
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 27 No 2 (2012), 213–228

IMPLEMENTATION OF THE CONVEX POLYGON
TRIANGULATION ALGORITHM

Muzafer Saračević, Predrag Stanimirović, Sead Mašović, Enver Bǐsevac

Abstract. Implementations of the algorithm for generating and displaying triangu-
lations of the convex polygon, given by Hurtado and Noy [6], in three programming
languages (Java, Python, C++) are described and compared. Our main aim is to show
the advantages and disadvantages of these programming languages in resolving this use-
ful algorithm in computational geometry and computer graphics. We have performed
a comparative analysis of developed programs with respect to three criteria: CPU time
spanned for drawing triangulations, the complexity of the source code and the simplic-
ity of the implementation.
Keywords: Triangulation Polygon, Hurtado-Noy hierarchy, Java, Python, C++.

1. Introduction

A triangulation of a simple polygon assumes the decomposition of its interior into
triangles, without mutually intersections of internal diagonals. The polygon trian-
gulation is an important aspect of computer graphics and computational geometry.
Mainly, triangulation allows a three-dimensional view of objects from the set of
points. Triangulation also provides a mechanism for ”glazing” 3D, figures which
is very important tool for speed, quality and resolution of the objects in computer
graphics. In this paper we present implementation of the Hurtado-Noy algorithm
for the convex polygon triangulation [6].

We have selected three different programming languages (Java, Python and
C++) as different environments for the the Hurtado–Noy method implementation.
Some of comparative advantages and disadvantages of these programming languages
are discussed. The programming language Java can be characterized as: simple,
high-performance, object-oriented, multi-threading, dynamic, distributed and se-
cure. The standard technique for Java execution is interpretation, which provides
for extensive portability of programs. A Java interpreter dynamically executes Java
bytecodes, which comprise the instruction set of the Java Virtual Machine (JVM)
[15]. The advantage of Java language is that most programming languages either

Received May 12, 2012.
2010 Mathematics Subject Classification. Primary 68U05; Secondary 68N15, 32B25

213

214 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

interpret or compile to run on a computer, whereas Java compiles and interprets
simultaneously [12].

Python is also an object-oriented and interpreted programming language and has
been created to improve the compiled languages such as C++ and Java. The main
advantage of Python is its simple syntax and its general simplicity, which allows
developers to focus on the problems rather than on the programming. A disadvan-
tage of Python is its lack of speed in the case when the starting activity requires
considerable processing power. The first observation in the comparison of Python
and Java is usually the easier work in Python. Compared to Java, Python applica-
tions that implement the same algorithm are much shorter. Python’s productivity
is at the very high level, primarily because of the syntax and especially because
of the large number of ready-made libraries and modules that are available in the
standard distribution [3]. Runtime implementation of Python language is available
on many platforms. Unlike Java, Python’s syntax does not require encapsulation
of the class and does not support real interfaces [5]. However, it supports multiple
inheritance and functional programming. Java and C++ are very similar in syntax.

C++ is more consistent as a language and during the learning process. It is
the closest to the minimal and uncontradicted language. Java is a static type–
checked language which offers performance, robustness and modularity as such,
while Python is a run-time type-checked language which offers rapid prototyping,
dynamic run-time modification and delayed evaluation.

This paper is organized as following. In the next section we enumerate several re-
lated applications in computer graphics and computational geometry, written in the
mentioned programming languages. In the third section we describe the Hurtado-
Noy algorithm for a convex polygon triangulation. The fourth section includes
implementations of this algorithm in Java, Python and C++. We have described
some of methods and classes defined in developed programs. The fifth part of our
paper includes a comparative analysis of obtained numerical results.

2. Related research

In this section we list some applications of the programming languages Java, Python
and C++ in computer graphics.

The authors of the paper [1] considered the design of several Java applets that
visualize how the Voronoi diagram for the n-gon triangulation continuously changes
as individual points are moved across the plane, or as the underlying distance func-
tion is changed. Moreover, the authors report some experiences of using these Java
applets in teaching and research. The paper [2] specifies that the compound 3D
visualization modeling system can be built up with the open-sourced graphic li-
braries PYOpenGL and VTK (Visualization Toolkit). Spatial discrete points of the
Delaunay triangulation in any plane are accomplished through the setting of the
projection plane. Taking full advantage of the topology characteristic, a kind of
algorithm which can search interrelated triangles, segments and vertexes efficiently
is obtained and the object of inserting any constraint is reached.

