SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX

Muhammad Amer Latif and Sabir Hussain

Abstract. In this paper we point out some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives of higher order are co-ordinated convex.

1. Introduction

The following definition is well known in literature:

A function $f: I \to \mathbb{R}, \emptyset \neq I \subseteq \mathbb{R}$, is said to be convex on I if the inequality

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

holds for all $x, y \in I$ and $\lambda \in [0, 1]$.

Many important inequalities have been established for the class of convex functions but the most famous is the Hermite-Hadamard's inequality. This double inequality is stated as:

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \le \frac{f\left(a\right) + f\left(b\right)}{2}$$

where $f : I \to \mathbb{R}$, $\emptyset \neq I \subseteq \mathbb{R}$ a convex function, $a, b \in I$ with a < b. The inequalities in (1.1) are in reversed order if f a concave function.

The inequalities (1.1) have become an important cornerstone in mathematical analysis and optimization and many uses of these inequalities have been discovered in a variety of settings. Moreover, many inequalities of special means can be obtained for a particular choice of the function f. Due to the rich geometrical significance of Hermite-Hadamard's inequality (1.1), there is growing literature providing its new proofs, extensions, refinements and generalizations, see for example [2, 3, 7, 10, 18, 19] and the references therein.

Received July 21, 2012.; Accepted November 9, 2012.

²⁰¹⁰ Mathematics Subject Classification. 26A33, 26A51, 26D07, 26D10, 26D15

Let us consider now a bidimensional interval $\Delta =: [a, b] \times [c, d]$ in \mathbb{R}^2 with a < band c < d. A mapping $f : \Delta \to \mathbb{R}$ is said to be convex on Δ if the inequality

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \lambda f(x, y) + (1 - \lambda)f(z, w),$$

holds for all $(x, y), (z, w) \in \Delta$ and $\lambda \in [0, 1]$.

A modification for convex functions on Δ , known as co-ordinated convex functions, was introduced by S. S. Dragomir [4, 5] as follows:

A function $f : \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are convex where defined for all $x \in [a, b], y \in [c, d]$.

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1.1. [11] A function $f : \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if the inequality

$$\begin{aligned} f(tx + (1-t)y, su + (1-s)w) \\ &\leq (x, u) + t(1-s)f(x, w) + s(1-t)f(y, u) + (1-t)(1-s)f(y, w), \end{aligned}$$

holds for all $t, s \in [0, 1]$ and $(x, u), (y, w) \in \Delta$.

Clearly, every convex mapping $f : \Delta \to \mathbb{R}$ is convex on the co-ordinates but converse may not be true [4, 5].

The following Hermite-Hadamrd type inequalities for co-ordinated convex functions on the rectangle from the plane \mathbb{R}^2 were established in [4]:

Theorem 1.1. [4] Suppose that $f : \Delta \to \mathbb{R}$ is co-ordinated convex on Δ , then

$$\begin{aligned} (1.2) & f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \right] \\ & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(x, y\right) dy dx \\ & \leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} \left[f\left(x, c\right) + f\left(x, d\right)\right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f\left(a, y\right) + f\left(b, y\right)\right] dy \right] \\ & \leq \frac{f\left(a, c\right) + f\left(a, d\right) + f\left(b, c\right) + f\left(b, d\right)}{4}. \end{aligned}$$

The above inequalities are sharp.

In what follows Δ° is the interior of Δ and $L(\Delta)$ is the space of integrable functions over Δ .

The following result will be very useful to establish our one of the results in section 2:

322

Theorem 1.2. [9] Let $f : \Delta \to \mathbb{R}$ be a continuous mapping such that the partial derivatives $\frac{\partial^{k+l}f(...)}{\partial x^k \partial y^l}$, k = 0, 1, ..., n-1, l = 0, 1, ..., m-1 exist on Δ° and are continuous on Δ , then

$$\begin{split} \int_{a}^{b} \int_{c}^{d} f\left(t,s\right) ds dt &= \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} X_{k}\left(x\right) Y_{l}\left(y\right) \frac{\partial^{k+l} f\left(x,y\right)}{\partial x^{k} \partial y^{l}} + \\ & \left(-1\right)^{m} \sum_{k=0}^{n-1} X_{k}\left(x\right) \int_{c}^{d} S_{m}\left(y,s\right) \frac{\partial^{k+m} f\left(x,s\right)}{\partial x^{k} \partial s^{m}} ds \\ & + \left(-1\right)^{n} \sum_{l=0}^{m-1} Y_{l}\left(y\right) \int_{a}^{b} K_{n}\left(x,t\right) \frac{\partial^{n+l} f\left(t,y\right)}{\partial t^{n} \partial y^{l}} dt \\ & + \left(-1\right)^{m+n} \int_{a}^{b} \int_{c}^{d} K_{n}\left(x,t\right) S_{m}\left(y,s\right) \frac{\partial^{n+m} f\left(t,s\right)}{\partial t^{n} \partial s^{m}} ds dt, \end{split}$$

