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SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES

ARE CO-ORDINATED CONVEX

Muhammad Amer Latif and Sabir Hussain

Abstract. In this paper we point out some inequalities of Hermite-Hadamard type for
double integrals of functions whose partial derivatives of higher order are co-ordinated
convex.

1. Introduction

The following definition is well known in literature:

A function f : I → R, Ø ̸= I ⊆ R, is said to be convex on I if the inequality

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) ,

holds for all x, y ∈ I and λ ∈ [0, 1].

Many important inequalities have been established for the class of convex func-
tions but the most famous is the Hermite-Hadamard’s inequality. This double
inequality is stated as:

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
,

where f : I → R, Ø ̸= I ⊆ R a convex function, a, b ∈ I with a < b. The inequalities
in (1.1) are in reversed order if f a concave function.

The inequalities (1.1) have become an important cornerstone in mathematical
analysis and optimization and many uses of these inequalities have been discov-
ered in a variety of settings. Moreover, many inequalities of special means can
be obtained for a particular choice of the function f. Due to the rich geometrical
significance of Hermite-Hadamard’s inequality (1.1), there is growing literature pro-
viding its new proofs, extensions, refinements and generalizations, see for example
[2, 3, 7, 10, 18, 19] and the references therein.
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Let us consider now a bidimensional interval ∆ =: [a, b]× [c, d] in R2 with a < b
and c < d. A mapping f : ∆ → R is said to be convex on ∆ if the inequality

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w),

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

A modification for convex functions on ∆, known as co-ordinated convex func-
tions, was introduced by S. S. Dragomir [4, 5] as follows:

A function f : ∆ → R is said to be convex on the co-ordinates on ∆ if the partial
mappings fy : [a, b] → R, fy(u) = f(u, y) and fx : [c, d] → R, fx(v) = f(x, v) are
convex where defined for all x ∈ [a, b], y ∈ [c, d].

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1.1. [11] A function f : ∆ → R is said to be convex on the co-ordinates
on ∆ if the inequality

f(tx+ (1− t)y, su+ (1− s)w)

≤ (x, u) + t(1− s)f(x,w) + s(1− t)f(y, u) + (1− t)(1− s)f(y, w),

holds for all t, s ∈ [0, 1] and (x, u), (y, w) ∈ ∆.

Clearly, every convex mapping f : ∆ → R is convex on the co-ordinates but converse
may not be true [4, 5].

The following Hermite-Hadamrd type inequalities for co-ordinated convex func-
tions on the rectangle from the plane R2 were established in [4]:

Theorem 1.1. [4] Suppose that f : ∆ → R is co-ordinated convex on ∆, then

(1.2)

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,

c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx+
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

The above inequalities are sharp.

In what follows ∆◦ is the interior of ∆ and L (∆) is the space of integrable
functions over ∆.

The following result will be very useful to establish our one of the results in
section 2:
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Theorem 1.2. [9] Let f : ∆ → R be a continuous mapping such that the partial

derivatives ∂k+lf(.,.)
∂xk∂yl , k = 0, 1, . . . , n − 1, l = 0, 1, . . . ,m − 1 exist on ∆◦ and are

continuous on ∆, then

∫ b

a

∫ d

c

f (t, s) dsdt =
n−1∑
k=0

m−1∑
l=0

Xk (x)Yl (y)
∂k+lf (x, y)

∂xk∂yl
+

(−1)
m

n−1∑
k=0

Xk (x)

∫ d

c

Sm (y, s)
∂k+mf (x, s)

∂xk∂sm
ds

+ (−1)
n

m−1∑
l=0

Yl (y)

∫ b

a

Kn (x, t)
∂n+lf (t, y)

∂tn∂yl
dt

+ (−1)
m+n

∫ b

a

∫ d

c

Kn (x, t)Sm (y, s)
∂n+mf (t, s)

∂tn∂sm
dsdt,

where
Kn (x, t) :=

{
(t−a)n

n! , t ∈ [a, x]
(t−b)n

n! , t ∈ (x, b]

Sm (y, s) :=

{
(s−c)m

m! , s ∈ [c, y]
(s−d)m

m! , s ∈ (y, d]

and


Xk (x) =

(b−x)k+1+(−1)k(x−a)k+1

(k+1)!

Yl (y) =
(d−y)l+1+(−1)l(y−c)l+1

(l+1)!

,

for (x, y) ∈ ∆.

