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CERTAIN CURVATURE PROPERTIES OF GENERALIZED
SASAKIAN-SPACE-FORMS

U. C. De and Pradip Majhi

Abstract. The aim of the present paper is to study Ricci pseudosymmetric and Weyl
semisymmetric generalized Sasakian-space-forms. Quasi-umbilical hypersurfaces of gen-
eralized Sasakian-space-forms have also been studied.

1. Introduction

The nature of a Riemannian manifold mostly depends on the curvature tensor R of
the manifold. It is well known that the sectional curvatures of a manifold determine
the curvature tensor completely. A Riemannian manifold with a constant sectional
curvature c is known as a real space-form and its curvature tensor is given by

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }.

A Sasakian manifold with a constant ϕ-sectional curvature is a Sasakian-space-form
and it has a specific form of its curvature tensor. A similar notion also holds for
Kenmotsu and cosymplectic space-forms. In order to generalize such space-forms in
a common frame, Alegre, Blair and Carriazo introduced the notion of generalized
Sasakian-space-form in 2004 [2]. Related to this, it should be mentioned that in
1989 Olszak [19] studied generalized complex-space-form and proved its existence.
A generalized Sasakian-space-form is defined as follows:
Given an almost contact metric manifoldM(ϕ, ξ, η, g), we say that M is a generalized
Sasakian-space-form if there exist three functions f1, f2, f3 on M such that the
curvature tensor R is given by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.(1.1)
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for any vector fields X, Y , Z on M . In such a case we denote the manifold as
M(f1, f2, f3). In [2] the authors cited several examples of generalized Sasakian-
space-forms. If f1 = c+3

4 , f2 = c−1
4 and f3 = c−1

4 , then a generalized Sasakian-
space-form with Sasakian structure becomes Sasakian-space-form. In [16], Kim
studied conformally flat generalized Sasakian-space-form and locally symmetric gen-
eralized Sasakian-space-form. He proved some geometric properties of generalized
Sasakian-space-form which depend on the nature of the functions f1, f2 and f3.
Generalized Sasakian-space-forms have also been studied in ([3], [4], [5], [14], [15])
and many others. In the present paper we study Ricci pseudosymmetric and Weyl
semisymmetric generalized Sasakian-space-forms. Quasi-umbilical hypersurface of
a generalized Sasakian-space-form have also been considered. The present paper is
organized as follows. After preliminaries in section 2, we consider Ricci pseudosym-
metric generalized Sasakian-space-forms. Section 4 deals with Weyl semisymmetric
generalized Sasakian-space-forms. In this section we prove that for this space forms
either f1 = f3 or the space-form is conformally flat. As a consequence of this
result we obtain some important Corollaries. Finally we consider quasi-umbilical
hypersurfaces of generalized Sasakian-space-forms and prove that quasi-umbilical
hypersurface of a generalized Sasakian-space-form is a generalized quasi-Einstein
hypersurface.

2. Priliminaries

An odd dimensional manifold M2n+1 (n ≥ 1) is said to admit an almost contact
structure, sometimes called a (ϕ, ξ, η)-structure, if it admits a tensor field ϕ of type
(1, 1), a vector field ξ and a 1-form η satisfying ([6], [7])

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.(2.1)

The first and one of the remaining three relations in (2.1) imply the other two
relations in (2.1). An almost contact structure is said to be normal if the induced
almost complex structure J on Mn × R defined by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
)(2.2)

is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth
function on Mn × R. Let g be a compatible Riemannian metric with (ϕ, ξ, η),
structure, that is,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )(2.3)

or equivalently,

g(X,ϕY ) = −g(ϕX, Y )(2.4)

and

g(X, ξ) = η(X),
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for all vector fields X, Y tangent to M . Then M becomes an almost contact metric
manifold equipped with an almost contact metric structure (ϕ, ξ, η, g).
An almost contact metric structure becomes a contact metric structure if

g(X,ϕY ) = dη(X,Y ),(2.5)

for all X, Y tangent to M . The 1-form η is then a contact form and ξ is its
characteristic vector field.
Again for an (2n+ 1)-dimensional generalized Sasakian-space-form we have [2]

