S(r).

Combining (3.10) and (3.11) we see that
(
n − 16 + 3Θ(0; f ) + 3Θ(∞; f ) + 3Θ(0; �)+ 3Θ(∞; �)− ε)T(r) ≤ S(r).(3.12)

Since ε > 0, (3.12) leads to a contradiction.

Case 2. H ≡ 0. On integration we get from (2.2)

(3.13)
1

F − 1
≡ A

G − 1
+ B,

where A, B are constants and A � 0. From (3.13) we obtain

(3.14) F ≡ (B + 1)G + A − B − 1
BG + A − B

.

Clearly (3.14) together with Lemma 2.1 yields

(3.15) T(r, f ) = T(r, �) +O(1).
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Subcase 2.1. Suppose that B � 0,−1.

If A − B − 1 � 0, from (3.14) we obtain

N(r,
B + 1 − A

B + 1
; G) = N(r, 0; F).

From above, Lemma 2.1 and the second fundamental theorem we obtain

nT(r, �) < N(r,∞; G) +N(r, 0; G) +N(r,
B + 1 − A

B + 1
; G) + S(r, �)

≤ N(r,∞; �)+N(r, 0; �) +N(r, 0; � + a) +N(r, 0; f ) +N(r, 0; f + a) + S(r, �)
≤ 2T(r, f ) + 3T(r, �) + S(r, �),

which in view of (3.15) implies a contradiction as n ≥ 6. Thus A − B − 1 = 0 and
hence (3.14) reduces to

F ≡ (B + 1)G
BG + 1

.

From this we have
N(r,
−1
B

; G) = N(r,∞; f ).

Again by Lemma 2.1 and the second fundamental theorem we have

nT(r, �) < N(r,∞; G) +N(r, 0; G) +N(r,
−1
B

; G) + S(r, �)

≤ N(r,∞; �)+N(r, 0; �) +N(r, 0; � + a) +N(r,∞; f ) + S(r, �δ)
≤ T(r, f ) + 3T(r, �) + S(r, �),

which in view of (3.15) leads to a contradiction since n ≥ 6.
Subcase 2.2. Suppose that B = −1.
From (3.14) we obtain

(3.16) F ≡ A
−G + A + 1

.

If A + 1 � 0, from (3.16) we obtain

N(r,A + 1; G) = N(r,∞; f ).

So using the same argument as used in the above subcase we can again obtain a
contradiction. Hence A + 1 = 0 and we have from (3.16) that FG ≡ 1 that means
f n−1( f + a)�n−1(� + a) ≡ b2,which is impossible by Lemma 2.4.

Subcase 2.3. Suppose that B = 0.
From (3.14) we obtain

(3.17) F ≡ G + A − 1
A

.
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If A − 1 � 0, from (3.17) we obtain

N(r, 1 − A; G) = N(r, 0; F).

So in the same manner as above we again get a contradiction. So A = 1 and hence
F ≡ G, that is f n−1( f + a) ≡ �n−1(� + a). Now the theorem follows from Lemma 2.5.
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