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ADAPTATION OF THE PROBABILITY CHANGING METHOD
FOR WEBER PROBLEM WITH AN ARBITRARY METRIC

Lev A. Kazakovtsev

Abstract. Fermat-Weber problem in its simple form (unconstrained, single facility,
Euclidean metric) is well investigated. Lot of algorithms are also developed for more
complicated cases. But the generalized multi-facility problem with barriers, restricted
zones and an arbitrary metric has no well-known algorithm for its solving. In this paper,
we consider the planar multi-facility Weber problem with restricted zones and non-
Euclidean distances, propose an algorithm based on the probability changing method
and prove its efficiency for approximate solving of the Weber problem by replacing
the continuous coordinate values with discrete ones. An example for a problem with
discrete coordinate system 200x400 is given. Version of the algorithm for multiprocessor
systems is proposed.

1. Introduction

Location problems are a special class of optimization problems [38, 12]. We
determine a single-facility Weber problem as a problem of searching for such a
point X that the sum of weighted distances from this point X to some existing
points A1, A2, . . . , AN is minimum [6, 31].

F (X) =
N∑
i=1

wiL(X,Ai) → min.(1.1)

Here, wi is a weight of the ith point, L(A,B) is the distance between the points A
and B. In the most common Euclidean metrics l2,

L(A,B) =
√
(a1 − b1)2 + (a2 − b2)2.(1.2)

Here, a1 and a2 are the coordinates of the point A and b1 and b2 are the coordi-
nates of the point B. But other types of distances have been exploited in the facility
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location problem. A review of exploited metrics is presented in [12]. Distance func-
tions based on altered norms are investigated in [25, 26]. Problems with weighted
one-infinity norms are solved in [37]. Asymptotic distances [18] and weighted sums
of order p [4], [36] are also implemented in location problems. An original research
on Weber problem in discrete coordinates is given in [24].

Also, the rectangle [25] (or Manhattan) metrics l1 is well investigated. Here,

L(A,B) = |a1 − b1|+ |a2 − b2|.(1.3)

Manhattan metric can be used for fast approximate solution instead of Euclidean
metric.

Weber problem (sometimes called Fermat-Weber problem) is a generalization of
a simple problem (Fermat problem) and has series of generalized formulations.

Multi-facility problem (Multi-Weber problem) is a generalization of the single-
facility problem [7]:

F (X1, X2, . . . , XM ) =
N∑
i=1

M∑
j=1

wiL(Xj , Ai) → min.(1.4)

In this case, the problem is searching for M additional places for new facilities
Xj , 1 ≤ j ≤ M .

Or, in other case [7], the objective function is defined as (minsum problem):

F (X1, X2, . . . , XM ) =

N∑
i=1

wi min
j,1≤j≤M

L(Xj , Ai) → min.(1.5)

Also, the problem can include the restricted areas, barriers etc. In case of
restricted zones, the optimization problem, in general, includes constraints:

Xj /∈ RZ(1.6)

where RZ is a set of restricted coordinates.

In case of barriers, the distance between 2 points is, in general, non-Euclidean
(Fig. 1.1)

Here, the distance between points A and B is the sum of distances d1 and d2
(shortest path which does not cross the barrier).

Further generalization of the Fermat-Weber problem is the continuous (regional)
Weber problem that deals with finding a median for a continuum of demand points.
In particular, we consider versions of the ”continuous k-median (Fermat-Weber)
problem” where the goal is to select one or more center points that minimize the
weighted distance to a set of points in a demand region [13]. If the existing facilities
are distributed in some compact area Ω ∈ Rn then the single-facility continuous
Weber problem [15] is to find X so that

F (X) =
N∑
i=1

wi

∫
Ω

L(X,Ai)dµ(Ai) → min.(1.7)
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Fig. 1.1: Distance with a barrier

where µ(Ai) is the expectation of the fact that the ith customer is placed in some
point.

If this expectation is equal among some area, i.e., if ith customer is uniformly
(equably) distributed in the area then

F (X) =
N∑
i=1

wi

∫
Ωi

L(X,A)ρi(A)dA → min,(1.8)

ρi(A) =

{
1, A ∈ Ωi

0, A /∈ Ωi.
(1.9)

In case of continuous (regional) multi-Weber problem,

F (X1, ..., XM ) =

N∑
i=1

wi

∫
Ωi

min
j,1≤j≤M

L(Xj , A)ρi(A)dA → min.(1.10)

In this paper, we propose an algorithm for approximate solving of the prob-
lem (1.10) with constraints (1.6) where the distance function L() is an arbitrary
monotone function. In the example given this function is the well-known path
loss function implemented to calculate the radio-propagation features of the area
(media).