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [1]-[4]-[6],
[11]-[17], [20]. Alomari et al. [1]-[6], proved several Hermite-Hadamard type in-
equalities for co-ordinated s-convex functions. Dragomir [4, 5], proved the Hermite-
Hadamard type inequalities for co-ordinated convex functions. Hwang et. al [6], also
proved some Hermite-Hadamard type inequalities for co-ordinated convex function
of two variables by considering some mappings directly associated to the Hermite-
Hadamard type inequality for co-ordinated convex mappings of two variables. Latif
et. al [11]-[13], proved some inequalities of Hermite-Hadamard type for differentiable
co-ordinated convex function, product of two co-ordinated convex mappings and for
co-ordinated h-convex mappings. Özdemir et. al [14]-[17], proved Hadamard’s type
inequalities for co-ordinated m-convex and (α,m)-convex functions.

By using the following lemma:

Lemma 1.1. [20, Lemma 1] Let f : ∆ ⊂ R2 → R be a partial differentiable

mapping on ∆ := [a, b] × [c, d] in R2 with a < b, c < d. If ∂2f
∂t∂s ∈ L (∆), then the
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following equality holds:

(1.3)
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

− 1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx +
1

d− c

∫ d

c

[f (a, y) dy + f (b, y)] dy

]

=
(b− a) (d− c)

4

∫ 1

0

∫ 1

0

(1− 2t) (1− 2s)
∂2f (ta+ (1− t) b, sc+ (1− s) d)

∂t∂s
dtds.

Sarikaya, et. al [20], proved the following Hermite-Hadamard type inequalities for
differentiable co-ordinated convex functions:

Theorem 1.3. [20, Theorem 2, Page 4] Let f : ∆ ⊂ R2 → R be a partial differ-

entiable mapping on ∆ := [a, b]× [c, d] in R2 with a < b, c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣ is convex

on the co-ordinates on ∆, then one has the inequalities:

(1.4)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A

∣∣∣∣∣ ≤ (b− a) (d− c)

16

×


∣∣∣ ∂2f
∂t∂s (a, c)

∣∣∣+ ∣∣∣ ∂2f
∂t∂s (a, d)

∣∣∣+ ∣∣∣ ∂2f
∂t∂s (b, c)

∣∣∣+ ∣∣∣ ∂2f
∂t∂s (b, d)

∣∣∣
4

 ,

where

A =
1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx +
1

d− c

∫ d

c

[f (a, y) dy + f (b, y)] dy

]
.

Theorem 1.4. [20, Theorem 3, Page 6-7] Let f : ∆ ⊂ R2 → R be a partial

differentiable mapping on ∆ := [a, b] × [c, d] in R2 with a < b, c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q,
q > 1, is convex on the co-ordinates on ∆, then one has the inequalities:

(1.5)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A

∣∣∣∣∣ ≤ (b− a) (d− c)

4 (p+ 1)
2
p

×


∣∣∣ ∂2f
∂t∂s (a, c)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (a, d)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (b, c)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (b, d)

∣∣∣q
4


1
q

,
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where

A =
1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx +
1

d− c

∫ d

c

[f (a, y) dy + f (b, y)] dy

]

and 1
p + 1

q = 1.

Theorem 1.5. [20, Theorem 4, Page 8-9] Let f : ∆ ⊂ R2 → R be a partial

differentiable mapping on ∆ := [a, b] × [c, d] in R2 with a < b, c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q,
q ≥ 1, is convex on the co-ordinates on ∆, then one has the inequalities:

(1.6)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A

∣∣∣∣∣ ≤ (b− a) (d− c)

16

×


∣∣∣ ∂2f
∂t∂s (a, c)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (a, d)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (b, c)

∣∣∣q + ∣∣∣ ∂2f
∂t∂s (b, d)

∣∣∣q
4


1
q

,

where

A =
1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx +
1

d− c

∫ d

c

[f (a, y) dy + f (b, y)] dy

]
.

