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M. Alamgir Khan, Sumitra and Sunny Chauhan

Abstract. The aim of this paper is to do probable modifications in the definition of
generalized Menger PM-space introduced by Chugh, Kumar and Vats [Common fixed
point theorems in generalized Menger PM-space. Math. Sci. Res. J. 7(2) (2003),
41–48] and prove some common fixed point theorems for weakly commuting mappings.

1. Introduction

There have been a number of generalizations of metric spaces. One of such
generalizations is generalized metric space (or D-metric space) initiated by Dhage
[3] in 1992. Dealing with D-metric space, Ahmad, Ashraf and Rhoades [1], Dhage
[3, 4], Dhage, Pathan and Rhoades [5], Rhoades [12] and others made a significant
contribution in fixed point theory of D-metric space.

Unfortunately, Dhage’s theory of D-metric space was fundamentally flawed and
almost all theorems in D-metric space are not valid (see [9, 10, 11]). Hence the need
aroused to address these flaws inD-metric space. Therefore, several mathematicians
started work in this direction. In 2004, Mustafa and Sims [7] first studied the
theory of D-metric spaces and came up with a new generalization of metric spaces,
which they called a G-metric space. Afterwards, in 2006, an attempt to remove
the fundamental flaws of D-metric space, Sedghi and Shobe [13, 14] introduced the
notion of D∗-metric space by modifying the definition of D-metric space.

As fixed point theory is the hottest area of research these days, therefore, when
Dhage introduced the concept of D-metric space, a spate of papers came on it and
several other structures were defined in framework of D-metric spaces. One such
structure was generalized probabilistic metric space (briefly, GPM-space) studied
by Chugh, Kumar and Vats [2]. Since the theory of GPM-spaces is mainly based on
D-metric space, so the need arises to do probable modifications in its definition and
other concepts. We give some examples to support newly defined definitions. Some
common fixed point theorems for weakly commuting mappings are also obtained.
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2. Preliminaries

Definition 2.1. A t-norm is a function △ : [0, 1] × [0, 1] × [0, 1] → [0, 1] which is
associative, commutative, non-decreasing in each coordinate and △(a, 1, 1) = a for
all a ∈ [0, 1].

Definition 2.2. LetX be any non-empty set andD be the set of all left continuous
distribution functions. An ordered pair (X,F ) is said to be a GPM-space if F is a
mapping from X ×X ×X → D, where the value of F at (x, y, z) ∈ X ×X ×X is
represented by Fx,y,z or F (x, y, z), for all x, y, z, a ∈ X and t1, t2, t3 ∈ R+ such that

1. F (x, y, z; 0) = 0;

2. For distinct x, y ∈ X, there exists a point z ∈ X such that F (x, y, z; t) < 1;

3. F (x, y, z; t) = 1 ⇔ x = y = z;

4. F (x, y, z; t) = F (p{x, y, z}; t), where p is a permutation function.

5. If F (x, y, a; t1) = F (x, a, z; t2) = F (a, y, z; t3) = 1 then F (x, y, z; (t1 + t2 +
t3)) = 1.

Definition 2.3. A generalized Menger PM-space (briefly GMPM-space) is an or-
dered triplet (X,F,△), where (X,F ) is a GPM-space and △ is a t-norm satisfying
the following condition:

(6) F (x, y, z; (t1 + t2 + t3)) ≥ △ (F (x, y, a; t1), F (x, a, z; t2), F (a, y, z; t3)),

for all x, y, z, a ∈ X and t1, t2, t3 ∈ R+.

Using the concept of G-metric space introduced by Mustfa and Sims [8], D∗-
metric space and M -fuzzy metric space introduced by Sedghi and Shobe [13, 14],
we suggest some modifications in the definition of GMPM-space studied by Chugh,
Kumar and Vats [2] and call it G∗MPM-space.