where

$$\begin{cases} K_n(x,t) := \begin{cases} \frac{(t-a)^n}{n!}, t \in [a,x] \\ \frac{(t-b)^n}{n!}, t \in (x,b] \\ S_m(y,s) := \begin{cases} \frac{(s-c)^m}{m!}, s \in [c,y] \\ \frac{(s-d)^m}{m!}, s \in (y,d] \end{cases} \quad and \quad \begin{cases} X_k(x) = \frac{(b-x)^{k+1} + (-1)^k (x-a)^{k+1}}{(k+1)!} \\ Y_l(y) = \frac{(d-y)^{l+1} + (-1)^l (y-c)^{l+1}}{(l+1)!} \end{cases}$$

for $(x, y) \in \Delta$.

In recent years, many authors have proved several inequalities for co-ordinated convex functions. These studies include, among others, the works in [1]-[4]-[6], [11]-[17], [20]. Alomari et al. [1]-[6], proved several Hermite-Hadamard type inequalities for co-ordinated s-convex functions. Dragomir [4, 5], proved the Hermite-Hadamard type inequalities for co-ordinated convex functions. Hwang et. al [6], also proved some Hermite-Hadamard type inequalities for co-ordinated convex functions for co-ordinated convex function of two variables by considering some mappings directly associated to the Hermite-Hadamard type inequalities of Hermite-Hadamard type for differentiable co-ordinated convex function, product of two co-ordinated convex mappings and for co-ordinated h-convex mappings. Özdemir et. al [14]-[17], proved Hadamard's type inequalities for co-ordinated m-convex and (α, m) -convex functions.

By using the following lemma:

Lemma 1.1. [20, Lemma 1] Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b, c < d. If $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta)$, then the

following equality holds:

$$(1.3) \quad \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} \\ \qquad + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy dx \\ - \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) \, dy + f(b,y) \right] dy \right] \\ = \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1} (1-2t)(1-2s) \frac{\partial^{2} f(ta+(1-t)b,sc+(1-s)d)}{\partial t \partial s} dt ds.$$

Sarikaya, et. al [20], proved the following Hermite-Hadamard type inequalities for differentiable co-ordinated convex functions:

Theorem 1.3. [20, Theorem 2, Page 4] Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b, c < d. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|$ is convex on the co-ordinates on Δ , then one has the inequalities:

$$(1.4) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \leq \frac{(b-a)(d-c)}{16} \\ \times \left(\frac{\left| \frac{\partial^{2} f}{\partial t \partial s} \left(a, c \right) \right| + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(a, d \right) \right| + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(b, c \right) \right| + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(b, d \right) \right|}{4} \right),$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) \, dy + f(b,y) \right] dy \right].$$

Theorem 1.4. [20, Theorem 3, Page 6-7] Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b, c < d. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q$, q > 1, is convex on the co-ordinates on Δ , then one has the inequalities:

$$(1.5) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \leq \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}} \\ \times \left(\frac{\left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q}}{4} \right)^{\frac{1}{q}},$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) \, dy + f(b,y) \right] dy \right]$$

and $\frac{1}{p} + \frac{1}{q} = 1.$

Theorem 1.5. [20, Theorem 4, Page 8-9] Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b, c < d. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q$, $q \ge 1$, is convex on the co-ordinates on Δ , then one has the inequalities:

$$(1.6) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \leq \frac{(b-a)(d-c)}{16} \\ \times \left(\frac{\left| \frac{\partial^{2} f}{\partial t \partial s} \left(a, c \right) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(a, d \right) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(b, c \right) \right|^{q} + \left| \frac{\partial^{2} f}{\partial t \partial s} \left(b, d \right) \right|^{q}}{4} \right)^{\frac{1}{q}},$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) \, dy + f(b,y) \right] dy \right].$$

We also quote the following result from [13] to be used in the sequel of the paper:

Theorem 1.6. [13, Theorem 4, page 8] Let $f : \Delta \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ with a < b, c < d. If $\left| \frac{\partial^2 f}{\partial s \partial t} \right|^q$ is convex on the co-ordinates on Δ and $q \ge 1$, then the following inequality holds:

$$(1.7) \quad \left| \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx + f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \right. \\ \left. -\frac{1}{2(d-c)} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) \, dy - \frac{1}{2(b-a)} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) \, dx \right| \leq \frac{(b-a)(d-c)}{16} \\ \left. \times \left(\frac{\left| \frac{\partial^{2}}{\partial s \partial t} (a,c) \right|^{q} + \left| \frac{\partial^{2}}{\partial s \partial t} (a,d) \right|^{q} + \left| \frac{\partial^{2}}{\partial s \partial t} (b,c) \right|^{q} + \left| \frac{\partial^{2}}{\partial s \partial t} (b,d) \right|^{q}}{4} \right)^{\frac{1}{q}}.$$

2. Main Results

In this section we establish new Hermite-Hadamard type inequalities for double integrals of functions whose partial derivatives of higher order are co-ordinated convex functions.

