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A NONLINEAR WEIGHTS SELECTION IN WEIGHTED SUM
FOR CONVEX MULTIOBJECTIVE OPTIMIZATION

Abimbola M. Jubril

Abstract. The weighted sum method of vector objective scalarization is known to
generate points on convex Pareto front whose distribution cannot be controlled. This
work presents a method of improving the distribution of Pareto points generated by
weighted sum method by nonlinear weight selection. Numerical examples are presented
to show the effectiveness of the method.

1. Introduction

Most real life engineering design problems usually involve optimizing more than
one objective. These objectives are generally conflicting. All the objectives can-
not be solved for their minimum values simultaneously, so a compromise has to
be reached. This is the nature of the multiobjective optimization problems. Since
such optimization problems involve more than one objective, the objective func-
tion is expressed as a vector and the problem becomes a vector optimization or a
multiobjective problem (MOP). Such problems can be expressed as:

minx∈X f(x) = [f1(x), f2(x), . . . , fp(x)]
s.t. X = {x ∈ Rn : g(x) 6 0, h(x) = 0}(1.1)

where X is the feasible region in the decision space.

The vector optimization problem is generally solved by reducing it to a scalar
optimization problem. This involves an aggregation of the components of the vector
objective function into a single objective function. This process maps the objective
space onto a real line. This scalar optimization problem is expected to be equivalent
to the vector optimization problem. Different scalarization methods have been
reported in literature. Some of which includes the weighted sum method [26], ε-
constraints method [7], hierarchical approach [25], weighted metrics methods [12],
goal attainment method [11].
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The various methods of generating solutions to MOP can be classified into two
approaches, namely: a priori articulation of preference, and a posteriori articulation
of preference. The a priori articulation of preference involves quantitative definition
of preference function in the form of value or utility function. This completely
orders the objective space. This allows the resulting scalar objective function to
be solved for a single Pareto optimal solution that represents the preference of the
decision maker. The a posteriori articulation of preference involves generating a
set of Pareto optimal solutions by solving a parameterized scalar objective function
formed from components of the vector objective function. By varying the parameter
of the resulting scalar objective, a set of solutions from which a preferable choice can
be made is generated. Although the parameter may not give a direct translation of
preferences, it captures well the relative importance of the objectives between one
another.

This paper focuses on the most common scalarization method, the weighted sum
(WS) method. Although this method can be used with both approaches, its use
with a posteriori articulation of preference is considered in this paper. It involves
a linear or convex combination of the objectives fi(x), i = 1, . . . , p. Each of the
objective fi(x) is multiplied by a normalized weight factor wi and the product added
to give the scalar objective ϕ(x,wi) as:

ϕ(x,w) =

p∑
i=1

wifi(x)(1.2)

where p is the number of the objectives,
∑p

i=1 wi = 1 and wi > 0, i = 1, . . . , p.

This scalar objective optimization problem has been shown to be equivalent
to the vector optimization problem [26]. The WS method is the commonly used
scalarization method because of its simplicity, ease of use, and direct translation of
weight into the relative importance of the objectives [14]. Its drawbacks are also
well-known and discussed in literature [3]. These include the followings:

• It misses solution points on the non-convex part of the Pareto surface;

• Its diversity can not be controlled, therefore even distribution of weights does
not translate to uniform distribution of the solution points;

• The distribution of solution points is highly dependent on the relative scaling
of the objective.

Generally, two important properties are used in assessing the performance of
multiobjective algorithms, namely: convergence and diversity properties. The ideal
Pareto front is usually not known, therefore, every Pareto front generated by any
algorithm is considered an estimate of the ideal front. The convergence property
of an algorithm measures the relative closeness of a generated solution set to the
ideal Pareto front while the diversity property measures the extent of the coverage,
and how uniformly the solutions are distributed [5]. The two properties are rarely
satisfied simultaneously by any algorithm that solves multiobjective optimization



A Nonlinear Weighted Sum for Convex MOOP 359

problem. In spite of these drawbacks, the WS method is known to have very good
convergence characteristic. It has been shown in [26, 14, 21, 17] that the scalar
formulation (1.2) of the vector optimization problem (1.1) is both necessary and
sufficient condition for Pareto optimality for convex MOP. TheWSmethod therefore
continues to provide single solution that reflects the preferences represented by a
set of weights (when used with a priori articulation of preference), and to provide
multiple solution points, with a posteriori articulation of preference.

