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SOME PROPERTIES OF A SUBCLASS OF ANALYTIC
FUNCTIONS DEFINED BY A GENERALIZED
SRIVASTAVA-ATTIYA OPERATOR *
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Abstract. Making use of an integral operator which is defined by means of a general
Hurwitz—Lerch zeta function, we give some properties of the class Q:%(9,58,7). It is
worth noting that the usage of Hurwitz—Lerch zeta function in Geometric Function
Theory was first made by Srivastava and Attiya in 2007. Indeed, in this present paper,
we obtain integral means inequalities, modified Hadamard products and establish some
results concerning the partial sums for functions f belonging to the class Q3%(3, 5,7).
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1. Introduction

Let A denote the class of all analytic functions in the open unit disk U= {z € C :
|z] < 1}, of the form

(1.1) f) =2+ az*, (z€D).
k=2

With a view to define the Srivastava—Attiya operator, we recall here a general

Hurwitz—Lerch-Zeta function, which is defined in ([4],[6]) by the following series:

k

D(z,s8,b) = Z (kj—ib)s’

k=0

where (s € C,be C—Z;) when (|z|<1),and (Re(b) >1) when (|]z]=1).
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By making use of the following normalized function:
Gsp(z) = (1+b)°[P(z,s,b) — b7
— +Z<k+b> 2 (2 € ).

Srivastava—Attiya [4] introduced operator Ly : A — A by the following:
1+0b &
—Et Z (k n b) e

The operator L, is now well-known in the literature as the Srivastava—Attiya
operator. Various basic properties of L, ; are systematically investigated in ([11],

[12]).
Owa and Srivastava [2] introduced the operator Q“ : A — A, which is known as an

extension of fractional derivative and fractional integral as follows:

re—a)
k+lfo¢) aiz (o #£2,3,4,--+),

Qf(z) =T(2 - )" DL f(2) = 2+ Z
where D¢ f(z) the fractional derivative of f of order « (see [3]).

Let:

D*(z,5,b) = Gsp-1(2)
oo bs L
Z+kz=:27(k+b—1)sakz .

Using the technique of Owa and Srivastava [2], we introduced the generalized inte-

gral operator (Img, f) : A — A by the following:

Im$, f(z) = T(2—a)z*DId*(z,5,b), (a#2,3,4,---)
— S D(k+ 12— a) b o
= Z+;;2 F(k;—|—1—a) (k_1+b) agz", (ZEU),

where s € C,0€e C—-Zy,and 0 < o < 1.

It can also be shown that this operator is the generalized Srivastava— Attiya operator

by taking f(z) = z + Z %{(2@&)



Some Properties of a Subclass of Analytic Functions... 311
Note that : Im87b f(z) = f(2).
Special cases of this operator include:
o Img,, f(2) = Qf(2) is the Owa and Srivastava operator [2].
. Imgb 41 f(2) = Ly is the Srivastava and Attiya integral operator [4].
° Img,2 f(z) =1I° f(z) is the Jung Kim Srivastava integral operator [5].

Also, the authors [1] have recently introduced a new subclass of analytic functions
with negative coefficients, and stated the following:

For (0<§<1),(0<pB<1)and (} <y<1)if§=0,and (1 <~ < 5)if 6 #0,
we let Q7 (6, 8,7) be the subclass of A consisting of functions of the form (1.1) and
satisfying the inequality

(Im%, f(2)) — 1
2y((Imgy £(2)) = 6) = ((Am3p f(2))" = 1)

< B.

We further let

(12) Qi%(&ﬁﬁ) = Q?,b((sa 517) n Ta

where

T := {fGA:f(z):z—Zakzk, where ap, >0 for all kzZ},
k=2

is a subclass of A introduced and studied by Silverman [9].

In [1], it was also shown that the sufficient condition for a function f to be in the
class Q3%(0,8,7)-

Theorem 1.1. Let the function f be defined by (1.2). Then f € Q:%(0,8,7) if
and only if

Nt I(k+1DI'(2—a) b N
09 Skt o) (M) | (=) [l <200

The result is sharp.
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2. Integral Means Inequalities

In order to prove the results regarding integral means inequalities, we need the
concept of subordination between analytic functions and also the following lemma.