Implementation of the convex polygon triangulation algorithm 215

The paper [4] describes an application of the Python language in computational
geometry, built on top of the Java language and run-time environment. Imple-
menting Python in Java has a number of limitations when compared to the current
implementation of Python. Advantages of programming language C++ in compu-
tational geometry and computer graphics are described in [3]. The authors of paper
[5] present how to take the best from the programming languages Java and Python
in software development and utilization of Java Python Interface.

We obtained the motivation for our comparative analysis for triangulation al-
gorithm of the polygon [6] by exploring a couple of similar tests for some related
algorithms. Testing results of several programming languages for more algorithms
are stated on the portal - The Computer Language Benchmarks. In order to com-
pare testing results with our implementation of the algorithm in above mentioned
programming languages we took the algorithm based on BinaryTrees. The reason
why we have chosen this structure is for the simple reason, because can find its
application in the process of triangulation of convex polygons. Figure 2.1 shows
performance measurements for Java, Python and C++ program for BinaryTrees.

Fig. 2.1: Performance measurements for algorithm - BinaryT rees

As for the CPU Load (testing on this portal is carried out on Intel Q6600 quad-
core) and in the most demanding case where is n = 20, highest CPU occupation is
registered by Python (93% , 92% , 98%, 93%). The values in parentheses refer to
the core CPU. In the case for C++ (27% ,98%, 25%, 24%) and Java (55%, 27% ,
76% , 57%).

3. Hurtado-Noy algorithm for the convex polygon triangulation

The number of convex polygon triangulations is closely related to Catalan number.
The nth Catalan number Cn is defined by

Cn =
(2n)!

(n+ 1)!n!
.(3.1)

216 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

The Hurtado-Noy algorithm (Algorithm 3..1) for triangulation of a convex poly-
gon is described in [6].

Algorithm 3..1 Hurtado-Noy algorithm

Require: Positive integer n

1: Check the structure containing 2n− 5 vertex pairs looking for pairs (ik, n− 1),
ik ∈ {1, 2, . . . , n−2}, 2 � k � n − 2, i.e. diagonals incident to vertex n − 1.
The positions of these indices ik within the structure describing a triangulation
should be stored in the array.

2: For every ik perform the transformation (il, n − 1) → (il, n), il < ik, 0 � l �
n− 3.

3: Insert new pairs (ik, n) and (n− 1, n) into the structure.

4: Take next ik, if any, and go to Step (2).

5: Continue the above procedure with next (n−1)-gon triangulation (i.e. structure
with 2n− 5 vertex pairs) if any. Otherwise halt.

Let T (n) be the set of triangulations of an n-gon. Every triangulation t that
belong to T (n) has a ”father” in T (n − 1) and one or more ”sons” in the set of
triangulations T (n+1). For given set T (n), we can actually generate triangulations
of the (n + 1)-gon arising from arbitrary triangulation t ∈ T (n). The number
of sons of t is dependent on the out degree of the vertex Vn [7]. What we are
basically doing is opening the parent polygon and adding in the (n + 1)th vertex.
We keep all the edges of the parent that did not involve Vn as they were. Next we
remove all the edges of the form E(p, n) from the parent and add in E(p, n + 1)
instead. Thereafter we add in all edges E(p, n) of the parent, where p is a vertex
numbered higher than i (remember we are constructing the ith son). This principle
is illustrated on Figure 3.1.

Fig. 3.1: The way of forming the new triangulation for (n + 1)-gon, according to
Hurtado algorithm

Indeed, we even need the triangulations of the (n−1)th polygon ready. And then
we generate d sons for each of those, where d is the degree of Vn of each triangulation.

Implementation of the convex polygon triangulation algorithm 217

However the hierarchy is nevertheless important because of its inherent simplicity
and also owing to the fact that it has a number of really exciting properties which
we shall state below (Figure 3.2).

Fig. 3.2: Levels three to six of the tree of triangulations - Hurtado Noy Hierarchy

4. Implementations in Java, Python and C++

First, we list some applications of these programming languages in terms of working
with graphic elements and solving algorithms in computational geometry.