Various efforts have been directed at analyzing, understanding and removing
these drawbacks. The problem of solution dependency on the relative scaling of the
function objectives is generally handled by the process of normalization. Various
normalization methods have presented in literature (see [13] and references therein).

In solving its problem of poor diversity of solution points, it was observed in
[5, 14] that the uneven distribution is due to nonlinear relationship between weights
and the objective functions. This results in clustering of solution points in the
objective space. In [3], a form of relationship between objective functions in which
an even distribution of the solution points may be generated by an even distribution
of the weights was derived. This relationship is very complex and only very few
Pareto fronts fit into this form. Some other methods which are not based on the
WS method that overcome this demerit have been developed [4].

The necessary conditions for any multiobjective algorithm to capture points on
the Pareto surface (convex or non-convex) are studied and given in [15]. This has
been related to the curvature of the scalar objective function relative to that of
Pareto surface, and determined by the Hessian of the function of the difference
between the Pareto surface and scalar objective. It was also noted that the ability
of the resulting aggregate function objective to capture points on the Pareto surface
is attributed to the ease with which the curvature of the scalar objective can be
varied. This was observed not possible with the WS objective. In [20], the WS
method with trust region algorithm was developed with the weights adaptively
determined in a black-box simulation optimization context. This was able to find
some points on the nonconvex Pareto front with good convergence. However, many
of the points generated are dominated points. Another effort was presented in [10].
This reduces the problem into sub-problems. Each sub-problems consists of a small
segment of the feasible region in the objective space. The bounds defining these
segments introduce new constraints within which the candidate Pareto solution
point is searched.

Other efforts have also been directed at understanding how selection of the
weights can lead to its better performance. In this direction, a quasi-random
weighted criteria method was developed in [2]. The method generates weights us-
ing a quasi-random sequences that covers a hypervolume evenly and efficiently, and
consequently covers the Pareto set evenly. This method is stochastic and involves a
large number of computations. In [6], nonlinear selection of weights to determine an
optimal point that is not close to any of the extreme points was considered. Some of
the recent efforts in this direction are those presented in [18, 22]. In [18], the weight
surface, partitioned into sub-simplices, are mapped to the objective function space
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Fig. 2.1: Weighted sum method representation

through the scalarization function. Using branch and bound method, the largest
simplex is determined and further divided into sub-simplices. This is continues until
the whole space is searched. A symbolic algebra method of selecting the weights
was presented in [22, 23].

Most of the research effort at improving the performance of the WS method can
be summarized as introduction and control of curvature of the aggregate objective
function by raising the power of the component objective functions (e.g. intro-
duction of trust region algorithm, global criterion method, weighted compromise
method, exponential weighted method) [20, 15, 1]. In this paper, the nonlinear
weight selection in [6] is extended and generalized to provide a means of varying
the curvature of the weight surface while the scalar objective is still linear in the
component objective functions and the weight constraints are also satisfied. The
Pareto front in our consideration is assumed convex.

2. Problem Statement and Main Result

2.1. Linear weights

In this section, the standard WS method formulation and some of the factors respon-
sible for its poor distribution of Pareto points are highlighted. Let the attainable
set of objectives in the objective space be denoted by

A = {f1(x), . . . , fp(x) : g(x) 6 0, h(x) = 0} ,

is as shown in Fig. 2.1. Consider the weight vector w = (w1, . . . , wp)
T ∈ Rp, the

vector objective function f(x) = (f1(x), . . . , fp(x))
T ∈ Rp, and the map ϕ(f, w) :
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Rp × Rp 7→ R. The WS method derives the scalar objective ϕ(x,w), through a
convex combination of the objectives fi(x), i = 1, . . . , p. Thus, with p number of
the objectives, the equivalent scalar objective ϕ(f, w) is given as