To make the presentation easier and compact to understand; we make some symbolic representation:

$$\begin{split} A^{'} &= \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f\left(x,c\right) + f\left(x,d\right) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f\left(a,y\right) + f\left(b,y\right) \right] dy \right] \\ &+ \frac{1}{2} \sum_{l=2}^{m-1} \frac{(l-1)\left(d-c\right)^{l}}{2\left(l+1\right)!} \left[\frac{\partial^{l} f\left(a,c\right)}{\partial y^{l}} + \frac{\partial^{l} f\left(b,c\right)}{\partial y^{l}} \right] \\ &+ \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)\left(b-a\right)^{k}}{2\left(k+1\right)!} \left[\frac{\partial^{k} f\left(a,c\right)}{\partial x^{k}} + \frac{\partial^{k} f\left(a,d\right)}{\partial x^{k}} \right] \\ &- \frac{1}{b-a} \sum_{l=2}^{m-1} \frac{(l-1)\left(d-c\right)^{l}}{2\left(l+1\right)!} \int_{a}^{b} \frac{\partial^{l} f\left(x,c\right)}{\partial y^{l}} dx \\ &- \frac{1}{d-c} \sum_{k=2}^{n-1} \frac{(k-1)\left(b-a\right)^{k}}{2\left(k+1\right)!} \int_{c}^{d} \frac{\partial^{k} f\left(a,y\right)}{\partial x^{k}} dy \\ &- \sum_{k=2}^{n-1} \sum_{l=2}^{m-1} \frac{(k-1)\left(l-1\right)\left(b-a\right)^{k}\left(d-c\right)^{l}}{4\left(k+1\right)!\left(l+1\right)!} \frac{\partial^{k+l} f\left(a,c\right)}{\partial x^{k+l}} \\ B_{(n,m)} &= \left| \frac{\partial^{n+m} f\left(a,c\right)}{\partial t^{n} \partial s^{m}} \right|; \quad C_{(n,m)} = \left| \frac{\partial^{n+m} f\left(a,d\right)}{\partial t^{n} \partial s^{m}} \right|. \end{split}$$

•

It is obvious that for m = n = 1 and m = n = 2, A' = A.

We quote the following lemma from [7], which will help us establish our main results:

Lemma 2.1. [7, Lemma 2.1] Suppose $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$, $a, b \in I^{\circ}$ with a < b. If $f^{(n)}$ exists on I° and $f^{(n)} \in L(a,b)$ for $n \geq 1$, then we have the identity:

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx - \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^{k}}{2(k+1)!} f^{(k)}(a)$$
$$= \frac{(b-a)^{n}}{2n!} \int_{0}^{1} t^{n-1} (n-2t) f^{(n)}(a+(1-t)b) dt.$$

Lemma 2.2. Let $f : \Delta \to \mathbb{R}$ a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial x^n \partial y^m}$ exists on Δ° and $\frac{\partial^{m+n}f}{\partial x^n \partial y^m} \in L(\Delta)$, for $m, n \in \mathbb{N}$, $m, n \ge 1$, then

$$(2.1) \quad \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \\ \times \frac{\partial^{n+m} f (ta + (1-t) b, cs + (1-s) d)}{\partial t^{n} \partial s^{m}} dt ds + A' = \\ \frac{f (a,c) + f (a,d) + f (b,c) + f (b,d)}{4} + \frac{1}{(b-a) (d-c)} \int_{a}^{b} \int_{c}^{d} f (x,y) dy dx.$$

Proof. For n = m = 1, the lemma coincides with Lemma 1.1.

Consider the case, for $m, n \ge 2$, then

$$(2.2) \quad \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \\ \times \frac{\partial^{n+m} f (ta + (1-t) b, cs + (1-s) d)}{\partial t^{n} \partial s^{m}} dt ds \\ = \frac{(d-c)^{m}}{2m!} \int_{0}^{1} s^{m-1} (m-2s) \left[\int_{0}^{1} \frac{(b-a)^{n}}{2n!} t^{n-1} (n-2t) \right] \\ \times \frac{\partial^{n+m} f (ta + (1-t) b, cs + (1-s) d)}{\partial t^{n} \partial s^{m}} dt ds ds ds ds ds ds dt ds$$

An application of Lemma 2.1 with respect to the first argument yields:

$$(2.3) \quad \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \\ \times \frac{\partial^{n+m} f (ta + (1-t) b, cs + (1-s) d)}{\partial t^{n} \partial s^{m}} dt ds \\ = \frac{(d-c)^{m}}{4m!} \int_{0}^{1} s^{m-1} (m-2s) \frac{\partial^{m} f (a, cs + (1-s) d)}{\partial s^{m}} ds \\ + \frac{(d-c)^{m}}{4m!} \int_{0}^{1} s^{m-1} (m-2s) \frac{\partial^{m} f (b, cs + (1-s) d)}{\partial s^{m}} ds \\ - \frac{(d-c)^{m}}{2m! (b-a)} \int_{a}^{b} \int_{0}^{1} s^{m-1} (m-2s) \\ \times \frac{\partial^{m} f (x, cs + (1-s) d)}{\partial s^{m}} ds dx - \frac{(d-c)^{m}}{2m!} \\ \times \sum_{k=2}^{n-1} \frac{(k-1) (b-a)^{k}}{2(k+1)!} \int_{0}^{1} s^{m-1} (m-2s) \frac{\partial^{k+m} f (a, cs + (1-s) d)}{\partial x^{k} \partial s^{m}} ds.$$