The Java computational geometry library contains an implementation of major
computational geometry algorithms in Java [10], in a similar way that the Com-
putational Geometry Algorithms Library (CGAL) does for the C++ language. In
recent years, Java has significantly improved, particularly since the appearance of
Java 2 standard. Java programming language possesses many opportunities to cre-
ate applications with interactive graphical user interface (GUI), a detailed image
processing and programming of graphical elements.

The Computational Geometry Algorithms Library (CGAL) in C++ is used in
various areas requiring geometric computation, such as computer graphics, scien-
tific visualization, computer aided design and modeling, geographic information
systems, molecular biology, medical imaging, robotics and motion planning, mesh
generation and numerical methods. Real/Expr is a set of C++ class libraries which
supports the precision-driven approach in the implementation of certain algorithms
in computational geometry.

The implementation of the Hurtado-Noy algorithm is realized through the classes:
GenerateTriangulations, Triangulation, Node, LeafNode, Point and
PostScriptWriter (Figure 4.1).

218 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

Fig. 4.1: UML Class Diagram

In this part of the paper we present a comparative view for implementation of
the algorithm through selected segments of source code. We describe main parts of
the class Triangulation, including the methods Draw and DrawAll and executive
class GenerateTriangulations and Hurtado method. Due to the ease of compar-
ison of programming languages, source codes are divided into 5 parts (parts A, B,
C, D, E in Appendix). The class Triangulation is responsible for displaying a
convex polygon triangulation. This class provides the verification of all the ver-
tices of the polygon. The source code in all programming languages for the class
Triangulation is presented in Appendix A.

Method Draw is located in the class Triangulation and presented in Appendix
B. This method is responsible for making an individual triangulation. The command
drawLine is used to obtain the appropriate number of vertices to form the regular
convex polygon (see Appendix B1 and B2). One combination of internal diagonals
forms a triangulation of the convex polygon. Vectors sSine and sCosine and
variable d provide drawing regular convex polygons. The implementation takes

Implementation of the convex polygon triangulation algorithm 219

respectively those triangulations of internal diagonal which form the triangles inside
the polygon provided that they do not intersect (Algorithm 4..1).

Algorithm 4..1 Finding all internal diagonals of a simple convex polygons

1: Step 1: Set the counter i = 1.
2: Step 2: Connect ith point with (i+ 2)th point,
3: Step 3: Check wheter the new diagonal is internal.

Yes: Add it in the list and eliminate (i+ 1)th point of the polygon.
No: i = i+ 1.

4: Step 4: Return to Step 2.

Method DrawAll (Appendix C) also belongs to the class Triangulation and it
provides iteration where the method Draw is called as many times as it is neces-
sary for a given value n in the class GenerateTriangulations. And for drawing
regular convex polygons it calls the class Node (Appendix C1, C2 and C3). The
method copyFrom(int aOffset, Node t) provides insertion of new vertices in the
left directions copyFrom(aOffset, t.getLeft()). The insertion is done by the
command points.add(new Point(aOffset, aOffset+t.leaves())).

The Hurtado method, described in Appendix D, creates string of objects of the
class Node. These are vertices of polygons used to create instances of the class
Triangulation with the argument n (number of vertices of the polygon for which
is carried out by displaying the triangulation).

In Java, C++ and Python, the order of triangulation by the Hurtado-Noy hi-
erarchy (Appendix D1 and D2) is arranged. The main executive method (Ap-
pendix E) in Java is located in the class GenerateTriangulations and is respon-
sible for the basic input of n parameter (number of vertices of a convex polygon).
This method for Java, Python and C++ stores all drawn triangulation in out-
put file using the class PostSriptWriter (Appendix E1 and E2). The method
writer.psHeader() ensures that all triangulations are recorded in graphic repre-
sentation in PS format. The main executive method of the class Triangulation
uses the DrawAll() method which draws all triangulations by the Hurtado order
(mPicture.DrawAll(btrees)).

Instance of Triangulation class mPicture and btrees are object type Vector,
which with command app.Hurtado(n-2) perform GenerateTriangulations class.
In Python the special method of setOptionParser() is implemented, which implies
the main parameter of n and it also defines the mode of execution of the main
executive method (Appendix E2). As an example of the application execution, we
present the output in Java for n = 3, 4, 5, 6 (see Figure 4.2).