We also quote the following result from [13] to be used in the sequel of the paper:

Theorem 1.6. [13, Theorem 4, page 8] Let f : ∆ ⊆ R2 → R be a partial differen-

tiable mapping on ∆ := [a, b]× [c, d] with a < b, c < d. If

∣∣∣∣ ∂2f

∂s∂t

∣∣∣∣q is convex on the

co-ordinates on ∆ and q ≥ 1, then the following inequality holds:

(1.7)

∣∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx+ f

(
a+ b

2
,
c+ d

2

)

− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, y

)
dy − 1

2 (b− a)

∫ b

a

f

(
x,

c+ d

2

)
dx

∣∣∣∣∣ ≤ (b− a) (d− c)

16

×


∣∣∣∣ ∂2

∂s∂t
(a, c)

∣∣∣∣q + ∣∣∣∣ ∂2

∂s∂t
(a, d)

∣∣∣∣q + ∣∣∣∣ ∂2

∂s∂t
(b, c)

∣∣∣∣q + ∣∣∣∣ ∂2

∂s∂t
(b, d)

∣∣∣∣q
4


1
q

.
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2. Main Results

In this section we establish new Hermite-Hadamard type inequalities for double
integrals of functions whose partial derivatives of higher order are co-ordinated
convex functions.

To make the presentation easier and compact to understand; we make some
symbolic representation:

A
′
=

1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx +
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

]

+
1

2

m−1∑
l=2

(l − 1) (d− c)
l

2 (l + 1)!

[
∂lf (a, c)

∂yl
+

∂lf (b, c)

∂yl

]

+
1

2

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

[
∂kf (a, c)

∂xk
+

∂kf (a, d)

∂xk

]

− 1

b− a

m−1∑
l=2

(l − 1) (d− c)
l

2 (l + 1)!

∫ b

a

∂lf (x, c)

∂yl
dx

− 1

d− c

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

∫ d

c

∂kf (a, y)

∂xk
dy

−
n−1∑
k=2

m−1∑
l=2

(k − 1) (l − 1) (b− a)
k
(d− c)

l

4 (k + 1)! (l + 1)!

∂k+lf (a, c)

∂xk+l
.

B(n,m) =

∣∣∣∣∂n+mf (a, c)

∂tn∂sm

∣∣∣∣ ; C(n,m) =

∣∣∣∣∂n+mf (a, d)

∂tn∂sm

∣∣∣∣ .
D(n,m) =

∣∣∣∣∂n+mf (b, c)

∂tn∂sm

∣∣∣∣ ; E(n,m) =

∣∣∣∣∂n+mf (b, d)

∂tn∂sm

∣∣∣∣ .
It is obvious that for m = n = 1 and m = n = 2, A

′
= A.

We quote the following lemma from [7], which will help us establish our main
results:

Lemma 2.1. [7, Lemma 2.1] Suppose f : I◦ ⊂ R → R, a, b ∈ I◦ with a < b. If
f (n) exists on I◦ and f (n) ∈ L (a, b) for n ≥ 1, then we have the identity:

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!
f (k)(a)

=
(b− a)

n

2n!

∫ 1

0

tn−1 (n− 2t) f (n)(a+ (1− t) b)dt.
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Lemma 2.2. Let f : ∆ → R a < b; c < d, be a continuous mapping such that
∂m+nf
∂xn∂ym exists on ∆◦ and ∂m+nf

∂xn∂ym ∈ L (∆), for m,n ∈ N, m,n ≥ 1, then

(2.1)
(b− a)

n
(d− c)

m

4n!m!

∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s)

× ∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm
dtds+A

′
=

f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx.

Proof. For n = m = 1, the lemma coincides with Lemma 1.1.

Consider the case, for m,n ≥ 2, then

(2.2)
(b− a)

n
(d− c)

m

4n!m!

∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s)

× ∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm
dtds

=
(d− c)

m

2m!

∫ 1

0

sm−1 (m− 2s)

[∫ 1

0

(b− a)
n

2n!
tn−1 (n− 2t)

×∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm
dt

]
ds

An application of Lemma 2.1 with respect to the first argument yields:

(2.3)
(b− a)

n
(d− c)

m

4n!m!

∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s)

× ∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm
dtds

=
(d− c)

m

4m!

∫ 1

0

sm−1 (m− 2s)
∂mf (a, cs+ (1− s) d)

∂sm
ds

+
(d− c)

m

4m!

∫ 1

0

sm−1 (m− 2s)
∂mf (b, cs+ (1− s) d)

∂sm
ds

− (d− c)
m

2m! (b− a)

∫ b

a

∫ 1

0

sm−1 (m− 2s)

× ∂mf (x, cs+ (1− s) d)

∂sm
dsdx− (d− c)

m

2m!