Definition 2.4. A G∗MPM-space is an ordered triplet (X,F,△), where X is a
non-empty set, F is a mapping from X × X × X → D and △ is a t-norm. The
function F (x, y, z) is assumed to satisfy the properties (1)-(4) of Definition 2.2 and
the following conditions:

(5)∗ If F (x, y, a; t1) = 1 = F (a, z, z; t2) then, F (x, y, z; t1 + t2) = 1.

(6)∗ F (x, y, z; t1 + t2) ≥ △ [F (x, y, a; t1), F (a, z, z; t2)].

Remark 2.1. Let (X,F,△) be a G∗MPM-space. Now we prove that for every t > 0,
F (x, x, y; t) = F (x, y, y; t).
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For each ϵ > 0 by triangular inequality, we have

F (x, x, y; ϵ+ t) ≥ △ (F (x, x, x; ϵ), F (x, y, y; t))(2.1)

= △ (1, F (x, y, y; t))

= F (x, y, y; t).

F (y, y, x; ϵ+ t) ≥ △ (F (y, y, y; ϵ), F (y, x, x; t))(2.2)

= △ (1, F (y, x, x; t))

= F (y, x, x; t).

Taking limit as ϵ → 0 in inequalities (2.1)-(2.2), we get

F (x, x, y; t) = F (x, y, y; t).

Let (X,F,△) be a G∗MPM-space. For t > 0, the open ball BF (x, r; t) with
center x ∈ X and 0 < r < 1 is defined by

BF (x, r; t) = {y ∈ X;F (x, y, y; t) > 1− r}.

A subset A of X is called open set if for each x ∈ X, there exist t > 0 and
0 < r < 1 such that BF (x, r; t) ⊆ A. A sequence {xn} in X converges to a
point x if and only if F (x, x, xn; t) → 1 as n → ∞, for each t > 0. It is called a
Cauchy sequence if for each 0 < ϵ < 1 and t > 0, there exists n0 ∈ N such that
F (xn, xn, xm; t) → 1− ϵ, for each n,m ≥ n0

Example 2.1. Let X = [0, 1] and D∗ be the D∗ metric on X defined as

D∗(x, y, z) =| x− y | + | y − z | + | z − x |,

and △(a, b, c) = min{a, b, c}. Define F (x, y, z; t) = t
t+D∗(x,y,z) , for all x, y, z ∈ X and

t > 0. Then (X,F,△) is a G∗MPM-space. As conditions (1)-(4) of Definition 2.2 are
obvious.

Let us verify the conditions (5)∗ and (6)∗.

(5)∗ Let F (x, y, a; t1) = 1 = F (a, z, z; t2). We claim that F (x, y, z; t1 + t2) = 1.

Now F (x, y, a; t1) = 1 ⇔ D∗(x, y, a) = 0 ⇔ x = y = a and F (a, z, z; t2) = 1 ⇔
D∗(a, z, z) = 0 ⇔ z = a. Thus we get x = y = a = z ⇒ F (x, y, z; t1 + t2) = 1.

Similarly condition (6)∗ can be easily verified, hence the details are avoided.

Example 2.2. Let X = [0, 1] and D∗ be the D∗ metric on X defined as

D∗(x, y, z) =| x− y | + | y − z | + | z − x |,

and △(a, b, c) = min{a, b, c}. Define F (x, y, z; t) = H (t−D∗(x, y, z)), for all x, y, z ∈
X and t > 0, where H is the distribution function defined by
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H(t) =

{
0, If t ≤ 0;
1, If t > 0.

Then (X,F,△) is a G∗MPM-space.

Lemma 2.1. Let (X,F,△) be a GMPM-space. If we define F : X3 × (0,∞) →
[0, 1] by F (x, y, z; t) = △[F (x, y; t), F (y, z; t), F (z, x; t)] for every x, y, z ∈ X then
(X,F,△) is a G∗MPM-space.

Proof. 1. It is easy to see that for every x, y, z ∈ X, t > 0, F (x, y, z; t) > 0.