220 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

Fig. 4.2: Graphic display of the Hurtado-Noy order in the case n = 3, 4, 5, 6

5. Comparative analysis

In this part of the paper we compare implementations of the Hurtado’s algorithm
in three different programming languages. The speed of execution and simplicity of
executable source code are used in the comparative analysis. Table 5.1 contains a
comparative analysis for all performed tests. Taken values for n are integers from 10
to 16. We compared the speed of plotting the triangulations as well as the number
of generated triangulations per second.

Table 5.1: Comparative analysis for all performed tests

Criterion n Java Python C++

Speed of plotting the triangulations

10 2.96 4.19 2.95
11 4.07 6.08 4.25
12 5.81 17.83 6.23
13 15.24 66.25 15.88
14 46.34 244.52 55.28
15 124.18 886.12 134.12
16 328.16 3185.13 399.54

The number of combinations per second

10 483.11 341.29 484.75
11 1194.59 799.67 1144.00
12 2890.88 942.01 2695.99
13 3857.35 887.34 3701.89
14 4488.82 850.70 3762.88
15 5982.44 838.37 5539.07
16 8149.80 839.66 6693.80

Implementation of the convex polygon triangulation algorithm 221

*PC performance for testing: CPU: Intel(R) Core2Duo, T7700(2.40GHz), L2
Cache 4MB (Full-Speed), RAM Memory - 2Gb, Graphic card: NVIDIA GeForce
8600 MGS.

It can be observed that increasing values of n the Java application increases
the number of generated triangulations per second. On the other hand, in the
Python application the number of generated triangulations per second decreases for
values n > 12. Similarly to Java, the C++ code increases the number of plotted
triangulations in seconds with increasing the number of vertices up to n = 13.
However, for subsequent values of n we observed the stagnation in Python and
partially in C++, which is not the case in Java. C++ appears in this test as a bit
faster than Java but much faster than Python (Figure 5.1).

Fig. 5.1: The number of generated triangulations per second

Comparing the speed of execution, we come to the conclusion that Java needs
the shortest time necessary to draw triangulations for a given value n. The next
shortest time shows the implementation in C++. Obtained results are illustrated
on Figure 5.2. The x axis contains values for the number n, while the y axis contains
values for the spanned CPU time (in seconds).

Fig. 5.2: The ratio speed of execution

When we take a cross section of all graphics for the number of triangulations per
second for the values n = 10, 11, 12, 13, 14, it can be noted that in Java and C++ line
realize a number of drawn triangulations per second continuously in an ascending
path. In Python, up to value n = 12, the graph line is in an ascending path and

222 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

after that it is decreasing. Speed ratio is presented in Figure 5.3. The vertical axis
of the graphical representation contains the number of displayed triangulations per
second while the horizontal axis contains values for n.

Fig. 5.3: The number of triangulations per second individually

The Java application Java Virtual Machine (JVM) reserves more working mem-
ory during the execution for its object, while Python at the time of forming an
instance of the class Triangulation takes much less memory. Compiled C++ code
is directly translated into machine language but because of the connection between
classes separated into files requiring much more space than byte code. JVM is com-
piled for many platforms and it comes in a package with the standard Java libraries
that together make Java Runtime Environment (JRE). Any platform where it can
be installed can run Java applications. This is a huge advantage, it shortens the
time of porting to other platforms whilst giving extra control in the execution of
code and provides greater security.
All three applications can be downloaded from:
http://muzafers.uninp.edu.rs/triangulacija.html

6. Conclusion

The presented results are used to compare three programming language (Java, C++
or Python) in solving an important algorithm in computational geometry. We give
a proposal which programming language is most suitable to implement algorithms
for a convex polygon triangulation by Hurtado-Noy algorithm in terms of speed,
simplicity of syntax and clarity of the source code.

Our experience is that Java can be identified as a programming language with
exceptional abilities when it comes to working with graphics and also when it comes
to speed of execution. Object modeling and encapsulation of real object is the best
in C++. This language has gone furthest in the support of the object-oriented
programming. Python is a programming language characterized by a simple syntax
and clarity but a relatively slower execution. On the other hand, Java also has
object-oriented programming language with a simpler syntax and better portability
than the other two languages.

Implementation of the convex polygon triangulation algorithm 223

REFERENCES

1. C. Icking, R. Klein, P. Kllner, L. Ma: Java Applets for the Dynamic Visu-
alization of Voronoi Diagrams, Lecture Notes In Computer Science 2598 (2003),
191–205.