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.(2.6)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ).(2.7)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ.(2.8)

R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ].(2.9)

R(ξ,X)Y = (f1 − f3)[g(X,Y )ξ − η(Y )X)].(2.10)

S(X, ξ) = 2n(f1 − f3)η(X).(2.11)

S(ξ, ξ) = 2n(f1 − f3).(2.12)

Qξ = 2n(f1 − f3)ξ.(2.13)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3,(2.14)

where R, S and r denote the curvature tensor, Ricci tensor of type (0, 2) and scalar
curvature of the space-form, respectively, and Q is the Ricci operator defined by
g(QX,Y ) = S(X,Y ). We know that [2] the ϕ-sectional curvature of a generalized
Sasakian-space-form M(f1, f2, f3) is f1 + 3f2.
Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection of
(M, g). A Riemannian manifold is called locally symmetric [9] if ∇R = 0, where
R is the Riemannian curvature tensor of (M, g). This condition of local symmetry
is equivalent to the fact that at every point P ∈ M , the local geodesic symmetry
F (P ) is an isometry [18]. The class of Riemannian symmetric manifold is a very
natural generalization of the class of manifolds of constant curvature. The same
can be extended to the class of semi-Riemannian manifolds, where g is of arbitrary
signature.
During the five decades the notion of locally symmetric manifolds have been weak-
ened by many authors in several ways to a different extent such as semisymmetric
manifolds by Szabó [20], Boeckx, Kowalski and Vanhecke [8], Kowalski [17], confor-
mally symmetric manifolds by Chaki and Gupta [11], recurrent manifolds by Walker
[22], conformally recurrent manifold by Adati and Miyazawa [1] and many others.
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Let R(X,Y ) and X ∧Y be endomorphisms of the Lie algebra Ξ(M) of vector fields
on M defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

(X ∧ Y )Z = g(Z, Y )X − g(Z,X)Y,

respectively, where X, Y , Z ∈ Ξ(M). We extend the endomorphisms R(X,Y )
and X ∧ Y to the derivations R(X,Y ). and (X ∧ Y ). of the algebra of the tensor
fields on M , assuming that they commute with contractions and R(X,Y ).f = 0,
(X ∧ Y ).f = 0 for every smooth function f on M .
For a (0, k)− tensor field T on M , k ≥ 1, we define the tensor fields ∇T , R.T and
Q(g, T ) by the formulas [21]

(∇T )(X1, ..., Xk;X) = X(T (X1, X2, ..., Xk))− T (∇XX1, X2, ..., Xk)

−...− T (X1, ..., Xk−1,∇XXk)),

(R.T )(X1, ..., Xk;X,Y ) = (R(X,Y ).T )(X1, ..., Xk)

= −T (R(X,Y )X1, X2, ..., Xk)− ...

−T (X1, ..., Xk−1, R(X,Y )Xk),

Q(g, T )(X1, ..., Xk;X,Y ) = −((X ∧ Y ).T )(X1, ..., Xk)

= T ((X ∧ Y )X1, X2, ..., Xk) + ...

+T (X1, ..., Xk−1, (X ∧ Y )Xk),

respectively, where X1,...,Xk, X, Y ∈ Ξ(M).

We define G(X,Y )Z = g(Y, Z)X − g(X,Z)Y and consider the subsets UR, US

of a Riemannian manifold M by UR = {x ∈ M : R − κ
(n−1)nG ̸= 0 at x} and

US = {x ∈ M : S − κ
ng ̸= 0 at x} respectively. Evidently, we have US ⊂ UR.