Lemma 2.1. [§]
If f, g are analytic in U,such that f < g, then

27 2
[ @pd< [ lg@ras, @ =ret0<r<y>0),
0 0
Theorem 2.2. Let f € Q:9(9,5,7). Then for z = re?, 0 < r < 1, we have
2m ) 2m )
[ iseetpas < [ e, 0 <r <1y 0)
0 0
where the function fo(z) defined by

2B8y(1 = 9) 2
21+ 827 - 1) ("R ()"

(2.1) folz) = = -

Proof: Let f € Q7%(d, 8,7) and satisfying (1.3), and fa(2) be given by (2.1). We
must show that
y

2m o 2 ) 1—
/ 1> a2kt do < / 1 BV(F@)F(Z N -
0 h—2 0 21+ B(2y - 1)] (W) ‘(1+b)b
By Lemma 2.1, it suffices to show that
1-— Zakzk’l <1- 25%;(3_);?27 ) ; z.
= 2[1+ B2y —1)] (m) ‘(m)s
Setting
- 26y(1 - 9)
k=1 _
(2.2) 1= a2t =1- ETTC=SAN PRy w(z).
= 2[1+8(2y—-1)] (W) ‘(m)
From (2.2), we obtain
2 1-6
|<|Z|Z o1 =9) lax| < |2] < 1.

k —
k=2 k[1+ B(2y —1)] (F(r?;cﬁli(fa)a)) ’(kfﬁb)s‘

This completes the proof of the theorem.
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3. Modified Hadamard Products

Let the functions f;(z)(j = 1;2) be defined by
(3.1) filz) =2z — Zak,jzk, for all (ax; > 0,z€0U).

The modified Hadamard product of fi(z) and f2(z) is defined by

(fr = f2)(= —Z_Zaklak2z
Using the techniques of Schild and Silverman [7], we prove the following results.

Theorem 3.1. For functions f;(2)(j = 1;2) deﬁned by (3.1), let f1(z) € Q3%(3,8,7),
f2(2) € Q75(8, 1,7)- Then (f1 f2)(2) € §5(8,Q3%(5, 8, 1,7)), where

50.Q15(6.6.7) =
(1 —6)Bu .
21— 6)5p — 45721 — 8) +2 (ME2 ) | () | (0 + w2y = 1)+ B2y~ 1)

Proof: To prove the theorem, we need to find the largest £ = 3% (, Q:%(é, By 1,7))
such that

co ki [1+€(2y — 1)] (e | (0

ap1ak2 <1,

— 26v(1—-6)
since
o _ D(k+1)I(2—a) s
Z k[1+ B2y —1)] ( F(kl1£o¢) ) ‘(kfier) <1
ag1 > 1,
— 26v(1 - 9)
and
o B C(k+1)T(2—a) s
k1 + p(2y —1)] ( (F(k+1fa)a ) ‘(kfﬁb)
Z ag2 < 1.

= 2pry(1 = 0)

By the Cauchy-Schwarz inequality, we have;

agak2 < 1.

> b () (=) | \/(1 B2y 1)) (1+ 2y — 1)
k=2 27(1-9) 8 L
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Thus, it suffices to show that

\/ (1+ B2y —1)) (1 + p(2y — 1))

¢ ap10k2 < 3 p g, 10k,2-
Note that
2y(1 —9) B 0
TR .
WlOh2 = (r<k+1>r<2—a>) ’( b ) (1+52y = 1)) (L +pu(2y = 1))
T(htl—a) k=140

Consequently, we need only to prove that

k—1+b

27(1 —9) B 0 <
k (F(’;ﬁ{g—)a)) ‘( b ) (1+8(2y-1)) A+ pu2y-1)

(1+&(2y—1)) B I ’

or, equivalently that

¢ \/ (1+B(2y — 1) (1+ p(2y - 1))

< 2v(1—0)Bp
29(1 = )Bp — 48y2(1 = 8) + k (D) | ((4) | (1 + 2y = 1)1+ B2y = 1))

is an increasing function of k, letting & = 2, we obtain

27(1—4)Bu
29(1 = 8)B — 48uy* (1 = 8) + 2 ("G ) | (25) | (4 + n2y - )1 + B2y — 1)

P(2) =
which completes the proof. O

Theorem 3.2. For functions f;(z)(j = 1;2) defined by (3.1), be in the class
:5(6,8,7) Then the function h(z) = z — Y772, (ai’l +ai,2> 2F. belongs to the
class ©35(9,Q3%(0, B,7), where

46%y(1 - 6)

P o e Bt — ] () | (e |- 991 0)
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Proof: By virtue of Theorem 1.1, we obtain

2

(k+1)(2—a °
) i kE[1+p(2y—1)] ( (r(kllga) )) ’(’“*?“’) 2 <1
. 2 26~y(1 — 6) =t
and
s152
(k+1)M(2—a
53 i k14 B(2y —1)] ( (F(k-i)-l(—a) )) ’(k—?“}) 2 <1
: 2 26~(1 - 4) e

It follows from (3.2) and(3.3).

2

D(k+1)I'(2—a s
= k[1+,8(27—1)]< <F(k+>1(_a) ))‘(k_lﬁb) P
i 26~(1 - 4) ajy +ag) < 1.