ϕ(f, w) =
p∑

i=1

wifi(x)

= wT f(x)
(2.1)

and
p∑

i=1

wi = 1, wi > 0, i = 1, . . . , p.(2.2)

This transforms the vector optimization to a scalar form:

min ϕ(f, w)
s.t. x ∈ X

(2.3)

This process maps the p-dimensional objective space onto the positive real line R,
and all the non-dominated points are mapped to the same point on the real line.
This transformation completely orders the objective function space. Also, the pre-
image of the set of Pareto optimal points forms the isoperformance surface in the
decision space (i.e. points of same scalar objective value).

More specifically, consider the bi-objective problem with p = 2; equations (2.1)
and (2.2), respectively, reduce to

ϕ(f, w) = w1f1(x) + w2f2(x)(2.4)

and
w1 + w2 = 1, w1, w2 > 0.(2.5)

If the vectors are expressed in polar coordinate forms as shown in Fig. 2.1, (2.4)
can be written as

ϕ(f, w) = |w||f | cos θ(2.6)

where f(x) = |f |∠θf , w = |w|∠θw and θ = θf − θw. The minimum points (equiv-
alently, the Pareto points) of the map can be found at points where |θ| takes its
maximum, i.e., |θmax| = π/2. Note that for every weight vector w, θw and |w| are
determined, and the scalar optimization problem reduces to minimizing f(x) in the
direction θf = θw ± π/2. If the weight vector is parameterized by λ, such that
w1 = λ and w2 = 1− λ, then the slope of w is given as

tan θw =
w2

w1
=

1− λ

λ
(2.7)

and the slope sensitivity as
d

dλ
tan θw = − 1

λ2
.(2.8)

It would be observed that a change in the value of λ from 0 to 0.1 results in a
change in the value of slope from ∞ to 9.0. This implies that slope values between
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∞ and 9.0 are missed; therefore, all solution points in that section of the trade-off
curve will not be captured. The slope sensitivity can be considered as the ability
of the scalarization process to capture solution points on the Pareto surface. For
values of λ close to 0, the slope is very sensitive to very small change in λ and for
values of λ close to 1, the sensitivity is close to 1. This was noted in [16] to be
the source of deficiencies of linear weight selection. This results in the omission
of Pareto points in the first, and the clustering of the points in the second. This
motivates the idea of reducing these effects by controlling the slope sensitivity.

2.2. Improving distribution through Non-linear Weight Selection

In this section, the effects of the curvature of the weight space on the selectivity of
the solution points are analyzed. In Section 2.1., it was observed that the weight
vector in the standard WS method is constrained along the line define by the simplex
w2 = 1 − w1 or the hyperplane Z = {w|1Tw = 1}, where 1 ∈ R2 is a vector of
all ones. This hyperplane does not have any curvature. Parameterizing the weight
vector by λ, such that w1 = λ, as λ varies from 0 to 1, |w| varies between 1 and
1/

√
2.

However, if the weight vector is constrained to the unit sphere as [6]

|w|2 = w2
1 + w2

2 = 1, then,(2.9)

ϕ(f, w) = |f | cos(θf − θw)(2.10)

reduces the problem to finding the minimum value of f(x) in the direction of w.
The slope becomes

tan θw =

√
1− λ2

λ
(2.11)

and the slope sensitivity can be written as

d

dλ
tan θw = − 1

λ2

1√
1− λ2︸ ︷︷ ︸

u

.(2.12)

A slight improvement over the standard WS method can be observed when the
sensitivities are compared. This is due to the factor u in (2.12), and more solution
points can be found. It can be noted by this formulation that a curvature is in-
troduced into the weight space, but the curvature cannot be controlled. Also, the
weight constraint, w1+w2 = 1, is not satisfied, except at the extreme points; hence,
it cannot be considered as a WS method.