A Riemannian manifold is said to be pseudosymmetric if at every point of M the
tensor R.R and Q(g,R) are linearly dependent. This is equivalent to

R.R = fRQ(g,R)

on UR, where fR is some function on UR. Clearly, every semisymmetric manifold
is pseudosymmetric but the converse is not true [21].
A Riemannian manifold M is said to be Ricci pseudosymmetric if R.S and Q(g, S)
on M are linearly dependent. This is equivalent to

R.S = fSQ(g, S)

holds on US , where fS is a function defined on US .
For a (2n+ 1)-dimensional (n > 1) Riemannian manifold the Weyl conformal cur-
vature tensor is defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y
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+g(Y,Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ].(2.15)

Let (M2n, g) be a hypersurface of (M̃2n+1, g̃). If A is the (1, 1) tensor corresponding
to the normal valued second fundamental tensor H, then we have [10] Let (M2n, g)
be a hypersurface of (M̃2n+1, g̃). If A is the (1, 1) tensor corresponding to the
normal valued second fundamental tensor H, then we have [10]

g(Aρ(X), Y ) = g̃(H(X,Y ), ρ),(2.16)

where ρ is the unit normal vector field and X, Y are tangent vector fields.
LetHρ be the symmetric (0, 2) tensor associated with Aρ in the hypersurface defined
by

g(Aρ(X), Y ) = Hρ(X,Y ).(2.17)

A hypersurface of a Riemannian manifold (M̃2n+1, g̃) is called quasi-umbilical [10]
if its second fundamental tensor has the form

Hρ(X,Y ) = αg(X,Y ) + βω(X)ω(Y ),(2.18)

where ω is the 1-form, the vector field corresponding to the 1-form ω is a unit vector
field and α, β are scalars. If α = 0 (resp. β = 0 or α = β = 0) holds, then it is
called cylindrical (resp. umbilical or geodesic).
Now from (2.16), (2.17) and (2.18) we obtain

g̃(H(X,Y ), ρ) = αg(X,Y )g̃(ρ, ρ) + βω(X)ω(Y )g̃(ρ, ρ),

which implies that

H(X,Y ) = αg(X,Y )ρ+ βω(X)ω(Y )ρ,(2.19)

since ρ is the only unit normal vector field.
We have the following equation of Gauss [10] for any vector fields X, Y , Z, W
tangent to the hypersurface

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− g(H(X,W ),H(Y, Z))(2.20)

+g(H(X,Z),H(Y,W )),

where R̃(X,Y, Z,W ) = g̃(R(X,Y )Z,W ) and R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
A non-flat Riemannian manifold is called a generalized quasi-Einstein manifold [13]
if its Ricci tensor S satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γB(X)B(Y ),(2.21)

where α, β, γ are certain non-zero scalars and A, B are non-zero 1-forms. The unit
vector fields U and V corresponding to the 1-forms A, B are defined by

g(X,U) = A(X), g(X,V ) = B(X)

respectively and the vector fields U ,V are orthogonal i.e. g(U, V ) = 0. The vector
fields U and V are called the generators of the manifold. If γ = 0, then the manifold
reduces to a quasi-Einstein manifold.
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3. Ricci pseudosymmetric generalized Sasakian-space-forms

For a (2n+1)-dimensional Ricci pseudosymmetric generalized Sasakian-space-forms
we have

R.S = fSQ(g, S).(3.1)

Now, (3.1) can be explicitly written as

(R(X,Y ).S)(U, V ) = −fS [S((X ∧g Y )U, V ) + S(U, (X ∧g Y )V )],(3.2)

where the endomorphism X ∧g Y is defined by

(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y.(3.3)

Using (3.3) in (3.2) yields

− S(R(X,Y )U, V )− S(U,R(X,Y )V ) = fS [S(Y, V )g(X,U)

−S(X,V )g(Y, U) + S(U, Y )g(X,V )

−S(U,X)g(Y, V )].(3.4)