Now repeated application of Lemma 2.1 with respect to the second argument yields:

$$(2.4) \quad \frac{(d-c)^m}{4m!} \int_0^1 s^{m-1} (m-2s) \frac{\partial^m f(a,cs+(1-s)d)}{\partial s^m} ds$$
$$= \frac{f(a,c)+f(a,d)}{4} - \frac{1}{2(d-c)} \int_c^d f(a,y) \, dy - \frac{1}{2} \sum_{l=2}^{m-1} \frac{(k-1)(d-c)^l}{2(l+1)!} \frac{\partial^l f(a,c)}{\partial y^l}.$$

$$(2.5) \quad \frac{(d-c)^m}{4m!} \int_0^1 s^{m-1} (m-2s) \frac{\partial^m f(b,cs+(1-s)d)}{\partial s^m} ds$$
$$= \frac{f(b,c)+f(b,d)}{4} - \frac{1}{2(d-c)} \int_c^d f(b,y) \, dy - \frac{1}{2} \sum_{l=2}^{m-1} \frac{(l-1)(d-c)^l}{2(l+1)!} \frac{\partial^l f(b,c)}{\partial y^l}.$$

$$(2.6) \quad \frac{(d-c)^m}{2m! (b-a)} \int_a^b \int_0^1 s^{m-1} (m-2s) \frac{\partial^m f(x, cs+(1-s) d)}{\partial s^m} ds dx$$
$$= \frac{1}{2 (b-a)} \int_a^b f(x, c) dx + \frac{1}{2 (b-a)} \int_a^b f(x, d) dx$$
$$- \frac{1}{(b-a) (d-c)} \int_a^b \int_c^d f(x, y) dy dx$$
$$- \frac{1}{b-a} \sum_{l=2}^{m-1} \frac{(l-1) (d-c)^l}{2 (l+1)!} \int_a^b \frac{\partial^l f(x, c)}{\partial y^l} dx,$$

and

$$(2.7) \quad \frac{(d-c)^m}{2m!} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{2(k+1)!} \\ \times \int_0^1 s^{m-1} (m-2s) \frac{\partial^{k+m} f(a,cs+(1-s)d)}{\partial x^k \partial s^m} ds \\ = \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{2(k+1)!} \frac{\partial^k f(a,c)}{\partial x^k} \\ + \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{2(k+1)!} \frac{\partial^k f(a,d)}{\partial x^k} \\ - \frac{1}{d-c} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{2(k+1)!} \int_c^d \frac{\partial^k f(a,y)}{\partial x^k} dy \\ - \sum_{k=2}^{n-1} \sum_{l=2}^{m-1} \frac{(k-1)(l-1)}{4(k+1)!} \frac{(b-a)^k(d-c)^l}{(l+1)!} \frac{\partial^{k+l} f(a,c)}{\partial x^{k+l}}.$$

Use (2.4)-(2.7) in (2.3) to get (2.1). This completes the proof of the lemma. \Box

Theorem 2.1. Let $f : \Delta \to \mathbb{R}$ a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial t^n \partial s^m}$ exists on Δ° and $\frac{\partial^{m+n}f}{\partial t^n \partial s^m} \in L(\Delta)$. If $\left|\frac{\partial^{n+m}f}{\partial t^n \partial s^m}\right|$ is convex on the co-ordinates on Δ , for $m, n \in \mathbb{N}$, $m, n \ge 2$, then

$$(2.8) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(b-a)^{n} (d-c)^{m}}{4 (n+2)! (m+2)!} \left[(n^{2}-2) \left\{ (m^{2}-2) B_{(n,m)} + mC_{(n,m)} \right\} + n \left\{ (m^{2}-2) D_{(n,m)} + mE_{(n,m)} \right\} \right].$$

Proof. Suppose $m, n \ge 2$. By Lemma 2.2, we have:

$$(2.9) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \\ \times \left| \frac{\partial^{n+m} f(ta + (1-t)b, cs + (1-s)d)}{\partial t^{n} \partial s^{m}} \right| dt ds$$