2. L. Zhen-ping, H. Huai-jian, L. Qiang, Z. Fa-hua: Study of the technology
of 3D modeling and visualization system based on Python, Changjiang Water
Resources Commission, Wuhan 430070, China

3. T. Suzumura, S. Trent, M. Tatsubori, A. Tozawa, T. Onodera Perfor-
mance Comparison of Web Service Engines in PHP, Java and C, Web Services,
2008. ICWS ’08. IEEE International Conference on , 23-26 Sept. 2008, 385–392

4. J. Hugunin,: Python and Java: The Best of BothWorlds, Corporation for Na-
tional Research Initiatives

5. D. Cunningham, E. Subrahmanian, A. Westerberg: User-Centered Evolu-
tionary Software Development Using Python and Java, Engineering Design Re-
search Center, Carnegie Mellon University, Pittsburgh, PA

6. F. Hurtado, M. Noy: Graph of Triangulations of a Convex Polygon and tree of
triangulations, Comput. Geom. 13 (1999), 179–188.

7. F. Hurtado, M. Noy: Counting triangulations of almost-convex polygons, Ars
Combinatoria 45 (1997) 169- 179.

8. F. Hurtado, M. Noy: Ears of triangulations and Catalan numbers, Discrete
Math. 149 (1996), 319-324.

9. M.R. Garey, D.S. Johnson, F.P. Preparata, R.E. Tarjan: Triangulating a
simple polygon, Inform. Process. Lett. 7 (1978), 175-180.

10. I. Peter and S. Gumhold: Teaching computer graphics with java 3, WSI/GRIS,
University of Tbingen, Germany.

11. J. Mark Keil, S.T. Vassilev: An Algorithm for the MaxMin Area Triangulation
of a Convex Polygon, 15th Canadian Conference on Computational Geometry,
CCCG 2003, Halifax, Nova Scotia, August 11

12. S. Masovic, M. Saracevic, H. Kamberovic, M. Kudumovic: Java technology
in the design and implementation of web applications, TTEM - Technics Technolo-
gies Education Management, 7, No.2, (2012).

13. M.J. Laszlo: Computational geometry and computer graphics in C++, Prentice
Hall (Upper Saddle River, N.J.), Book (ISBN 0132908425), 1996

14. M. Saracevic, P. Stanimirovic, S. Masovic: Implementation of some algo-
rithms in computer graphics in Java, TTEM-Technics Technologies Education
Management,(2012), Accepted.

15. I. Kazi, H. Chen, B. Stanley, D. Lilja: Techniques for Obtaining High
Performance in Java Programs, ACM Computing Surveys, 32, No.3, pp.213-240,
(2000).

224 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

APPENDIX

A) Class Triangulation
A1 - Java

publ i c c l a s s Tr i angu lat i on {
publ i c Tr i angu lat i on (i n t edges , Pos tScr iptWr i te r wr i t e r) {

t h i s . sCursorX = Tr iangu lat i on .XLIMIT;
t h i s . sCursorY = Tr iangu lat i on .YLIMIT;
t h i s . po ints = new Vector<Point >() ;
t h i s . w r i t e r = wr i t e r ;
t h i s . sS ine = new Vector () ;
t h i s . sCos ine = new Vector () ;

f o r (i n t k=0; k < edges ; k++) {
double d = (4∗k+edges)∗Math . PI /(2∗ edges) ;
t h i s . sS ine . add (30∗Math . s i n (d)) ;
t h i s . sCos ine . add (30∗Math . cos (d)) ; }

}

A2 - Python

c l a s s Tr i angu lat i on (ob j e c t) :
de f i n i t (s e l f , edges , w r i t e r) :

s e l f . sCursorX = Tr iangu lat i on .XLIMIT
s e l f . sCursorY = Tr iangu lat i on .YLIMIT
s e l f . po ints = []
s e l f . w r i t e r = wr i t e r
s e l f . sS ine = [] s e l f . sCos ine = []
f o r k in range (edges) :

d = (4∗k+edges)∗math . p i /(2∗ edges)
s e l f . sS ine . append (30∗math . s i n (d))
s e l f . sCos ine . append (30∗math . cos (d)