2. Related Works, Probability Changing Algorithm

The Weber problem locates medians (facilities) at continuous set of locations in
the Euclidean plane (or plane with an arbitrary metrics in generalized case). Hakimi
proposed similar problem statement for finding medians on a network or graph
[16, 17], and his absolute median problem is similar to Weber’s weighted problem.
Hakimi defined the absolute median as the point on a graph that minimizes the
sum of the weighted distances between that point and the vertices of the graph.
Hakimi allowed this point to lie anywhere along the graphs edges, but proved that
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an optimal absolute median is always located at a vertex of the graph, thus providing
a discrete representation of a continuous problem. In [17] Hakimi generalized the
absolute median to find p medians on a graph in order to minimize the sum of the
weighted distances. Hakimi again provided a discrete representation of a continuous
problem by restricting the search to the vertices. Solutions consisting of p vertices
are called p-medians of the graph. Thus, the p-median problem differs from the
Weber problem because it is discrete, a consequence of only being allowed to select
medians from the candidate set V . It is also defined on a graph or a network, not
a plane.

Primary problems in the field of discrete location theory: the p-median prob-
lem, the p-center problem, the uncapacitated facility location problem (UFLP) and
the quadratic assignment problem (QAP) [29]. These problems decide the loca-
tion of facilities and allocate demand points to one or multiple facilities (so called
location-allocation problems). The p-median problem is well studied in the litera-
ture. Lots of the solution methods have been proposed [9]. The p-median problem
is one of a larger class of problems known as minisum location-allocation problems.
These problems find medians among existing points, which is not the same as find-
ing centers among points, a characteristic of minimax location-allocation problems
(the p-center problem is an example, where the goal is to minimize the maximum
distance between center(s) and points). But this (p-median) problem is stated as
searching among a set of pre-defined feasible points. In case of discrete coordinates,
considering all points as feasible, we have p-median problem. But the dimension of
such problem is very large in the discretization is fine enough. In general, p-median
problem is NP-hard, the polynomial time algorithm is available on trees only [22],
[14]. Cabot, Francis and Stary [5], [21] utilized a network flow procedure (an al-
gorithm for p-median problem) to solve the multi-facility location problem with
rectilinear distances . In case of the weber problem (except one with Manhattan
or similar metric) [35], the sum of the edges weights is not equal to distance in the
problem with the discrete coordinate grid.

Drezner and Wesolowsky [11] researched the continuous problem under an ar-
bitrary lp distance metric.; and, in [37], authors formulated the well-known ”block-
norm” for the distances involved. In [27] and [28], the authors had shown that
the Euclidean and rectilinear cases of the unconstrained Weber promlems are NP-
complete.

An unconstrained problem with the mixed coordinate system (discrete and con-
tinuous) is considered in [35].

For the generalized Multi-Weber problem with restricted zones and barriers,
only some special cases are considered. In [3], authors provided two heuristics for
the Multi-Weber Problem with barriers, and reported that their algorithms can
attain solutions of reasonably sized multifacility location–allocation problems with
barriers, both with regard to computation time and solution quality.

Having transformed our continuous Weber problem into problem with discrete
coordinate grid, we have a combinatorial discrete optimization problem.

Most exact solution approaches to the problem of discrete (combinatorial) op-
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timization (knapsack problem, the traveling salesman problem etc.) are based on
branch-and-bound method (tree search) [1, 2, 20]. Unfortunately, most of such
problems are in the complexity class NP-hard and require searching in a tree of the
exponential size and even parallelized versions of such algorithms do not allow us
to solve some large-scale pseudo-Boolean optimization problems in acceptable time
without significant simplification of the initial problem.

The heuristic random search methods do not guarantee any exact solution but
they are statistically optimal. I.e. the percent of the problems solved ”almost
optimal” grows with the increase of the problem dimension [1].

The real large-scale problems have sometimes millions of variables. For example,
the problem of assortment planning of the retail trade company [23] may include
thousands goods names to be selected which can be shipped from hundreds suppliers
and have 3-10 variants of retail price. In general, problems of such kind can be solved
only with random search algorithms.