However, setting w1 = λ2 and w2 = 1−λ2 will constrain λ to a unit circle while
satisfying the weight constraint. The slope and its sensitivity can be written as

tan θw =
1− λ2

λ2
(2.13)
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and
d

dλ
tan θw = − 1

λ2

2

λ
,(2.14)

respectively. The slope sensitivity is improved by the factor 2
λ .

To provide control of the curvature of the weight surface and consequently that of
the slope sensitivity, a weight selection such that λ is constrained on a hypersurface
is proposed. Additional variables n ∈ N and 0 < kj ∈ R, j = 1, . . . , p, which can
be manipulated are also introduced.

One of the merits of these additional parameters is the increased degree of free-
dom for the decision-maker (DM) to explore the Pareto surface. It can also be
observed that the an even variation of λ is presented to the DM, this variation is
transformed by the relative values of these parameters into a nonlinear one that tries
to match the trade-off surface so that better distribution of the Pareto points can
be achieved. However, since the shape of the Pareto surface is not known a priori,
the parameters will have to be tuned to achieve optimal performance. Increment in
the values of both parameters would be observed to lead to reduction of the step
length of the transformed weight variation, therefore both parameters should not
be tuned simultaneously.

For p number of objectives, the weight hypersurface Zn is defined as

Zn =

w :

p∑
j=1

wj = 1;wj = (λj/kj)
n

(2.15)

This approach is similar to that considered for the weighted compromise method in
[1]. The difference is that the constraint

∑p
j=1 wj = 1 is here still maintained. This

ensures a linear relationship between the slope of the Pareto surface and the ratio
of the weights

dfj
dfi

=
wi

wj
(2.16)

For clear illustration, consider a bi-objective case, p = 2. Setting λ1 = λ and k1 = 1
in (2.15), and writing other λj , j ̸= 1 in terms of λ, the weight space Z2 is given as

Z2 =

{
w : w1 + w2 = 1;wj =

λ2
j

k2j
;

}
(2.17)

=

{
λ1, λ2 :

λ2
1

k21
+

λ2
2

k22
= 1

}
=

{
λ1, λ2 :

[
λ1

λ2

]T [
k1 0
0 k2

]−1 [
λ1

λ2

]
= 1

}

which describes an ellipsoid whose major and minor axes are k1 and k2. The slope
becomes

tan θw =
k22 − λ2

λ2
(2.18)
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and the slope sensitivity is given by

d

dλ
tan θw = −2

k22
λ3

.(2.19)

This nonlinear weight selection provides control of the slope sensitivity through
parameter k2 and n. The additional free parameters can be manipulated in the
search of the solution points, and facilitate the control of the slope of the weight
factor such that clustered points can be spread out. There is also a reduction in
the loss of computational effort of the method.

2.3. Normalization

The WS method of scalarization maps the vector objective space onto the positive
real line. It thus requires that the each of the non-dominated solution points be
mapped to the same point on the real line. This implies that the scalar objective
ϕ(x,w) takes its minimum value for all non dominated solution. The WS method
does not ensure this when any of the objective function value largely dominates
the other(s). This also happens if the feasible objective space A does not touch
the orthant containing it. This implies that the feasible region does not extends
to touch the vertical axis in the objective function space. In this state, the weight
vector along the horizontal cannot be orthogonal to any f(x) in the feasible region.
To avoid this, a scaling of the attainable region, or axes transformation, is necessary.
This is called normalization. In the following considerations let fimax and fimin

be the maximum and the minimum values of fi(x) on the Pareto surface. The
common normalization methods in the literature include the following. The lower-
bound normalization approach consists of dividing each of the component objective
function by the minimum attainable value of that functions. This may come in
different forms such as [13]

finom
(x) =

fi(x)

|fimin |
(2.20)

or,

finom(x) =
fi(x)− fimin

|fimin |
(2.21)

Apart from the fact that the upper value of the function is left unbounded, the
approach can lead to computational difficulty if the denominator is close to zero
[13]. Another normalization approach is the upper bound approach. This divides
each of the component objective function by its maximum attainable value fimax