Putting X = ξ, U = ξ in (3.4) we obtain

− S(R(ξ, Y )ξ, V )− S(ξ,R(ξ, Y )V ) = fS [S(Y, V )g(ξ, ξ)

−S(ξ, V )g(Y, ξ) + S(ξ, Y )g(ξ, V )

−S(ξ, ξ)g(Y, V )].(3.5)

Again using (2.9), (2.10), (2.11), (2.12) in (3.5) we get

{(f1 − f3)− fS}{S(Y, V )− 2n(f1 − f3)g(Y, V )} = 0.(3.6)

Therefore either fS = (f1 − f3) or S(Y, V ) = 2n(f1 − f3)g(Y, V ).
If the second condition holds, then R.S = 0. Therefore we can state the following:

Theorem 3.1. A (2n+1)-dimensional Ricci pseudosymmetric generalized Sasakian-
space-form is Ricci semisymmetric provided fS ̸= f1 − f3.

4. Weyl semisymmetric generalized Sasakian-space-forms

Let us consider theWeyl semisymmetric generalized Sasakian-space-formM(f1, f2, f3).
Then we have

(R(X,Y ).C)(U, V )W = 0.(4.1)

This implies

R(X,Y )C(U, V )W − C(R(X,Y )U, V )W − C(U,R(X,Y )V )W

− C(U, V )R(X,Y )W = 0.(4.2)
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Putting X = ξ in (4.2) we obtain

R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W − C(U,R(ξ, Y )V )W

− C(U, V )R(ξ, Y )W = 0.(4.3)

Using (2.10) in (4.3) yields

(f1 − f3)[g(Y,C(U, V )W )ξ − {η(C(U, V )W )Y + g(Y, U)C(ξ, V )W}
+ {η(U)C(Y, V )W − g(Y, V )C(U, ξ)W}
+ {η(V )C(U, Y )W − g(Y,W )C(U, V )ξ}
+ η(W )C(U, V )Y ] = 0.(4.4)

Therefore either f1 = f3. or,

g(Y,C(U, V )W )ξ − η(C(U, V )W )Y − g(Y, U)C(ξ, V )W

+ η(U)C(Y, V )W − g(Y, V )C(U, ξ)W

+ η(V )C(U, Y )W − g(Y,W )C(U, V )ξ

+ η(W )C(U, V )Y = 0.(4.5)

Taking the inner product with ξ in (4.5) we obtain

g(Y,C(U, V )W ) − η(C(U, V )W )η(Y ) + g(Y, U)η(C(ξ, V )W )

+ η(U)η(C(Y, V )W )− g(Y, V )η(C(U, ξ)W )

+ η(V )η(C(U, Y )W )− g(Y,W )η(C(U, V )ξ)

+ η(W )η(C(U, V )Y ) = 0.(4.6)

Now,

η(C(X,Y )Z) = g(R(X,Y )Z, ξ)− 1

(2n− 1)
[S(Y,Z)η(X)

−S(X,Z)η(Y ) + g(Y, Z)g(QX, ξ)− g(X,Z)g(QY, ξ)]

+
r

2n(2n− 1)
[g(Y, Z)η(X)− g(X,Z)η(Y )].(4.7)

Using (2.6), (2.7) and (2.11) in (4.7) yields

η(C(X,Y )Z) = {(f1 − f3)−
4nf1 + 3f2 − (2n+ 1)f3

(2n− 1)

+
r

2n(2n− 1)
}{g(Y,Z)η(X)− g(X,Z)η(Y )}.(4.8)

Putting the value of the scalar curvature r from (2.14) in (4.8), we obtain

η(C(X,Y )Z) = 0(4.9)
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for all X, Y , Z.
In view of (4.9) we have from (4.6)

g(C(U, V )W,Y ) = 0(4.10)

for all U , V , W and Y . This implies

C(U, V )W = 0.(4.11)

Therefore R(ξ, Y ).C = 0 implies either f1 = f3 or, C = 0. Again if f1 = f3, then
from (4.4) it follows that R(ξ, Y ).C = 0 and also C = 0 implies R(ξ, Y ).C = 0.