By convexity of $\left|\frac{\partial^{m+n}f}{\partial t^n\partial s^m}\right|$ on the co-ordinates on Δ

$$(2.10) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \left[\left| \frac{\partial^{n+m} f(a,c)}{\partial t^{n} \partial s^{m}} \right| \int_{0}^{1} \int_{0}^{1} t^{n} s^{m} (n-2t) (m-2s) \, ds \, dt \\ + \left| \frac{\partial^{n+m} f(a,d)}{\partial t^{n} \partial s^{m}} \right| \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (1-s) (n-2t) (m-2s) \, ds \, dt \\ + \left| \frac{\partial^{n+m} f(b,c)}{\partial t^{n} \partial s^{m}} \right| \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m} (1-t) (n-2t) (m-2s) \, ds \, dt \\ + \left| \frac{\partial^{n+m} f(b,d)}{\partial t^{n} \partial s^{m}} \right| \int_{0}^{1} \int_{0}^{1} (t^{n-1} - t^{n}) (n-2t) \left(s^{m-1} - s^{m} \right) (m-2s) \, ds \, dt \end{bmatrix}$$

$$= \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \left[\frac{(n^{2}-2) (m^{2}-2)}{(n+1) (n+2) (m+1) (m+2)} \left| \frac{\partial^{n+m} f(a,c)}{\partial t^{n} \partial s^{m}} \right| \right. \\ \left. + \frac{(n^{2}-2) m}{(n+1) (n+2) (m+1) (m+2)} \left| \frac{\partial^{n+m} f(a,d)}{\partial t^{n} \partial s^{m}} \right| \right. \\ \left. + \frac{n (m^{2}-2)}{(n+1) (n+2) (m+1) (m+2)} \left| \frac{\partial^{n+m} f(b,c)}{\partial t^{n} \partial s^{m}} \right| \right. \\ \left. + \frac{mn}{(n+1) (n+2) (m+1) (m+2)} \left| \frac{\partial^{n+m} f(b,d)}{\partial t^{n} \partial s^{m}} \right| \right].$$

This completes the proof of the theorem. \Box

Theorem 2.2. Let $f : \Delta \to \mathbb{R}$ a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial t^n \partial s^m}$ exists on Δ° and $\frac{\partial^{m+n}f}{\partial t^n \partial s^m} \in L(\Delta)$. If $\left|\frac{\partial^{n+m}f}{\partial t^n \partial s^m}\right|^q$, $q \ge 1$, is convex on the co-ordinates on Δ , for $m, n \in \mathbb{N}$, $m, n \ge 2$, then

$$(2.11) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(b-a)^{n} (d-c)^{m} (n-1)^{1-1/q} (m-1)^{1-1/q}}{4 (n+1)! (m+1)! (n+2)^{1/q} (m+2)^{1/q}} \\ \times \left[(m^{2}-2) \left\{ (n^{2}-2) B_{(n,m)}^{q} + n D_{(n,m)}^{q} \right\} \right] \\ + m \left\{ (n^{2}-2) C_{(n,m)}^{q} + n E_{(n,m)}^{q} \right\} \right]^{\frac{1}{q}}.$$

Proof. Suppose $m, n \ge 2$. By Lemma 2.2 and the power mean inequality, we have

$$(2.12) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(b-a)^{n} (d-c)^{m}}{4n!m!} \left\{ \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \, ds \, dt \right\}^{1-1/q} \\ \times \left\{ \int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} (n-2t) (m-2s) \\ \times \left| \frac{\partial^{n+m} f(ta+(1-t)b, cs+(1-s)d)}{\partial t^{n} \partial s^{m}} \right|^{q} \, dt \, ds \right\}^{1/q}.$$

By the similar arguments used to obtain (2.8) and the fact

$$\int_{0}^{1} \int_{0}^{1} t^{n-1} s^{m-1} \left(n-2t \right) \left(m-2s \right) ds dt = \frac{\left(n-1 \right) \left(m-1 \right)}{\left(n+1 \right) \left(m+1 \right)},$$

we get (2.11). This completes the proof of the theorem. \Box

Theorem 2.3. Let $f : \Delta \to \mathbb{R}$, a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial t^n \partial s^m}$ exist on Δ° and $\frac{\partial^{m+n}f}{\partial t^n \partial s^m} \in L(\Delta)$. If $\left|\frac{\partial^{n+m}f}{\partial t^n \partial s^m}\right|^q$, $q \ge 1$, is convex on the co-ordinates on Δ , for $m, n \in \mathbb{N}$, $m, n \ge 1$, then