2. F (x, y, z; t) = F (x, y; t) = F (y, z; t) = F (z, x; t) = 1 ⇔ x = y = z.

3. F (x, y, z; t) = F (p{x, y, z}; t), where p is a permutation function.

4. Let F (x, y, a; t) = 1 = F (a, z, z; s).

Now

F (x, y, a; t) = △[F (x, y; t), F (y, a; t), F (a, x; t)] = 1 ⇔ x = y = a,(2.3)

and

F (a, z, z; s) = △[F (a, z; s), F (z, z; s), F (z, a; s)] = 1 ⇔ z = a.(2.4)

From conditions (2.3) and (2.4), we get x = y = z = a. Thus F (x, y, z; t+ s) = 1.

Let us check Menger’s inequality

F (x, y, z; t+ s) ≥ △[F (x, y, a; t), F (a, z, z; s)].

Now

F (x, y, z; t+ s) = △[F (x, y; t+ s), F (y, z; t+ s), F (z, x; t+ s)]

≥ △[F (x, y; t), F (y, a; t), F (a, z; s), F (z, a; s), F (a, x; t)]

= △[F (x, y, a; t), F (a, z; s), F (z, a; s), F (z, z; s)]

= △[F (x, y, a; t), F (a, z, z; s)].

Definition 2.5. Let (X,F,△) be a G∗MPM-space. If we define F (x, y, z; t) =
t

t+D∗(x,y,z) , where D
∗(x, y, z) = d(x, y)+d(y, z)+d(z, x) then F (x, y, z; t) is of first

type.

On the other hand, if we define F (x, y; t) = t
t+d(x,y) then F (x, y, z; t) = △[F (x, y; t),

F (y, z; t), F (z, x; t)] is of second type.

Remark 2.2. Let (X,F,△) be a G∗MPM-space, where F is of second type. Then a
sequence {xn} in X converges to a point x ⇔ F (x, x, xn; t) → 1 or ⇔ F (x, xn; t) → 1 for
F (x, x, xn; t) = △[F (x, x; t), F (x, xn; t), F (x, xn; t)] = △[1, F (x, xn; t), F (x, xn; t)].
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Definition 2.6. Two self mappings A and S of a G∗MPM-space (X,F,△) are
called weakly commuting if F (ASx, SAx, SAx; t) ≥ F (Ax, Sx, Sx; t) for all x ∈ X.

Clearly a commuting pair is weakly commuting but the converse is not true.

Lemma 2.2. Let (X,F,△) be a G∗MPM-space, F (x, y, z; t) is non-decreasing with
respect to t, for all x, y, z ∈ X.

Proof. If F (x, y, z; t + s) ≥ △[F (x, y, a; t), F (a, z, z; s)], then by putting a = z, we
get

F (x, y, z; t+ s) ≥ △[F (x, y, z; t), F (z, z, z; s)],

and so,

F (x, y, z; t+ s) ≥ F (x, y, z; t).

Definition 2.7. Let (X,F,△) be a G∗MPM-space, F is said to be a continuous
function on X3×(0,∞) if lim

n→∞
F (xn, yn, zn; tn) = F (x, y, z; t), whenever a sequence

{xn, yn, zn; tn} in X3 × (0,∞) converges to a point (x, y, z; t) in X3 × (0,∞), that
is,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z,

and

lim
n→∞

F (x, y, z; tn) = F (x, y, z; t).

Lemma 2.3. If (X,F,△) is a G∗MPM-space, then F is said to be a continuous
function on X3 × (0,∞).

Proof. Let (x
′

n, y
′

n, z
′

n; t
′

n)n be a sequence in X3×(0,∞) and converges to (x, y, z; t),
where x, y, z ∈ X and t > 0. Since F (x

′

n, y
′

n, z
′

n; t
′

n)n is a sequence in [0, 1], there is
a subsequence (xn, yn, zn; tn)n of sequence (x

′

n, y
′

n, z
′

n; t
′

n)n such that the sequence
F (xn, yn, zn; tn)n converges to some point of [0, 1].

Fix δ > 0 such that δ < t
2 .