×
n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

∫ 1

0

sm−1 (m− 2s)
∂k+mf (a, cs+ (1− s) d)

∂xk∂sm
ds.
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Now repeated application of Lemma 2.1 with respect to the second argument yields:

(2.4)
(d− c)

m

4m!

∫ 1

0

sm−1 (m− 2s)
∂mf (a, cs+ (1− s) d)

∂sm
ds

=
f (a, c) + f (a, d)

4
− 1

2 (d− c)

∫ d

c

f (a, y) dy − 1

2

m−1∑
l=2

(k − 1) (d− c)
l

2 (l + 1)!

∂lf (a, c)

∂yl
.

(2.5)
(d− c)

m

4m!

∫ 1

0

sm−1 (m− 2s)
∂mf (b, cs+ (1− s) d)

∂sm
ds

=
f (b, c) + f (b, d)

4
− 1

2 (d− c)

∫ d

c

f (b, y) dy − 1

2

m−1∑
l=2

(l − 1) (d− c)
l

2 (l + 1)!

∂lf (b, c)

∂yl
.

(2.6)
(d− c)

m

2m! (b− a)

∫ b

a

∫ 1

0

sm−1 (m− 2s)
∂mf (x, cs+ (1− s) d)

∂sm
dsdx

=
1

2 (b− a)

∫ b

a

f (x, c) dx+
1

2 (b− a)

∫ b

a

f (x, d) dx

− 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

− 1

b− a

m−1∑
l=2

(l − 1) (d− c)
l

2 (l + 1)!

∫ b

a

∂lf (x, c)

∂yl
dx,

and

(2.7)
(d− c)

m

2m!

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

×
∫ 1

0

sm−1 (m− 2s)
∂k+mf (a, cs+ (1− s) d)

∂xk∂sm
ds

=
1

2

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

∂kf (a, c)

∂xk

+
1

2

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

∂kf (a, d)

∂xk

− 1

d− c

n−1∑
k=2

(k − 1) (b− a)
k

2 (k + 1)!

∫ d

c

∂kf (a, y)

∂xk
dy

−
n−1∑
k=2

m−1∑
l=2

(k − 1) (l − 1)

4 (k + 1)!

(b− a)
k
(d− c)

l

(l + 1)!

∂k+lf (a, c)

∂xk+l
.

Use (2.4)-(2.7) in (2.3) to get (2.1). This completes the proof of the lemma.
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Theorem 2.1. Let f : ∆ → R a < b; c < d, be a continuous mapping such that
∂m+nf
∂tn∂sm exists on ∆◦ and ∂m+nf

∂tn∂sm ∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣ is convex on the co-ordinates

on ∆, for m,n ∈ N, m,n ≥ 2, then

(2.8)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (b− a)

n
(d− c)

m

4 (n+ 2)! (m+ 2)!

[(
n2 − 2

) {(
m2 − 2

)
B(n,m) +mC(n,m)

}
+n

{(
m2 − 2

)
D(n,m) +mE(n,m)

}]
.

Proof. Suppose m,n ≥ 2. By Lemma 2.2, we have:

(2.9)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (b− a)

n
(d− c)

m

4n!m!

∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s)

×
∣∣∣∣∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm

∣∣∣∣ dtds
By convexity of

∣∣∣ ∂m+nf
∂tn∂sm

∣∣∣ on the co-ordinates on ∆

(2.10)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (b− a)

n
(d− c)

m

4n!m!

[∣∣∣∣∂n+mf (a, c)

∂tn∂sm

∣∣∣∣ ∫ 1

0

∫ 1

0

tnsm (n− 2t) (m− 2s) dsdt

+

∣∣∣∣∂n+mf (a, d)

∂tn∂sm

∣∣∣∣ ∫ 1

0

∫ 1

0

tnsm−1 (1− s) (n− 2t) (m− 2s) dsdt

+

∣∣∣∣∂n+mf (b, c)

∂tn∂sm

∣∣∣∣ ∫ 1

0

∫ 1

0

tn−1sm (1− t) (n− 2t) (m− 2s) dsdt

+

∣∣∣∣∂n+mf (b, d)

∂tn∂sm

∣∣∣∣ ∫ 1

0

∫ 1

0

(
tn−1 − tn

)
(n− 2t)

(
sm−1 − sm

)
(m− 2s) dsdt

]
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=
(b− a)

n
(d− c)

m

4n!m!