Being initially designed to solve the unconstrained pseudo-Boolean optimization
problems and classified sometimes as a variant of the genetic algorithms [10], the
probability changing method (MIVER) is a random search method organized by
the following common scheme [1, 2].

Algorithm 2.1. Probability changing method

1. k = 0, the starting values of the probabilities Pk = {pk1, pk2, . . . , pkN} are assigned
where pkj = P{xj = 1}. Correct setting of the the starting probabilities is a very significant
question for the constrained optimization problems.

2. With probability distributions defined by the vector Pk, we generate a set of the
independent random points Xki.

3. The function values in these points are calculated: F (Xki).

4. Some function values from the set F (Xki) and corresponding points Xki are picked
out (for example, point with maximum and minimum values).

5. On the basis of results in item 4, vector Pk is modified.

6. k = k + 1, if k < R then go to 2. This stop condition may differ.

7. Otherwise, stop.

To be implemented for the constrained problems, this method has to be modified.
The modified version of the variant probability method, offered in [23, 24] allows us
to soling large-scale problems with dimensions up to millions of Boolean variables.

3. Problem Statement

Let’s consider the problem (1.10) with constraints (1.6) in the case when the
coordinate grid is discrete. For most practically important problems, the solution
of such approximated (discretized) problem is enough. Moreover, the distance mea-
surement and maps precision are always finite.
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The transformation of the continuous coordinates into discrete coordinate grid is
shown in Fig. 3.1. The area is divided into Nx columns and Ny rows and the whole
area forms a set of cells. In this case, the integral in formula (1.10) of the regional
Weber problem is transformed back into a sum (1.5) of a Multi-Weber problem.

Fig. 3.1: Weber problems with continuous and discrete coordinates

The problem is to select NF cells where the new facilities will be placed so that

F1(X) =

Nx∑
k=1

Ny∑
l=1

wij min
1 <= i <= Nx,
1 <= j <= Ny,
xij = 1

xijL((i, j), (k, l)) → min.(3.1)

X =


x11 x12 ... x1Ny

x21 x22 ... x2Ny

... ... ... ...
xNx1 xNx2 ... xNxNy

(3.2)
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with constraints
xij = 0 ∀(i, j) ∈ Rz;(3.3)

Nx∑
i=1

Ny∑
j=1

xij <= NF .(3.4)

Here, X is a matrix of Boolean variables, Rz is a set of cells restricted for
facility placement, L() is a distance function, in general, arbitrary but monotone.
If we have a problem with barriers, this function is calculated as shown in Fig. 1.1.
A coefficient wij is the weight of the cell (i, j), NF is quantity of facilities to be
placed.

Also, the problem may have additional constraints.

As an example of the problem (3.1)–(3.4), we consider a problem of antennas
placement (Fig. 3.2).

Fig. 3.2: Scheme of the antennas placement problem

Here, we have a map with discrete coordinates, each cell has its weight which
is a measurement of its importance to be covered with stable RF signal from any
of antennas. The cells can contain different kinds of obstacles (walls, trees etc). As



246 L.A.Kazakovtsev

the distance function, we can use the well-known path loss function [33] calculated
as

L((i, j)(k, l)) = 20log∥(i, j), (k, l)∥+ LOBST ((i, j), (k, l)).(3.5)

Here, LOBST is the obstacle path loss which is calculated algorithmically as
loss at all the obstacles (depending on their material and thickness) along the path
between the cells (i, j) and (k, l). The RF absorbing properties of the environment
elements are available from the information tables [19] and able to be defined more
exactly if the element is situated between the existing transmitter and receiver or
in the Fresnel zone. In our distance function, we do not take into consideration the
antenna gain since this parameter does not depend on antennas placement.

In continuous coordinates, the objective function is monotone.

So, we have constrained pseudo-Boolean optimization problem (3.1)–(3.5). The
total quantity of variables of our problem is Nx×Ny. Thus, even in case of 100×100
coordinate grid, we have a problem with 10000 variables. In case of the large-scale
problems, even the calculation of the linear objective function takes significant com-
putational resources. Here, we have a function calculated algorithmically. So, the
calculation of the objective function and the constraints is a very large computa-
tional problem if it is repeated lot of times.

That is why, the distribution of the computational tasks between the parallel
processors or cluster nodes is very important.