Then there exists n0 ∈ N such that | t− tn |< δ for every n ≥ n0. Hence

F (xn, yn, zn; tn) ≥ F (xn, yn, zn; t− δ)

≥ △
[
F

(
xn, yn, z; t−

4δ

3

)
, F

(
z, zn, zn;

δ

3

)]
≥ △

[
F
(
xn, z, y; t− 5δ

3

)
, F

(
y, yn, yn;

δ
3

)
,

F
(
z, zn, zn;

δ
3

) ]
≥ △

[
F (z, y, x; t− 2δ) , F

(
x, xn, xn;

δ
3

)
,

F
(
y, yn, yn;

δ
3

)
, F

(
z, zn, zn;

δ
3

) ]
,
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and

F (x, y, z; t+ 2δ) ≥ F (x, y, z; tn + 2δ)

≥ △
[
F

(
x, y, zn; tn +

2δ

3

)
, F

(
zn, z, z;

δ

3

)]
≥ △

[
F
(
x, zn, yn; tn + δ

3

)
, F

(
yn, y, y;

δ
3

)
,

F
(
zn, z, z;

δ
3

) ]
≥ △

[
F (xn, yn, zn; tn) , F

(
xn, x, x;

δ
3

)
,

F
(
yn, y, y;

δ
3

)
, F

(
zn, z, z;

δ
3

) ]
,

for all n ≥ n0. Taking limit as n → ∞, we obtain

lim
n→∞

F (xn, yn, zn; tn) ≥ △[F (x, y, z; t− 2δ), 1, 1, 1]

= F (x, y, z; t− 2δ),

and

F (x, y, z; t+ 2δ) ≥ lim
n→∞

△[F (xn, yn, zn; tn), 1, 1, 1]

= lim
n→∞

F (xn, yn, zn; tn).

By continuity of the function, we have

lim
n→∞

F (xn, yn, zn; tn) = F (x, y, z; t).

Therefore, F is continuous on X3 × (0,∞).

Henceforth, we assume that △ is a continuous t-norm on [0, 1] such that for
every µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

((1− λ), (1− λ), . . . , (1− λ)) ≥ (1− µ).

Lemma 2.4. Let (X,F,△) be a G∗MPM-space. If we define Eλ,F : X3 → R by

Eλ,F (x, y, z) = inf{t > 0 : F (x, y, z; t) > 1− λ},

for every λ ∈ (0, 1) then

1. For each µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

Eµ,F (x1, x2, xn) ≤ Eλ,F (x1, x1, x2) + Eλ,F (x2, x2, x3) + . . .

+Eλ,F (xn−1, xn−1, xn),

for any x1, x2, . . . , xn ∈ X.
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2. The sequence {xn}n∈N is convergent in G∗MPM-space (X,F,△) ⇔ Eλ,F (xn, xn, x) →
0. Also the sequence {xn}n∈N is Cauchy with Eλ,F .

Proof. 1. For every µ ∈ (0, 1), there is a λ ∈ (0, 1) such that

△ ((1− λ), (1− λ), . . . , (1− λ)) ≥ (1− µ).

By triangular inequality, we have
F (x1, x1, xn;Eλ,F (x1, x1, x2) + Eλ,F (x2, x2, x3) + . . .+ Eλ,F (xn−1, xn−1, xn) + nδ)
≥ △[F (x1, x1, xn;Eλ,F (x1, x1, x2) + δ)+. . .+F (xn−1, xn−1, xn;Eλ,F (xn−1, xn−1, xn) + δ)]
≥ △ ((1− λ) . . . , (1− λ)) ≥ (1− µ),

for every δ > 0, it implies

Eµ,F (x1, x2, xn) ≤ Eλ,F (x1, x1, x2) +Eλ,F (x2, x2, x3) + . . .+Eλ,F (xn−1, xn−1, xn).

2. If F is continuous, then

Eλ,F (x, x, y) = inf{t > 0 : F (x, x, y; t) > 1− λ}.