A3 - C++

Tr iangu lat i on : : Tr i angu lat i on (i n t edges , Pos tScr iptWr i te r ∗wr i t e r){
th i s−>sCursorX = Tr iangu lat i on : : XLIMIT;
th i s−>sCursorY = Tr iangu lat i on : : YLIMIT;
th i s−>po ints = new Vector<Point ∗>();
th i s−>wr i t e r = wr i t e r ;
th i s−>sS ine = new Vector () ;
th i s−>sCos ine = new Vector () ;
f o r (i n t k = 0 ; k < edges ; k++) {

double d = (4∗k + edges)∗M PI / (2∗ edges) ;
th i s−>sSine−>add (30∗ s i n (d)) ;
th i s−>sCosine−>add (30∗ cos (d)) ; }

}

B)Method Draw
B1 - Java

publ i c void Draw () throws IOException {
i f (Tr i angu lat i on .XLIMIT <= th i s . sCursorX) {

t h i s . sCursorX = Tr iangu lat i on .XMARGIN;
t h i s . sCursorY −= Tr iangu lat i on .YDELTA; }

f o r (i n t i = 0 ; i < t h i s . po ints . s i z e () ; i++) {
Point p = th i s . po ints . get (i) ;

Implementation of the convex polygon triangulation algorithm 225

t h i s . w r i t e r . drawLine (
−t h i s . sCos ine . get (p . x)+ th i s . sCursorX ,
t h i s . sS ine . get (p . x)+ th i s . sCursorY ,

−t h i s . sCos ine . get (p . y)+ th i s . sCursorX ,
t h i s . sS ine . get (p . y)+ th i s . sCursorY) ; }

}

B2 - Python

de f Draw(s e l f) :
i f (Tr i angu lat i on .XLIMIT <= s e l f . sCursorX) :
s e l f . sCursorX = Tr iangu lat i on .XMARGIN
s e l f . sCursorY −= Tr iangu lat i on .YDELTA

f o r p in s e l f . po ints :
s e l f . w r i t e r . drawLine (
− s e l f . sCos ine [p . x]+ s e l f . sCursorX ,
s e l f . sS ine [p . x]+ s e l f . sCursorY ,

− s e l f . sCos ine [p . y]+ s e l f . sCursorX ,
s e l f . sS ine [p . y]+ s e l f . sCursorY)

s e l f . sCursorX += Tr iangu lat i on .XDELTA

C) Method DrawAll
C1 - Java

publ i c void DrawAll (Vector<Node> t r e e s) throws IOException {
t h i s . w r i t e r . psHeader () ;
f o r (i n t i = 0 ; i < t r e e s . s i z e () ; i++) {
Node t = t r e e s . get (i) ;

t h i s . c l e a r () ;
t h i s . copyFrom (0 , t) ;
t h i s . Draw () ;

i f (i != 0 && i % 55 == 0) {
t h i s . sCursorX = Tr iangu lat i on .XLIMIT;
t h i s . sCursorY = Tr iangu lat i on .YLIMIT;
t h i s . w r i t e r . newPage () ; }

}
}

C2 - Python

de f DrawAll (s e l f , t r e e s) :
s e l f . w r i t e r . psHeader ()
count = 0
f o r t in t r e e s :

s e l f . c l e a r ()
s e l f . copyFrom (0 , t) ;
count += 1
s e l f . Draw () ;
i f count != 0 and count % 55 == 0 :

s e l f . sCursorX = Tr iangu lat i on .XLIMIT
s e l f . sCursorY = Tr iangu lat i on .YLIMIT
s e l f . w r i t e r . new page ()

s e l f . w r i t e r . T r a i l e r ()

C3 - C++

void : DrawAll (Vector<Node∗> ∗ t r e e s) throw (IOException){

226 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

th i s−>wr i te r−>psHeader () ;
f o r (i n t i = 0 ; i < t r ees−>s i z e () ; i++){

Node ∗ t = tr ees−>get (i) ;
th i s−>c l e a r () ;

th i s−>copyFrom (0 , t) ;
th i s−>Draw () ;
i f (i != 0 && i % 55 == 0){

th i s−>sCursorX = Tr iangu lat i on : : XLIMIT;
th i s−>sCursorY = Tr iangu lat i on : : YLIMIT;
th i s−>wr i te r−>newPage () ; }