[ (
n2 − 2

) (
m2 − 2

)
(n+ 1) (n+ 2) (m+ 1) (m+ 2)

∣∣∣∣∂n+mf (a, c)

∂tn∂sm

∣∣∣∣
+

(
n2 − 2

)
m

(n+ 1) (n+ 2) (m+ 1) (m+ 2)

∣∣∣∣∂n+mf (a, d)

∂tn∂sm

∣∣∣∣
+

n
(
m2 − 2

)
(n+ 1) (n+ 2) (m+ 1) (m+ 2)

∣∣∣∣∂n+mf (b, c)

∂tn∂sm

∣∣∣∣
+

mn

(n+ 1) (n+ 2) (m+ 1) (m+ 2)

∣∣∣∣∂n+mf (b, d)

∂tn∂sm

∣∣∣∣] .
This completes the proof of the theorem.

Theorem 2.2. Let f : ∆ → R a < b; c < d, be a continuous mapping such that
∂m+nf
∂tn∂sm exists on ∆◦ and ∂m+nf

∂tn∂sm ∈ L (∆) . If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is convex on the

co-ordinates on ∆, for m,n ∈ N, m,n ≥ 2, then

(2.11)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (b− a)

n
(d− c)

m
(n− 1)

1−1/q
(m− 1)

1−1/q

4 (n+ 1)! (m+ 1)! (n+ 2)
1/q

(m+ 2)
1/q

×
[(
m2 − 2

){(
n2 − 2

)
Bq

(n,m) + nDq
(n,m)

}
+m

{(
n2 − 2

)
Cq

(n,m) + nEq
(n,m)

}] 1
q

.

Proof. Suppose m,n ≥ 2. By Lemma 2.2 and the power mean inequality, we have

(2.12)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (b− a)

n
(d− c)

m

4n!m!

{∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s) dsdt

}1−1/q

×
{∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s)

×
∣∣∣∣∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm

∣∣∣∣q dtds}1/q

.
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By the similar arguments used to obtain (2.8) and the fact

∫ 1

0

∫ 1

0

tn−1sm−1 (n− 2t) (m− 2s) dsdt =
(n− 1) (m− 1)

(n+ 1) (m+ 1)
,

we get (2.11). This completes the proof of the theorem.

Theorem 2.3. Let f : ∆ → R, a < b; c < d, be a continuous mapping such that
∂m+nf
∂tn∂sm exist on ∆◦ and ∂m+nf

∂tn∂sm ∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is convex on the

co-ordinates on ∆, for m,n ∈ N, m,n ≥ 1, then

(2.13)

∣∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, s) dsdt

− 1

(b− a) (d− c)

n−1∑
k=0

m−1∑
l=0

[
1 + (−1)

k
] [

1 + (−1)
l
]

2k+l+2

× (b− a)
k+1

(d− c)
l+1

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2 , c+d

2

)
∂xk∂yl

+
(−1)

m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)

k
]
(b− a)

k

2k+1 (k + 1)!

∫ d

c

Q(s)
∂k+mf

(
a+b
2 , s

)
∂xk∂sm

ds

+
(−1)

n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)

l
]
(d− c)

l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤

(b− a)
n
(d− c)

m
q

√
Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m)

2n+m+2/q (n+ 1)! (m+ 1)!
,

where

P (t) :=

 (t− a)
n
, t ∈

[
a, a+b

2

]
(t− b)

n
, t ∈

(
a+b
2 , b

] and Q(s) :=

 (s− c)
m
, s ∈

[
c, c+d

2

]
(s− d)

m
, s ∈

(
c+d
2 , d

]
.

Proof. The proof follows directly from Theorem 1.2 by letting x 7→ a+b
2 and y 7→
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c+d
2 , to obtain

(2.14)
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, s) dsdt− 1

(b− a) (d− c)

×
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)

k
] [

1 + (−1)
l
]

2k+l+2

(b− a)
k+1

(d− c)
l+1

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2 , c+d

2

)
∂xk∂yl

+
(−1)

m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)

k
]
(b− a)

k

2k+1 (k + 1)!

∫ d

c

Q(s)
∂k+mf

(
a+b
2 , s

)
∂xk∂sm

ds

+
(−1)

n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)

l
]
(d− c)

l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

=
(−1)

m+n

(b− a) (d− c)m!n!

∫ b

a

∫ d

c

P (t)Q(s)
∂n+mf (t, s)

∂tn∂sm
dsdt.