Hence we have

F (xn, x, x; η) > 1− λ ⇔ Eλ,F (xn, x, x) < η, for every η > 0.

Lemma 2.5. Let (X,F,△) be a G∗MPM-space. If F (xn, xn, xn+1; t) ≥ F (x0, x0, x1; k
nt),

for some k > 1 and for every n ∈ N. Then {xn} is a Cauchy sequence in X.

Proof. For every λ ∈ (0, 1) and xn, xn+1 ∈ X, we have

Eλ,F (xn, xn, xn+1; t) = inf{t > 0 : F (xn, xn, xn+1; t) > 1− λ}
≤ inf{t > 0 : F (x0, x0, x1; k

nt) > 1− λ}

= inf

{
t

kn
> 0 : F (x0, x0, x1; t) > 1− λ

}
=

1

kn
inf{t > 0 : F (x0, x0, x1; t) > 1− λ}

=
1

kn
Eλ,F (x0, x0, x1; t).

By Lemma 2.4, for each µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,F (x1, x2, xn) ≤ Eλ,F (x1, x1, x2) + Eλ,F (x2, x2, x3) + . . .

+Eλ,F (xn−1, xn−1, xn)

≤ 1

kn
Eλ,F (x0, x0, x1; t) +

1

kn+1
Eλ,F (x0, x0, x1; t) + . . .

+
1

km−1
Eλ,F (x0, x0, x1; t)

= Eλ,F (x0, x0, x1; t)
m−1∑
j=n

1

kj
→ 0.
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Hence {xn} is a Cauchy sequence in X.

3. Common fixed point theorems

Let Φ denotes a family of mappings such that each ϕ ∈ Φ, ϕ : [0, 1] → [0, 1] is
continuous and ϕ(s) > s for every s ∈ [0, 1).

Theorem 3.1. Let A,S and T be self mappings of a complete G∗ MPM-space
(X,F,△) and S, T be continuous mappings on X satisfying the following conditions:

1. the pairs (A,S) and (A, T ) are weakly commuting and A(X) ⊆ S(X)∩T (X),

2. there exists a constant k > 1 such that

F (Ax,Ay,Az; t) ≥ ϕ

(
max

{
F (Sx, Ty, Tz; kt), F (Sx,Ax,Ax; kt),
F (Ty,Ax,Ax; kt), F (Ty,Ay,Ay; kt)

})
,

for all x, y, z ∈ X, ϕ ∈ Φ, and t > 0.

Then A, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X such that A(X) ⊆ S(X), there exists x1 ∈ X such that Ax0 =
Sx1. Also since A(X) ⊆ T (X), there is another point x2 ∈ X such that Ax0 = Tx2.
Inductively, we can choose x2n+1 and x2n+2 in X such that

y2n = Sx2n+1 = Ax2n, Tx2n+2 = Ax2n+1 = y2n+1, for n = 0, 1, . . ..

F (Ax2n, Ax2n+1, Ax2n+1; t) ≥ ϕ

max


F (Sx2n, Tx2n+1, Tx2n+1; kt),
F (Sx2n, Ax2n, Ax2n; kt),

F (Tx2n+1, Ax2n, Ax2n; kt),
F (Tx2n+1, Ax2n+1, Ax2n+1; kt)




F (y2n, y2n+1, y2n+1; t) ≥ ϕ

max


F (y2n−1, y2n, y2n; kt),
F (y2n−1, y2n, y2n; kt),
F (y2n, y2n, y2n; kt),

F (y2n, y2n+1, y2n+1; kt)


 .

If F (y2n, y2n+1, y2n+1; kt) ≥ F (y2n−1, y2n, y2n; kt), then we get

F (y2n, y2n+1, y2n+1; t) ≥ ϕ (F (y2n, y2n+1, y2n+1; kt))

> F (y2n, y2n+1, y2n+1; kt),

which is a contradiction. Therefore, we have

F (y2n, y2n+1, y2n+1; t) ≥ ϕ (F (y2n−1, y2n, y2n; kt))

> F (y2n−1, y2n, y2n; kt)

≥ F (y2n−2, y2n−1, y2n−1; k
2t)

...