In this paper, we do not consider greedy search algorithms (which are determin-
istic or also randomized [34]) though they are often used to improve the results of
the random search methods as the final step of them.

Also, we do not consider the parallel genetic algorithms [32, 30] though some
approaches offered for genetic algorithms may be implemented for the random search
algorithms parallelization.

4. Serial Version of the Algorithm and Its Parallelization with
OpenMP

The scheme of the algorithm for the serial systems is shown in Fig. 4.1, variant 1.

At the step of initialization, all the variables p (components of the probability
matrix P ) are set to their initial values (0 < pij < 1, i ∈ {1, Nx}, j ∈ {1, Ny}).
Since our algorithm realizes the method of constrained optimization, the initial
value of the probability variables is sometimes very important. Then, we generate
the matrices X of optimized boolean variables. In our case of constrained problem,
the large values of vector P components generate the values of X which are out of
the feasible solutions area due to the constraints (3.3). Due to the constraints (3.3),
the optimal initial values of the matrix P components do not exceed NF /(NxNy)
[24].
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Fig. 4.1: An algorithm flowchart

Our algorithm is based on the Algorithm 2.1 . Here, instead of the probability
vector P , we have matrix P . Also, we have matrix of Boolean variables X in-
stead of a vector. It does not change the general scheme of our algorithm but this
representation of the variables is more convenient for the further description.

We set the initial values of the matrix P equal to NF /(NxNy) but we have to
reduce this value if several starts of our algorithm give us no results in feasible
solutions area. This process is not illustrated in the Fig. 4.1 for the simplicity.

Instead of maximum number of steps (M in Fig. 4.1), we can use the maximum
run time as the stop condition. In some cases, it is reasonable to use the maximum
number of steps which do not improve the result achieved as the stop condition.

In the cycle (i = 1, N), we generate the set of N matrices Xki in accordance
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with the probability matrix P . Then, the objective function is calculated for each
exemplar Xki.

To take into consideration the constraints (3.3), we modify the step of X exem-
plars generation.

Algorithm 4.1. Random X matrices generating

1. Xset = Ø; n = 0;

2. while n < NF do

2.2. for each i ∈ {1, Nx}: Si =
NY∑
j=1

pij ;

2.3. Sx = rx
NY∑
i=1

Si;

2.4. select minimum i so that
i∑

k=1

Si >= Sx;

2.5. ry = fRandom();

2.6. Sy = rySi;

2.7. select minimum j that
j∑

l=1

pij >= Sy;

2.8. if (i, j) ∈ Rz then goto 2.2;

2.9. else Xset = Xset ∩ (i, j); goto 2;

Here, Xset is a set of coordinates (numbers of columns and rows) of the resulting
matrix X which are equal to 1, NF is quantity of the facilities placed, fRandom() is
a function with random value in range [0,1).

As the result of our the Algorithm 4.1, we have a matrix X : X /∈ Rz.

The solution of various practical problems with the probability changing method
shows the best result if we use the multiplicative adaptation of elements of matrix
P with a rollback procedure [2]. In this case, the components of the vector P are
never set to the value of 0 or 1 which may cause that all the further generations of
the X vector have the same value at the corresponding position.

In Algorithm 2.1, all Boolean variables are considered as independent and the
value of an element pij of the matrix P at the kth step can be calculated as

pk,i,j =
p(k−1),i,jdk,i,j

Nx∑
l=1

Ny∑
m=1

p(k−1),i,jdk,i,j

Nx∑
l=1

Ny∑
m=1

p(k−1),i.(4.1)

Here, dk,i,j is the adaptation coefficient, xmax
i,j,k and xmin

i,j,k are the exemplars of the
matrix X giving the maximum and the minimum values of the objective function
(3.1). In case of multiplicative adaptation, dk,i,j does not depend on the step number
k. In this case, the absolute value of adaptation step depends on the corresponding
value of pkj .
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In the original variant of the probability method, the variables xi and corre-
sponding probabilities pi are considered independent from each other. In case of
Weber problem, we consider the variables xij as dependent from each other. As fol-
lows from the common sense (and proved experimentally), if the objective function
has maximum value with Xmax that xmax

i∗,j∗,k = 1 then, with some probability, the
results at the next steps will be better than other variants if xi∗,j∗,k+K = 1 and for
the some surrounding area:

xi,j,k = 1, i∗ −NS ≤ i ≤ i∗ +NS , j
∗ −NS ≤ j ≤ j∗ +NS .(4.2)

where NS is the width and height of the surrounding area. The value of the coeffi-
cient d must be bigger for the points close to (i∗, j∗) for farther points, it must tend
to 0.