An argument parallel to that of Theorem 2.2 but with (2.14) in place of Lemma 2.2
gives the desired result.

We now derive results comparable to Theorem 2.1 and Theorem 2.2 with a
concavity property instead of convexity property.

Theorem 2.4. Let f : ∆ → R a < b; c < d, be a continuous mapping such that
∂m+nf
∂tn∂sm exists on ∆◦ and ∂m+nf

∂tn∂sm ∈ L (∆) . If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q ,q ≥ 1, is concave on the

co-ordinates on ∆, for m,n ∈ N, m, n ≥ 1, then

(2.15)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A
′

∣∣∣∣∣
≤ (n− 1) (m− 1) (b− a)

n
(d− c)

m

4 (n+ 1)! (m+ 1)!

×
∂n+mf

(
(n2−2)a+nb

(n−1)(n+2) ,
(m2−2)c+md

(m−1)(m+2)

)
∂tn∂sm

.

Proof. By the concavity of

∣∣∣∣ ∂n+mf

∂tn∂sm

∣∣∣∣q on the co-ordinates on ∆ and the power mean
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inequality, the following inequality holds:∣∣∣∣∂n+mf (λx+ (1− λ) y, v)

∂tn∂sm

∣∣∣∣q
≥ λ

∣∣∣∣∂n+mf (x, v)

∂tn∂sm

∣∣∣∣q + (1− λ)

∣∣∣∣∂n+mf (y, v)

∂tn∂sm

∣∣∣∣q
≥

(
λ

∣∣∣∣∂n+mf (x, v)

∂tn∂sm

∣∣∣∣+ (1− λ)

∣∣∣∣∂n+mf (y, v)

∂tn∂sm

∣∣∣∣)q

,

for all x, y ∈ [a, b] and λ ∈ [0, 1] for some fixed v ∈ [c, d] . Similarly∣∣∣∣∂n+mf (u, λz + (1− λ)w)

∂tn∂sm

∣∣∣∣
≥ λ

∣∣∣∣∂n+mf (u, z)

∂tn∂sm

∣∣∣∣+ (1− λ)

∣∣∣∣∂n+mf (u,w)

∂tn∂sm

∣∣∣∣ ,
for all z, w ∈ [c, d] and λ ∈ [0, 1] for some fixed u ∈ [a, b] , implying

∣∣∣∣ ∂n+mf

∂tn∂sm

∣∣∣∣ is
concave on the co-ordinates on ∆.
By the Jensen’s inequality we have

(2.16)∫ 1

0

sm−1 (m− 2s)

[∫ 1

0

tn−1 (n− 2t)

∣∣∣∣∂n+mf (ta+ (1− t) b, cs+ (1− s) d)

∂tn∂sm

∣∣∣∣ dt] ds
≤

∫ 1

0

sm−1 (m− 2s)

[(∫ 1

0

tn−1 (n− 2t) dt

)

×

∣∣∣∣∣∣∣
∂n+mf

( ∫ 1
0
tn−1(n−2t)(ta+(1−t)b)dt∫ 1

0
tn−1(n−2t)dt

, cs+ (1− s) d
)

∂tn∂sm

∣∣∣∣∣∣∣
 ds

=
n− 1

n+ 1

∫ 1

0

sm−1 (m− 2s)

∣∣∣∣∣∣∣∣
∂n+mf

(
(n2−2)a+nb

(n−1)(n+2) , cs+ (1− s) d

)
∂tn∂sm

∣∣∣∣∣∣∣∣ ds

≤ (n− 1) (m− 1)

(n+ 1) (m+ 1)

∣∣∣∣∣∣∣∣
∂n+mf

(
(n2−2)a+nb

(n−1)(n+2) ,
(m2−2)c+md

(m−1)(m+2)

)
∂tn∂sm

∣∣∣∣∣∣∣∣ .
Application of lemma 2.2 and (2.16), we get (2.15). This completes the proof of
theorem.

Theorem 2.5. Let f : ∆ → R a < b; c < d, be a continuous mapping such that
∂m+nf
∂tn∂sm exist on ∆◦ and ∂m+nf

∂tn∂sm ∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is concave on the
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co-ordinates on ∆, for m,n ∈ N, m,n ≥ 1, then

(2.17)

∣∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, s) dsdt− 1

(b− a) (d− c)

×
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)

k
] [

1 + (−1)
l
]

(k + 1)! (l + 1)!