≥ F (y0, y0, y1; k
nt).
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Since F is of first or second type, by Remark 2.2 and Lemma 2.5, {Axn} is a
Cauchy sequence. By completeness of X, {Axn} converges to a point p ∈ X, clearly
the subsequences {Sx2n+1} and {Tx2n} of {Axn} also converges to p ∈ X.

Since the mappings A and S are weakly commuting, F (ASxn, SAxn, SAxn; t) ≥
F (Axn, Sxn, Sxn; t) and so lim

n→∞
ASxn = lim

n→∞
SAxn = Sp (as S is continuous).

First we show that Sp = p. Suppose that Sp ̸= p, then using (2) we get

F (ASxn, Axn, Axn; t) ≥ ϕ

max


F (SSxn, Txn, Txn; kt),

F (SSxn, ASxn, ASxn; kt),
F (Txn, ASxn, ASxn; kt),
F (Txn, Axn, Axn; kt)


 .

Taking limit as n → ∞, we have

F (Sp, p, p; t) ≥ ϕ

(
max

{
F (Sp, p, p; kt), F (Sp, Sp, Sp; kt),
F (p, Sp, Sp; kt), F (p, p, p; kt)

})
= ϕ(F (Sp, p, p; kt))

> F (Sp, p, p; kt),

which is a contradiction. Thus p is a fixed point of S. Similarly we can show
that p is a fixed point of A.

Also the mappings A and T are weakly commuting, that is,

F (ATxn, TAxn, TAxn; t) ≥ F (Axn, Txn, Txn; t),

then we get lim
n→∞

ATxn = lim
n→∞

TAxn = Tp (as T is continuous).

Now we we claim that p is also a fixed point of T . Suppose that Tp ̸= p, then
using (2) we get

F (Ap,ATxn,ATxn;t) ≥ϕ
(
max

{
F (Sp, TTxn, TTxn; kt), F (Sp,Ap,Ap; kt),

F (TTxn, Ap,Ap; kt), F (TTxn, ATxn, ATxn; kt)

})
.

Taking limit as n → ∞, it yields

F (p, Tp, Tp; t) ≥ ϕ

(
max

{
F (p, Tp, Tp; kt), F (p, p, p; kt),

F (Tp, p, p; kt), F (Tp, Tp, Tp; kt)

})
= ϕ(F (p, Tp, Tp; kt))

> F (p, Tp, Tp; kt),

which is a contradiction. Hence, p = Tp. Therefore p is a common fixed point
of A,S and T .

Uniqueness of the common fixed point is an easy consequence of condition
(2).
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Example 3.1. Let (X,D∗) be a D∗-metric space, where X = [0, 1], D∗(x, y, z) =| x−y |
+ | y − z | + | z − x | and △(a, b, c) = min(a, b, c). Set F (x, y, z; t) = t

t+D∗(x,y,z) , for

all x, y, z ∈ X and t > 0. Then (X,F,△) is a G∗MPM-space. Define the self mappings
A,S and T on X by A(x) = 1, S(x) = x and T (x) = x+1

2
, for all x ∈ X. We have

A(x) = {1} ⊆ [0, 1] ∩
[
1
2
, 1
]
= S(X) ∩ T (X) and ATx = TAx = ASx = SAx = 1. Now

we verify the condition F (ATx, TAx, TAx; t) ≥ F (Ax, Tx, Tx; t), that is, F (1, 1, 1; t) ≥
F
(
1, x+1

2
, x+1

2
; t
)
, which is always true.

Similarly, F (ASx, SAx, SAx; t) ≥ F (Ax, Sx, Sx; t) and so F (1, 1, 1; t) ≥ F (1, x, x; t)
again always true. Hence the pairs (A,S) and (A, T ) are weakly commuting.