Therefore we can state the following:

Theorem 4.1. A (2n+1)-dimensional (n > 1) generalized Sasakian-space-form
M(f1, f2, f3) satisfies R(ξ, Y ).C = 0 if and only if either f1 = f3 or, the space-form
M is conformally flat.

In [16] Kim proved that for a (2n+1)-dimensional generalized Sasakian-space-form
the following statements hold:
(i) If n > 1, then M is conformally flat if and only if f2 = 0.
(ii) If M is conformally flat and ξ is a Killing vector field, then M is locally sym-
metric and has constant ϕ-sectional curvature.
In view of the first part of the above theorem we have the following:

Corollary 4.1. For a (2n + 1)-dimensional (n > 1) Weyl semisymmetric gener-
alized Sasakian-space-form M(f1, f2, f3) either f1 = f3 or, f2 = 0.

Again, in view of the second part of the above theorem we have the following:

Corollary 4.2. For a (2n+1)-dimensional (n > 1) Weyl semisymmetric general-
ized Sasakian-space-form M(f1, f2, f3) with ξ as a Killing vector field, either f1 = f3
or the space-form is locally symmetric and has constant ϕ-sectional curvature.

In [2] Alegre, Blair and Carriazo proved that if a generalized Sasakian-space-form
M(f1, f2, f3) is a Sasakian manifold, then the functions f1, f2, f3 are constant and
f1 − 1 = f2 = f3.
Now, in this case f1 ̸= f3. Also f2 = 0 implies f3 = 0 and f1 = 1. Thus from (1.1)
we have R(X,Y )Z = g(Y, Z)X − g(X,Z)Y , that is, the manifold is of constant
curvature 1. Therefore we can state the following:

Corollary 4.3. A (2n + 1)-dimensional (n > 1) Weyl semisymmetric Sasakian
manifold is of constant curvature 1.

The above Corollary was proved by Chaki and Tarafder [12] in another way.

Remark 4.1. The converse of Corollary 4.3 is also true.
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5. Quasi-umbilical hypersurfaces of generalized Sasakian-space-forms

Let us consider a quasi-umbilical hypersurface. Therefore we have from (2.18)

H(X,Y ) = αg(X,Y )ρ+ βω(X)ω(Y )ρ,(5.1)

since ρ is the only unit normal vector field.
We have the following equation of Gauss [10] for any vector fields X, Y , Z, W
tangent to the hypersurface

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) − g(H(X,W ),H(Y, Z))

+ g(H(Y,W ), H(X,Z)).(5.2)

Using (5.1) in (5.2) we obtain

R̃(X,Y, Z,W ) = R(X,Y, Z,W )

− g([αg(X,W )ρ+ βω(X)ω(W )ρ], [αg(Y, Z)ρ+ βω(Y )ω(Z)ρ])

+ g([αg(Y,W )ρ+ βω(Y )ω(W )ρ], [αg(X,Z)ρ+ βω(X)ω(Z)ρ]).(5.3)

Therefore using (1.1) in (5.3) yields

f1{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+ f2{g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )}
+ f3{η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+ g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )}
= R(X,Y, Z,W )− α2g(X,W )g(Y, Z)− αβg(X,W )ω(Y )ω(Z)

− αβg(Y,Z)ω(X)ω(W ) + α2g(Y,W )g(X,Z)

+ αβg(Y,W )ω(X)ω(Z) + αβg(X,Z)ω(Y )ω(W ).(5.4)

Contracting the above equation (5.4) over X, W we obtain

S(Y,Z) = {2nf1 − f3 + 3f2 + 2nα2 + αβ}g(Y, Z)

+{−3f2 − (2n− 1)f3}η(Y )η(Z) + (2n− 1)αβω(Y )ω(Z).(5.5)

Therefore in view of (2.21), M is a generalized quasi-Einstein hypersurface. Thus
we can state the following:

Theorem 5.1. A quasi-umbilical hypersurface of a generalized Sasakian-space-
form is a generalized quasi-Einstein hypersurface.