Therefore,we need to find the largest » = ¢3%(0, Q%% (4, 5,7)

Rl + 2y - D) (M) | (t)

2¢7(1 = 9)
(a2
D(k+1)(2—a
- 1 k[1+B(2y—1)] ( (I‘(k--i)-l(—a) )) ‘(k—lﬁb)
=2 26v(1 - 6) ’
that is,
462~(1 =6
o< Slt) = x(b)

k(14 B2y - 1)) (F(ﬁﬁlﬁ(f;)a)) ’(k,hb)s‘ —4p2y(1-9)

is an increasing function of k, letting k = 2, we obtain

4p%y(1 - 9)
21+ B(2y - 1)) (FEEE2) | (25) | - 48221 - 8)

x(2) =

which completes the proof. [
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4. Partial sums

By following the earlier work by Silverman[10] on partial sums of analytic functions,
we study the ratio of a function of the form (1.2) to its sequence of partial sums of
the form f1(2) =z, fu(2) = 2+ Y p_oarz®, (2 € D).

We will determine sharp lower bounds for
ERFEI RS Fey B Ve SRR bre) s

Theorem 4.1. Let f € Q;5(3,8,7) and satisfying (1.3), then

(4.1) Re{f(z)}zl— 1, (neN, zel),

fn(z) Cn+1

and

(4.2) Re{

where ¢, be defined as

nll+ B2y - 1)) (NGRS | ()
26(1-9) '

Cp =

The results are sharp for every k with the function given by

(4.3) f(z)=2z— an, (z€U,n eN).
Cn+1

Proof: In order to prove (4.1), it suffices to show that

. n+1 fn(Z) Cn+1 1+ka;2akzk_1
_ 1tw(z)

o 1—w(z)’
Then

(2) = Crt1 Yiomns1 W2
2423 0 papzZP T 40 enagzR T
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Notice that w(0) = 0 and

) i 5l
= 7 — 5 .
2-2 Zk:2 |ak|zk t— Zk;:n-l,-] Cnt1]ak]

|w(z)]

Now |w(z)| < 1 if and only if

oo n
(4.5) Cnp1 Y lanl+ D lax] < 1.
k=n-+1 k=2

It suffices to show that the LHS of (4.5) is bounded above by the condition (1.3)

which is equivalent to

> (e = ensr) lagl + > (ex — 1) |ax| > 0.
k=n+1 k=2

To see that the function given by (4.3) gives the sharp result, we observe that for

i
n

z=remn, .
JZ;((?) =1+ Ci+1 —1- Cn1+1’ when (z —17).

To prove the second part of this theorem, we write

(4.6)

(14 enpi) {fn(z) _ Cnyl } IR apz" 0 L a2t
" f(z) e t1 1+ 57 a2kt
1+ w(z)

1—w(z)’
we find that

_ Dheppr (LF ) gzt
2423 0 papZP T 4300 (T4 epg) lagzh =t

Now |w(z)| <1 if and only if

(1+cnt1) Z |ak|+2|ak| <L

k=n-+1 k=2

The equality holds in (4.2) for the extremal function f given by (4.3).

This completes the proof. [
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Theorem 4.2. Let f € Q:5(9,8,7) and satisfying (1.3), then

f'(z) n+1
(4.7 Re{f&(z)} >1- P~ (z €U,
and
;L(Z) Cn+1
(48) Re{f’(z)} = n+1l+cpir

The results are sharp with the function given by (4.3).

Proof: To prove the result (4.7), define the function w(z) by

f'z) . n+l 1+ w(z)
e e Rl B

Then

— (7.::—11 Zzozn-&-l ka‘k
242, kagzht + ZZO:”H Cn";’ll k
Now |w(z)| <1 if and only if

w(z)

Cnit o] n
(n+1) > klakl+ > klax| < 1.

k=n-+1 k=2

(From the condition (1.3), it suffices to show that

oo n
C.
<n”+“1> > klar +> klak| < exlak|.
k=2

k=n+1

This is equivalent to showing that

i > (n+ 1D)ek — kepta
Y ek = k)lar] + > ——l lax| > 0.
k=2 k=n+1

To prove the second part of this theorem, we write

’U}(Z) = (n + 1 + Cn+1) {‘;’rl:((j)) - (TL + iﬂilcn'i‘l }

(145 it kapzF1

1+ >0 o kagzk—1 ’
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yields
_ 14 &ty ok
‘Mz) 1' < L ) D M| <1, (zeU),
w(z) +1 2_2Zk:2k|ak| -1+ n+1)2k:n+1 klay|

if and only if

Cn o0 n
200+ —5) 37 klag] <22 Klal.
n+1
k=n+1 k=2

The bound in (4.8) is sharp for all n € N with the extremal function (4.3).

This completes the proof of theorem. []

10.

11.
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