We used the formulas below:

dk,i,j = d∗k,i,j/d
”w”k,i,j ;

d∗k,i,j =

{
1 + d0/(1 + L((i∗, j∗), (i, j))), |i∗ − i| ≤ NS ∧ |j∗ − j| ≤ NS

1, |i∗ − i| > NS ∨ |j∗ − j| > NS
;

dwk,i,j =

{
1 + d0/(1 + L((iw, jw), (i, j))), |iw − i| ≤ NS ∧ |jw − j| ≤ NS

1, |iw − i| > NS ∨ |jw − j| > NS
.

(4.3)

Here, (i∗, j∗) and (iw, jw) are the closest to (i, j) points that xworst
i∗,j∗,k = 1 and

xbest
i∗,j∗,k = 1 correspondingly, Xworst is an exemplar of the X matrix with the max-

imum objective function value among the generated set and Xbest is an exemplar
of the X matrix with the maximum objective function value.

After several steps performed, the values of P matrix elements are close to 0 or
1 results in generation of the similar vector X exemplars which correspond to some
local maximum. The rollback procedure is useful to avoid that situation. It sets
the values of P matrix to the initial (or other) values. In the simplest case, rollback
is performed after several steps which do not improve the best objective function
value.

The best results are demonstrated with methods of partial rollback procedure
which change some part of P matrix components or change all the components so
that their new values depend on previous results. We can use the following rollback
formula:

pkij = (pk−1,i,j + qkp0)/(1 + qk).(4.4)

Here, p0 is the average value of the probability of the matrix P . The coefficient
qk can be constant or vary depending on the results of previous steps. For example,
it may depend on the quantity of the steps which do not improve the maximum
result (sm).

qk = w/sm.(4.5)
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The weight coefficient w has to be chosen experimentally and depends on the
frequency of the rollback procedure calls.

The adaptation of our algorithm for multiprocessor systems with shared memory
can be performed by the parallel generation of the exemplars of the X vector and
their estimation. The scheme of that version of our algorithm is shown in Fig. 4.1,
variant 2. If our system has NP processors, the cycle of generation of N exemplars
of the vector X can be divided between the processors. Each processor has to
generate N/Np exemplars of the vector X and calculate the value of the objective
function, left parts of the constraint conditions and calculate the modified objective
function values. Organizing of the parallel thread takes significant computational
expenses. In [8], authors estimate that expenses as 1000 operations of real number
division.

5. Numerical Results

For testing purposes, we used a planar problem (3.1)–(3.5) with Nx = 200,
Ny = 400. The map of our problem is shown in Fig. 5.1. Dark areas correspond to
the cells with the higher weight (important points), white with zero weight (points
there RF-coverage is not important). The scheme has 3 obstacles (barriers).

Fig. 5.1: Problem map

The experiments at 4-processor system with linear 100-dimension (Nx = Ny =
10) problem show that the parallel version runs 2.8 times faster than the serial one.
For large-scale problems of our type with millions of variables, the parallel efficiency
is almost ideal (0.93-0.97) for 1000 variables and more.

The average value 0.95 of the parallel efficiency is calculated as the average
speed-up coefficient after 10 runs for 5 different objective functions.

The probability matrix changing for NF = 10 is shown in Fig. 5.2.
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Fig. 5.2: Probability matrix changes

The results can also be easily visualized (Fig. 5.3). Here, dark areas of the map
show the areas uncovered with the forecast of the RF signal.

Here, the color of each point (i, j) shows the anticipated signal level multiplied
by the weight coefficient wi,j .

Fig. 5.3: Results visualization



252 L.A.Kazakovtsev

6. Conclusion

Proposed modified algorithm based on the probability changing method can be used
for the approximate solution of the planar generalized Weber problem with an arbi-
trary monotone non-Euclidean metric. Computational facilities of the modern com-
puters (multiprocessor systems, inexpensive clusters) allow solving such problems
with the appropriate accuracy. Algorithm parameters tuning and its computational
complexity evaluation are subject of the future investigation.
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