Also, for all x, y, z ∈ X, we have

1 = F (Ax,Ay,Az; t) ≥ ϕ

(
max

{
F (Sx, Ty, Tz; kt), F (Sx,Ax,Ax; kt),
F (Ty,Ax,Ax; kt), F (Ty,Ay,Ay; kt)

})
.

Thus all the conditions of Theorem 3.1 are satisfied and 1 is a unique common fixed
point of the mappings A,S and T .

Theorem 3.2. Let A,R, S, T and H be self mappings of a complete G∗MPM-space
(X,F,△) and SR, TH be continuous self mappings on X satisfying the following
conditions:

1. the pairs (A,SR) and (A, TH) are weakly commuting and A(X) ⊆ SR(X) ∩
TH(X),

2. there exists a constant k > 1 such that

F (Ax,Ay,Az; t)≥ϕ

(
max

{
F (SRx, THy, THz; kt), F (SRx,Ax,Ax; kt),
F (THy,Ax,Ax; kt), F (THy,Ay,Ay; kt)

})
,

for all x, y, z ∈ X, ϕ ∈ Φ, and t > 0.

3. SR = RS, TH = HT , AH = HA and AR = RA.

Then A, R, S, T and H have a unique common fixed point in X.

Proof. By Theorem 3.1, A,SR and TH have a unique common fixed point in X
i.e., there exists p ∈ X, such that A(p) = SR(p) = TH(p) = p. Now we assert that
Rp = p. Suppose that Rp ̸= p, then using (2) we get

F (A(Rp), Ap,Ap; t) ≥ ϕ

max


F (SR(Rp), THp, THp; kt),

F (SR(Rp), A(Rp), A(Rp); kt),
F (THp,A(Rp), A(Rp); kt),

F (THp,Ap,Ap; kt)


 ,

or, equivalently,

F (Rp, p, p; t) ≥ ϕ

(
max

{
F (Rp, p, p; kt), F (Rp,Rp,Rp; kt),
F (p,Rp,Rp; kt), F (p, p, p; kt)

})
= ϕ(F (Rp, p, p; kt))

> F (Rp, p, p; kt),
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which is a contradiction. Then we have R(p) = p. Hence S(p) = SR(p) = p.
Similarly, we can obtain T (p) = TH(p) = p. This completes the proof.

Theorem 3.3. Let {Ai}i∈N be a sequence of self mappings of a complete G∗MPM-
space (X,F,△) and S, T be continuous self mappings on X satisfying the following
conditions:

1. there exists i0 ∈ N such that the pairs (Ai0 , S) and (Ai0 , T ) are weakly
commuting and Ai0(X) ⊆ S(X) ∩ T (X),

2. F (Aix,Ajy,Akz; t) ≥ ϕ

(
max

{
F (Sx, Ty, Tz; kt), F (Sx,Aix,Aix; kt),
F (Ty,Aix,Aix; kt), F (Ty,Ajy,Ajy; kt)

})
,

for all x, y, z ∈ X, ϕ ∈ Φ, k > 1, t > 0 and i, j, k ∈ N.
Then Ai, S and T have a unique common fixed point in X.

Proof. By Theorem 3.1, S, T and Ai0 for some i = j = k = i0 ∈ N have a unique
common fixed point in X, that is, there exists p ∈ X, such that Ai0(p) = S(p) =
T (p) = p.

Suppose that there exists i ∈ N such that i ̸= i0 and j = k = i0, then using (2)
we get

F (Aip,Ai0p,Ai0p; t) ≥ ϕ

(
max

{
F (Sp, Tp, Tp; kt), F (Sp,Aip,Aip; kt),

F (Tp,Aip,Aip; kt), F (Tp,Ai0p,Ai0p; kt)

})
.

Hence if Aip ̸= p, then we have

F (Aip, p, p; t) ≥ ϕ

(
max

{
F (p, p, p; kt), F (p,Aip,Aip; kt),
F (p,Aip,Aip; kt), F (p, p, p; kt)

})
,

which is a contradiction. Therefore, it follows that Aip = p for every i ∈ N.
This completes the proof.
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