}
}

D) Method Hurtado
D1 - Java

publ i c Vector<Node> Hurtado (i n t l im i t) {
Vector<Vector> t r e e s = new Vector<Vector >() ;

t r e e s . add (new Vector<LeafNode > ()) ;
t r e e s . get (0) . add (new LeafNode ()) ;

f o r (i n t n=0; n < l im i t ; n++) {
Vector<Node> l e v e l = new Vector () ;

f o r (i n t q = 0 ; q < t r e e s . get (n) . s i z e () ; q++) {
Node t = (Node) t r e e s . get (n) . get (q) ;
Node s = new Node (new LeafNode () , t . copy ()) ;
l e v e l . add (s) ;

f o r (i n t k = 0 ; k < t . l e f tBranch () ; k++) {
s = t . copy () ;
Node r = s ;

f o r (i n t i =0; i < k ; i++)
s = s . g e tLe f t () ;
s . s e tL e f t (new Node (new LeafNode () , s . g e tLe f t ())) ;
l e v e l . add (r) ; }

}
t r e e s . add (l e v e l) ; }
r e turn t r e e s . get (l im i t) ;

}

D2 - Python

de f Hurtado (l im i t) :
t r e e s = [[LeafNode ()]]
f o r n in range (l im i t) :

l e v e l = []
f o r t in t r e e s [n] :

s = Node (LeafNode () , t . copy ())
l e v e l . append (s)

f o r k in range (t . l e f tb r anch ()) :
s = t . copy () r = s

f o r i i n range (k) :
s = s . l e f t
s . l e f t = Node (LeafNode () , s . l e f t)
l e v e l . append (r) ;

t r e e s . append (l e v e l)
r e turn t r e e s [l im i t]

Implementation of the convex polygon triangulation algorithm 227

E) Main method
E1 - Java

publ i c s t a t i c void main (Str ing args []) {
t ry {

i n t n ; // number o f v e r t i c e s
F i l eWr i te r f s tream = new Fi l eWr i te r (n+”−polygons . ps ”) ;
Buf feredWriter out = new Buf feredWriter (f s tream) ;
Pos tScr iptWr i te r wr i t e r = new PostScr iptWr i te r (out) ;
App app = new App () ;
Vector<Node> bt r e e s = app . Hurtado (n−2);
Tr i angu lat i on mPicture = new Tr iangu lat i on (n , w r i t e r) ;

mPicture . DrawAll (b t r e e s) ;
out . c l o s e () ;

}
catch (Exception e){
e . pr intStackTrace () ; }

}
}

E2 - Python

de f main () :
g l oba l DEBUG
par ser = setOptionParser ()
(opt ions ,) = par ser . pa r s e a r g s ()
DEBUG = opt i ons . debug
wr i t e r = PostScr iptWr i te r (fh)
b t r e e s = Hurtado (opt i ons . edges−2)
i f DEBUG:

pr i n t l en (b t r e e s)
f o r t i n b t r e e s :

p r i n t t . toParen () , s t r (t)
p r i n t l en (b t r e e s)

mPicture = Tr iangu lat i on (opt i ons . edges , w r i t e r)
mPicture . DrawAll (b t r e e s)
fh . c l o s e ()

de f setOptionParser () :
par s er = OptionParser (usage=usage)
par s e r . add option (’−n’ , ’−−edges ’ , type=”i n t ” , d e f au l t =3)
r eturn par s er

228 M. Saračević, P. Stanimirović, S. Mašović and E. Bǐsevac

———————————————————————

Muzafer H. Saračević

Faculty of Sciences and Mathematics

Department of Mathematics and Informatics

Vǐsegradska 33

18000 Nǐs, Serbia

muzafers@gmail.com

Predrag S. Stanimirović

Faculty of Sciences and Mathematics

Department of Mathematics and Informatics

Vǐsegradska 33

18000 Nǐs, Serbia

pecko@pmf.ni.ac.rs

Sead H. Mašović

Faculty of Sciences and Mathematics

Department of Mathematics and Informatics

Vǐsegradska 33

18000 Nǐs, Serbia

sead.masovic@gmail.com

Enver Bǐsevac

University of Novi Pazar

Department of Computer Science

Dimitrija Tucovića bb

36300 Novi Pazar

e.bisevac@uninp.edu.rs