$$(2.13) \quad \left| \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) \, ds dt \right. \\ \left. - \frac{1}{(b-a)(d-c)} \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{k}\right] \left[1+(-1)^{l}\right]}{2^{k+l+2}} \right. \\ \left. \times \frac{(b-a)^{k+1} \left(d-c\right)^{l+1}}{(k+1)! \left(l+1\right)!} \frac{\partial^{k+l} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)}{\partial x^{k} \partial y^{l}} \right. \\ \left. + \frac{(-1)^{m+1}}{(d-c)m!} \sum_{k=0}^{n-1} \frac{\left[1+(-1)^{k}\right] (b-a)^{k}}{2^{k+1} \left(k+1\right)!} \int_{c}^{d} Q(s) \frac{\partial^{k+m} f\left(\frac{a+b}{2}, s\right)}{\partial x^{k} \partial s^{m}} ds \right. \\ \left. + \frac{(-1)^{n+1}}{(b-a)n!} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{l}\right] \left(d-c\right)^{l}}{2^{l+1} \left(l+1\right)!} \int_{a}^{b} P(t) \frac{\partial^{n+l} f\left(t, \frac{c+d}{2}\right)}{\partial t^{n} \partial y^{l}} dt \right| \\ \left. \leq \frac{\left(b-a\right)^{n} \left(d-c\right)^{m} \sqrt[q]{B_{(n,m)}^{q} + C_{(n,m)}^{q} + D_{(n,m)}^{q} + E_{(n,m)}^{q}}{2^{n+m+2/q} \left(n+1\right)! \left(m+1\right)!}, \right.$$

where

$$P(t) := \begin{cases} (t-a)^n, t \in [a, \frac{a+b}{2}] \\ (t-b)^n, t \in (\frac{a+b}{2}, b] \end{cases} \quad and \quad Q(s) := \begin{cases} (s-c)^m, s \in [c, \frac{c+d}{2}] \\ (s-d)^m, s \in (\frac{c+d}{2}, d]. \end{cases}$$

Proof. The proof follows directly from Theorem 1.2 by letting $x \mapsto \frac{a+b}{2}$ and $y \mapsto$

 $\frac{c+d}{2}$, to obtain

$$(2.14) \quad \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) \, ds dt - \frac{1}{(b-a)(d-c)} \\ \times \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{k}\right] \left[1+(-1)^{l}\right]}{2^{k+l+2}} \frac{(b-a)^{k+1} (d-c)^{l+1}}{(k+1)! (l+1)!} \frac{\partial^{k+l} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)}{\partial x^{k} \partial y^{l}} \\ + \frac{(-1)^{m+1}}{(d-c)m!} \sum_{k=0}^{n-1} \frac{\left[1+(-1)^{k}\right] (b-a)^{k}}{2^{k+1} (k+1)!} \int_{c}^{d} Q(s) \frac{\partial^{k+m} f\left(\frac{a+b}{2}, s\right)}{\partial x^{k} \partial s^{m}} ds \\ + \frac{(-1)^{n+1}}{(b-a)n!} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{l}\right] (d-c)^{l}}{2^{l+1} (l+1)!} \int_{a}^{b} P(t) \frac{\partial^{n+l} f\left(t, \frac{c+d}{2}\right)}{\partial t^{n} \partial y^{l}} dt \\ = \frac{(-1)^{m+n}}{(b-a) (d-c) m!n!} \int_{a}^{b} \int_{c}^{d} P(t)Q(s) \frac{\partial^{n+m} f\left(t, s\right)}{\partial t^{n} \partial s^{m}} ds dt$$

An argument parallel to that of Theorem 2.2 but with (2.14) in place of Lemma 2.2 gives the desired result. \Box

We now derive results comparable to Theorem 2.1 and Theorem 2.2 with a concavity property instead of convexity property.

Theorem 2.4. Let $f : \Delta \to \mathbb{R}$ a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial t^n \partial s^m}$ exists on Δ° and $\frac{\partial^{m+n}f}{\partial t^n \partial s^m} \in L(\Delta)$. If $\left|\frac{\partial^{n+m}f}{\partial t^n \partial s^m}\right|^q$, $q \ge 1$, is concave on the co-ordinates on Δ , for $m, n \in \mathbb{N}$, $m, n \ge 1$, then

$$(2.15) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A' \right| \\ \leq \frac{(n-1)(m-1)(b-a)^{n}(d-c)^{m}}{4(n+1)!(m+1)!} \\ \times \frac{\partial^{n+m} f\left(\frac{(n^{2}-2)a+nb}{(n-1)(n+2)}, \frac{(m^{2}-2)c+md}{(m-1)(m+2)}\right)}{\partial t^{n} \partial s^{m}}.$$

Proof. By the concavity of $\left|\frac{\partial^{n+m}f}{\partial t^n\partial s^m}\right|^q$ on the co-ordinates on Δ and the power mean

inequality, the following inequality holds:

$$\begin{split} \left| \frac{\partial^{n+m} f\left(\lambda x + (1-\lambda) y, v\right)}{\partial t^n \partial s^m} \right|^q \\ &\geq \lambda \left| \frac{\partial^{n+m} f\left(x, v\right)}{\partial t^n \partial s^m} \right|^q + (1-\lambda) \left| \frac{\partial^{n+m} f\left(y, v\right)}{\partial t^n \partial s^m} \right|^q \\ &\geq \left(\lambda \left| \frac{\partial^{n+m} f\left(x, v\right)}{\partial t^n \partial s^m} \right| + (1-\lambda) \left| \frac{\partial^{n+m} f\left(y, v\right)}{\partial t^n \partial s^m} \right| \right)^q, \end{split}$$