[19] as

finom(x) =
fi(x)

fimax

(2.22)

This sets a bound on the maximum value of the function but no restriction on the
lower value. The upper-lower bound normalization approach on the other hand
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provides both lower and upper bound for the normalized function. It is expressed
in the form

finom
(x) =

fi(x)− fimin

fimax
− fimin

, i = 1, 2, . . . , p(2.23)

This is achieved by dividing the objectives by their respective extreme values
on the Pareto surface. In this normalization, the values of each of the objective
lies between 0 and 1, and the weighting factors also varies between 0 and 1, this
ensures that the resulting scalar objective to have a constant value for all points on
the Pareto surface. Equation (1.2) becomes

ϕnom(x,w) =

p∑
i=1

wifinom(x)(2.24)

The normalization also ensures accurate modeling and equivalence of both the
vector and the scalarized form of the problem. For example, consider the ex-
treme points of the Pareto front defined by the weight vectors w = (1, 0) and
w = (0, 1). For the upper-lower bound normalization, ϕnom(x,w)|w=(1,0) = f1min =
ϕnom(x,w)|w=(0,1) = f2min = 0. This does not hold for the other normalization
methods. Normalization is also known to improve the uniform distribution of the
Pareto points [1].

3. Numerical Example

In this section, the evaluation of the effectiveness of the proposed weight selection
method is considered. This involves investigating the effect of variations of param-
eters: k2 and n, on the distribution of the solution points generated. Only convex
polynomial optimization problems (POP) are considered in the following examples.
The multiobjective problem is solved by reducing it to a scalar form using the WS
method of aggregation. The resulting scalar POP is solved for weight increment
of 0.05 between 0 and 1. The resulting POP were solved with Gloptipoly, a freely
available MATLAB software that implements POP solution algorithm based on the
theory of moments [8]. It solves the resulting SDP using SeDuMi as the default
solver [24] and gives the global optimal value, and the global optimizer. Two exam-
ples consisting of a two-objective and a three-objective MOPs are considered to
illustrate the effectiveness of the method.

3.1. Example 1

Consider the two-objective optimization problem

min

[
f1(x) = 30x3

1 + 30x2
2

f2(x) = (x1 − 5)2 + (x2 − 5)2

]
s.t. (x1 − 5)2 + x2

2 − 52 6 0
(x1 − 8)2 + (x2 + 3)2 > 7.7

(3.1)
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(a) k2 = 1, n = 1 (21 points)
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(b) k2 = 1, n = 1 (51 points)

Fig. 3.1: Pareto front using Standard Weighted Sum with even increment in λ

In this example, the standard WS with reduced weight increment in λ is investi-
gated. Also, the effects of variation of k2 with constant n, and variation of n with
constant k2 will also be considered.

In the first case, the standard WS was used. This was achieved by setting
k2 = 1 and n = 1 in (2.15), reducing the non-linear weight selection method to the
standard WS method. Observe that the only variation allowed in the WS method is
the increment in the value of λ from 0 to 1. The MOP was solved first with weight
increment of 0.05 to give 21 runs, and then weight increment of 0.02 to give 51
runs. This was to see the effects of increments reduction on the distribution of the
solution points. The generated Pareto points for 21 runs and 51 runs are as shown
in Fig. 3.1. It would be observed that though reducing this increment increases the
number of points, it does not remove the clustering of the solution points.

For the second case, the value of n was kept at 2, and the value of k2 was
increased from 1. At k2 = 1, an improvement in the distribution of the Pareto
points can be observed compared with the standard WS. As the value of k2 is
increased from 1, a progressive improvement in the distribution of the solution
points can be observed. However, it was also noted that with increasing k2, the
solution points around the extreme point defined by w1 = 0 were being missed.
This leads to a reduction of the extent of the generated Pareto front. An initial
improvement in the distribution of the solution set is observed as k2 is increased.
As the value of k2 is further increased, an optimal point is reached beyond which
an increase in k2 reduces the distribution quality. Therefore, the value of k2 can be
tuned to obtain an optimal value that give appreciable extent and fairly uniform
spacing of the solution points. Fig. 3.2 shows the generated fronts for values of k2
= 1, 2, and 5.