If the unit normal vector field ρ is the characteristic vector field ξ of the almost
contact structure on the manifold M̃ , that is, η(X) = ω(X) for all X, then equation
(5.5) reduces to

S(Y, Z) = {2nf1 − f3 + 3f2 + 2nα2 + αβ}g(Y,Z)

+{−3f2 − (2n− 1)f3}η(Y )η(Z) + (2n− 1)αβη(Y )η(Z),(5.6)
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where g(X, ξ) = η(X). If the characteristic vector field is normal then η(X) = 0 for
all vector field X tangent to the hypersurface. Therefore the equation (5.6) reduces
to

S(Y, Z) = {2nf1 − f3 + 3f2 + 2nα2 + αβ}g(Y, Z).(5.7)

It follows that M is an Einstein hypersurface. Thus in view of the above result we
can state the following:

Theorem 5.2. A quasi-umbilical hypersurface of a generalized Sasakian-space-
form is an Einstein hypersurface provided the associated vector field ρ of the quasi-
umbilical hypersurface is the characteristic vector field of an almost contact metric
manifold and the characteristic vector field is normal.

Definition 5.1. For each plane π in the tangent space Tx(M), the sectional cur-
vature is defined by

KM (X ∧ Y ) = R(X,Y, Y,X) = g(R(X,Y )Y,X),

where X, Y are orthonormal basis, for the plane π, KM (X ∧ Y ) is independent of
choice of the orthonormal basis X, Y . If KM (X ∧ Y ) is a constant for all planes π
of Tx(M) and for all points x of M , then M is called a space of constant curvature.

Again from (5.2) we have

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g(H(X,W ),H(Y, Z))

− g(H(Y,W ), H(X,Z)).(5.8)

Using (1.1) and (5.1) in (5.6) we obtain

R(X,Y, Y,X) = f1{g(X,X)g(Y, Y )− {g(X,Y )}2}
+ 3f2{g(X,ϕY )}2

+ f3{2η(X)η(Y )g(X,Y )− {η(Y )}2g(X,X)− {η(X)}2g(Y, Y )}
+α2{g(X,X)g(Y, Y )− {g(X,Y )}2}+ αβg(X,X)ω(Y )ω(Y )

+αβg(Y, Y )ω(X)ω(X)− 2αβg(X,Y )ω(X)ω(Y ).(5.9)

Since X, Y are the unit normal vector fields we have from (5.9)

R(X,Y, Y,X) = f1 + 3f2{g(X,ϕY )}2 − f3({η(X)}2 + {η(Y )}2)
+α2 + αβ({ω(X)}2 + {ω(Y )}2).(5.10)

Thus we have the following:

Theorem 5.3. For a quasi-umbilical hypersurface of generalized Sasakian-space-
form, the sectional curvature of the plane section spanned by X, Y is given by:

KM (X ∧ Y ) = f1 + 3f2{g(X,ϕY )}2 − f3({η(X)}2 + {η(Y )}2)
+α2 + αβ({ω(X)}2 + {ω(Y )}2).
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Again if β = 0 and α is the mean curvature vector, then the quasi-umbilical
hypersurface becomes totally umbilical hypersurface.
In [4] Alegre and Carriazo proved that a connected, totally umbilical submanifold
of a generalized Sasakian-space-form with f2 ̸= 0 is either an invariant or anti-
invariant submanifold. Therefore from Theorem 5.2, we have the following:

Corollary 5.1. For a connected, totally umbilical hypersurface of a generalized
Sasakian-space-form with f2 ̸= 0, the sectional curvature is given by

KM (X ∧ Y ) = f1 − f3({η(X)}2 + {η(Y )}2)
+α2.
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