for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$ for some fixed $v \in [c, d]$. Similarly

$$\left|\frac{\partial^{n+m}f\left(u,\lambda z+(1-\lambda)w\right)}{\partial t^{n}\partial s^{m}}\right| \geq \lambda \left|\frac{\partial^{n+m}f\left(u,z\right)}{\partial t^{n}\partial s^{m}}\right| + (1-\lambda)\left|\frac{\partial^{n+m}f\left(u,w\right)}{\partial t^{n}\partial s^{m}}\right|,$$

for all $z, w \in [c, d]$ and $\lambda \in [0, 1]$ for some fixed $u \in [a, b]$, implying $\left| \frac{\partial^{n+m} f}{\partial t^n \partial s^m} \right|$ is concave on the co-ordinates on Δ .

$$\begin{aligned} &(2.16)\\ &\int_{0}^{1} s^{m-1} \left(m-2s\right) \left[\int_{0}^{1} t^{n-1} \left(n-2t\right) \left| \frac{\partial^{n+m} f\left(ta+\left(1-t\right)b, cs+\left(1-s\right)d\right)}{\partial t^{n} \partial s^{m}} \right| dt \right] ds \\ &\leq \int_{0}^{1} s^{m-1} \left(m-2s\right) \left[\left(\int_{0}^{1} t^{n-1} \left(n-2t\right) dt \right) \\ &\times \left| \frac{\partial^{n+m} f\left(\frac{\int_{0}^{1} t^{n-1} \left(n-2t\right) (ta+\left(1-t\right)b) dt}{\int_{0}^{1} t^{n-1} \left(n-2t\right) dt}, cs+\left(1-s\right)d \right)}{\partial t^{n} \partial s^{m}} \right| \right] ds \\ &= \frac{n-1}{n+1} \int_{0}^{1} s^{m-1} \left(m-2s\right) \left| \frac{\partial^{n+m} f\left(\frac{\left(n^{2}-2\right)a+nb}{\left(n-1\right)\left(n+2\right)}, cs+\left(1-s\right)d \right)}{\partial t^{n} \partial s^{m}} \right| ds \\ &\leq \frac{\left(n-1\right) \left(m-1\right)}{\left(n+1\right) \left(m+1\right)} \left| \frac{\partial^{n+m} f\left(\frac{\left(n^{2}-2\right)a+nb}{\left(n-1\right)\left(n+2\right)}, \frac{\left(n^{2}-2\right)c+md}{\left(n-1\right)\left(m+2\right)}}{\partial t^{n} \partial s^{m}} \right|. \end{aligned}$$

Application of lemma 2.2 and (2.16), we get (2.15). This completes the proof of theorem. \Box

Theorem 2.5. Let $f : \Delta \to \mathbb{R}$ a < b; c < d, be a continuous mapping such that $\frac{\partial^{m+n}f}{\partial t^n \partial s^m}$ exist on Δ° and $\frac{\partial^{m+n}f}{\partial t^n \partial s^m} \in L(\Delta)$. If $\left| \frac{\partial^{n+m}f}{\partial t^n \partial s^m} \right|^q$, $q \ge 1$, is concave on the

co-ordinates on Δ , for $m, n \in \mathbb{N}$, $m, n \ge 1$, then

$$(2.17) \quad \left| \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) \, ds dt - \frac{1}{(b-a)(d-c)} \right. \\ \times \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{k}\right] \left[1+(-1)^{l}\right]}{(k+1)! \, (l+1)!} \frac{(b-a)^{k+1} \left(d-c\right)^{l+1}}{2^{k+l+2}} \frac{\partial^{k+l} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)}{\partial x^{k} \partial y^{l}} \\ + \frac{(-1)^{m+1}}{(d-c)m!} \sum_{k=0}^{n-1} \frac{\left[1+(-1)^{k}\right] (b-a)^{k}}{2^{k+1} (k+1)!} \int_{c}^{d} Q(s) \frac{\partial^{k+m} f\left(\frac{a+b}{2}, s\right)}{\partial x^{k} \partial s^{m}} ds \\ + \frac{(-1)^{n+1}}{(b-a)n!} \sum_{l=0}^{m-1} \frac{\left[1+(-1)^{l}\right] (d-c)^{l}}{2^{l+1} (l+1)!} \int_{a}^{b} P(t) \frac{\partial^{n+l} f\left(t, \frac{c+d}{2}\right)}{\partial t^{n} \partial y^{l}} dt | \\ \leq \frac{(b-a)^{n} \left(d-c\right)^{m}}{2^{n+m} \left(n+1\right)! \left(m+1\right)!} \left| \frac{\partial^{n+m} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)}{\partial x^{n} \partial y^{m}} \right|.$$

Proof. Similar to proof of Theorem 2.4 by using (2.14). Therefore we omit the details for reader. \Box