In the third case, k2 was set to 1 and the value of n increased from 1, taking only
integral values. Improvement in the distribution of solution points was observed as
n is increased from 1. It was noted that the extent property was not reduced as
observed with the variation in k2 in the second case. An optimal value of n is
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(a) n = 2, k2 = 1
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(b) n = 2, k2 = 2
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(c) n = 2, k2 = 5

Fig. 3.2: Pareto front using Standard Weighted Sum with different values of k2
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(a) n = 3, k2 = 1
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(b) n = 6, k2 = 1
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(c) n = 6, k2 = 1

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

f
1

f
2

(d) n = 10, k2 = 1

Fig. 3.3: Pareto front using Standard Weighted Sum with different values of n

reached beyond which the distribution becomes poorer. Generated Pareto fronts
for values of n= 3, 6, and 10 are as shown in Fig. 3.3.

3.2. Example 2

An evaluation of the method on three-objective problem is considered in this exam-
ple. The problem was presented in [13].
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(b) n = 2, k2 = 1.02

min

 f1(x) = 25(x1 − 0.5)2 + (2x2 − 2)2 + 0.1
f2(x) = [(x1 − 2.5)2 + 4(x2 − 1.8)2]2

f3(x) = (x1 − 2.0)4 + 1.5(x2 − 2.8)2 + 0.3x1x2 + 10


s.t. g1 = (x1 − 2.1)− 0.08(2.2− x2)

2 6 0
g2 = −x1 6 0
g3 = −x2 6 0
g4 = −x2 − 3.0 6 0

(3.2)

The MOP was solved using the standard WS method i.e. k1 = k2 = 1 and n = 1.
The problem was also solved with the proposed method, first with k2 = 1.02 and
n = 2 and then with component objectives normalized. The lower-upper bound
normalization technique was used. To compare the solutions generated in each
situation, 101 runs were made. The Pareto generated for each of the cases are as
shown in Fig. 3.4. Looking at Fig. 3.4(a), the clustering of solution points can
be observed while many points on the Pareto surface are missed. It is however
observed that the extreme points of the solution set are captured. On the other
hand with the proposed method, the Pareto point are better distributed as shown
in Fig. 3.4(b). An improvement in the distribution of solution points was observed
as the parameters were increased from 1. And increment beyond an optimal value,
reduces the distribution performance. This optimal value is observed to be different
for different problem. It was observed that some of the extreme values are not
captured.

Fig. 3.4(c) is the Pareto surface generated with the normalized objective func-
tions. Comparing the Pareto surface with that in Fig. 3.4(b), with the same values
of k2 and n, improvement due to function normalization is obvious. The solution
points are uniformly distributed.
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Fig. 3.4: Pareto front using Standard Weighted Sum with different values of n

4. Conclusions

A nonlinear weight selection method proposed in this paper has been shown to
provide a means of controlling the distribution of points on the convex Pareto
front. One major drawback of the WS method is that it does not provide means of
controlling the distribution of points on the Pareto front. This is due its inability
to take into consideration the curvature of the Pareto surface to determine its own
slope change and also to control its own slope sensitivity. This is because the weight
space constraint for the standard WS is defined on a simplex which does not have
curvature. The proposed method maps the linear weight space into another weight
space constraint which allows its curvature to be controlled through free parameters.
Looking at (2.15) with n = 2, the weight space constraint Zn defines an ellipsoid and
k1, k2 are the axes of the ellipsoid. The relative values of the ki and n determine the
curvature of the weight space constraint, and therefore the slope sensitivity. This
gives the decision makers greater degree of freedom to control the distribution of
the weight space constraint and consequently the solution points. The nonlinear
weight selection thus greatly improves computational efficiency of the WS method
by reducing the number of same point with different weight factors. One demerit
with the method is the reduction of the extent of the Pareto surface and its inability
to capture extreme values of the Pareto surface for values of ki different from 1.
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