(b− a)
k+1

(d− c)
l+1

2k+l+2

∂k+lf
(
a+b
2 , c+d

2

)
∂xk∂yl

+
(−1)

m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)

k
]
(b− a)

k

2k+1 (k + 1)!

∫ d

c

Q(s)
∂k+mf

(
a+b
2 , s

)
∂xk∂sm

ds

+
(−1)

n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)

l
]
(d− c)

l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt|

≤ (b− a)
n
(d− c)

m

2n+m (n+ 1)! (m+ 1)!

∣∣∣∣∣∂n+mf
(
a+b
2 , c+d

2

)
∂xn∂ym

∣∣∣∣∣ .
Proof. Similar to proof of Theorem 2.4 by using (2.14). Therefore we omit the
details for reader.

Remark 2.1. On letting m = n = 2 in (2.8), (2.11) and (2.13) respectively yield:

(2.18)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A

∣∣∣∣
≤ (b− a)2 (d− c)2

144× 4
{B(2,2) + C(2,2) +D(2,2) + E(2,2)}.

(2.19)

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx−A

∣∣∣∣
≤ (b− a)2 (d− c)2

9× 24+2/q
q

√
Bq

(2,2) + Cq
(2,2) +Dq

(2,2) + Eq
(2,2)

(2.20)

∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, s) dsdt+ f

(
a+ b

2
,
c+ d

2

)
− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, s

)
ds− 1

2 (b− a)

∫ b

a

f

(
t,
c+ d

2

)
dt

∣∣∣∣
≤ (b− a)2 (d− c)2

9× 26+2/q
q

√
Bq

(2,2) + Cq
(2,2) +Dq

(2,2) + Eq
(2,2).

It may be noted that the bounds in (2.18), (2.19) and (2.20) are sharper than the bounds
of the inequalities proved in Theorem 1.3, Theorem 1.5 and Theorem 1.6 respectively.



Inequalities of Hermite-Hadamard Type for Double Integrals 335

3. Acknowledgment

The authors thank to the anonymous referee for his/her very useful and constructive
comments which helped the authors to improve the final version of the paper.

REFERENCES

1. M. Alomari and M. Darus: Co-ordinated s-convex function in the first sense
with some Hadamard-type inequalities, Int. J. Contemp. Math. Sciences, 3 (32)
(2008), 1557-1567.

2. M. Alomari, M. Darus and S. S. Dragomir: Inequalities of Hermite-
Hadamard’s type for functions whose derivatives absolute values are quasi-convex,
RGMIA Research Report Collection, 12 (suppl. 14) (2009).

3. S. S. Dragomir and R. P. Agarwal: Two inequalities for differentiable map-
pings and applications to special means of real numbers and to Trapezoidal for-
mula, Appl. Math. Lett. 11(5) (1998) 91-95.

4. S.S. Dragomir: On Hadamard’s inequality for convex functions on the co-
ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 4
(2001), 775-788.

5. S.S. Dragomir and C.E.M. Pearce: Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, On-
line:[http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html].

6. D. Y. Hwang, K. L. Tseng and G. S. Yang: Some Hadamard’s inequalities for
co-ordinated convex functions in a rectangle from the plane, Taiwanese Journal of
Mathematics, 11 (2007), 63-73.

7. D. Y. Hwang: Some inequalities for n-times differentiable mappings and appli-
cations, Kyungpook, Math. J. 43(2003), 335-343.

8. G. Hanna: Cubature rule from a generalized Taylor perspective, PhD Thesis.

9. G. Hanna, S. S. Dragomir and P. Cerone: A general Ostrowski type inequality
for double integrals, Tamkang J. Math. Volume 33, Issue 4, 2002.

10. U. S. Kirmaci: Inequalities for differentiable mappings and applications to special
means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004) 137-
146.

11. M. A. Latif and M. Alomari: Hadamard-type inequalities for product two
convex functions on the co-ordinetes, Int. Math. Forum, 4(47), 2009, 2327-2338.

12. M. A. Latif and M. Alomari: On the Hadamard-type inequalities for h-convex
functions on the co-ordinetes, Int. J. of Math. Analysis, 3(33), 2009, 1645-1656.

13. M. A. Latif and S. S. Dragomir: On Some New Inequalities for Differentiable
Co-ordinated Convex Functions, Journal of Inequalities and Applications 2012,
2012:28 doi:10.1186/1029-242X-2012-28.
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