Remark 2.1. On letting m = n = 2 in (2.8), (2.11) and (2.13) respectively yield:

$$(2.18) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ \leq \frac{(b-a)^{2} (d-c)^{2}}{144 \times 4} \{ B_{(2,2)} + C_{(2,2)} + D_{(2,2)} + E_{(2,2)} \}.$$

$$(2.19) \quad \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ \leq \frac{(b-a)^{2} (d-c)^{2}}{9 \times 2^{4+2/q}} \sqrt[q]{B_{(2,2)}^{q} + C_{(2,2)}^{q} + D_{(2,2)}^{q} + E_{(2,2)}^{q}}$$

$$(2.20) \quad \left| \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) \, ds dt + f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) - \frac{1}{2(d-c)} \int_{c}^{d} f\left(\frac{a+b}{2}, s\right) \, ds - \frac{1}{2(b-a)} \int_{a}^{b} f\left(t, \frac{c+d}{2}\right) \, dt \right| \\ \leq \frac{(b-a)^{2} \left(d-c\right)^{2}}{9 \times 2^{6+2/q}} \sqrt[q]{B_{(2,2)}^{q} + C_{(2,2)}^{q} + D_{(2,2)}^{q} + E_{(2,2)}^{q}}.$$

It may be noted that the bounds in (2.18), (2.19) and (2.20) are sharper than the bounds of the inequalities proved in Theorem 1.3, Theorem 1.5 and Theorem 1.6 respectively.

3. Acknowledgment

The authors thank to the anonymous referee for his/her very useful and constructive comments which helped the authors to improve the final version of the paper.

REFERENCES

- M. ALOMARI AND M. DARUS: Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sciences, 3 (32) (2008), 1557-1567.
- M. ALOMARI, M. DARUS AND S. S. DRAGOMIR: Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA Research Report Collection, 12 (suppl. 14) (2009).
- S. S. DRAGOMIR AND R. P. AGARWAL: Two inequalities for differentiable mappings and applications to special means of real numbers and to Trapezoidal formula, Appl. Math. Lett. 11(5) (1998) 91-95.
- S.S. DRAGOMIR: On Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 4 (2001), 775-788.
- 5. S.S. DRAGOMIR AND C.E.M. PEARCE: Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Online: [http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html].
- D. Y. HWANG, K. L. TSENG AND G. S. YANG: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese Journal of Mathematics, 11 (2007), 63-73.
- D. Y. HWANG: Some inequalities for n-times differentiable mappings and applications, Kyungpook, Math. J. 43(2003), 335-343.
- 8. G. HANNA: Cubature rule from a generalized Taylor perspective, PhD Thesis.
- 9. G. HANNA, S. S. DRAGOMIR AND P. CERONE: A general Ostrowski type inequality for double integrals, Tamkang J. Math. Volume 33, Issue 4, 2002.
- U. S. KIRMACI: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004) 137-146.
- 11. M. A. LATIF AND M. ALOMARI: Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4(47), 2009, 2327-2338.
- 12. M. A. LATIF AND M. ALOMARI: On the Hadamard-type inequalities for h-convex functions on the co-ordinetes, Int. J. of Math. Analysis, 3(33), 2009, 1645-1656.
- M. A. LATIF AND S. S. DRAGOMIR: On Some New Inequalities for Differentiable Co-ordinated Convex Functions, Journal of Inequalities and Applications 2012, 2012:28 doi:10.1186/1029-242X-2012-28.
- M.E. ÖZDEMIR, E. SET AND M.Z. SARIKAYA: New some Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, RGMIA, Res. Rep. Coll., 13 (2010), Supplement, Article 4.

- 15. M. E. ÖZDEMIR, H. KAVURMACI, A. O. AKDEMIR AND M. AVCI: Inequalities for convex and s-convex functions on $\Delta = [a, b] \times [c, d]$, Journal of Inequalities and Applications 2012:20, doi:10.1186/1029-242X-2012-20.
- M. E. ÖZDEMIR, M. A. LATIF AND A. O. AKDEMIR: On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, Journal of Inequalities and Applications, 2012:21, doi:10.1186/1029-242X-2012-21.
- 17. M. E. ÖZDEMIR, A. O. AKDEMIR AND M. TUNC: On the Hadamard-type inequalities for co-ordinated convex functions, arXiv:1203.4327v1.
- C. M. E. PEARCE AND J. E. PEČARIĆ: Inequalities for differentiable mappings with applications to special means and quadrature formula, Appl. Math. Lett. 13 (2000) 51-55.
- 19. J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG: Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991.
- 20. M.Z. SARIKAYA, E. SET, M.E. ÖZDEMIR AND S. S. DRAGOMIR: New some Hadamard's type inequalities for co-ordinated convex functions, arXiv:1005.0700v1 [math.CA].

Muhammad Amer Latif College of Science Department of Mathematics University of Hail Hail 2440, Saudi Arabia m_amer_latif@hotmail.com

Sabir Hussain Department of Mathematics University of Engineering and Technology Lahore, Pakistan sabirhus@gmail.com

336