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INVERSE CHARACTER FORMULA FOR VILENKIN SYSTEMS

Nacima Memié and Samra Pirié

Abstract. The aim of this paper is to express indices of inverse characters in the
Vilenkin system. This latter follows specific transformations when constructed upon
different bases.

1. Introduction

A common way to define the Vilenkin system (xn ) is from the so-called basis of
Rademacher functions (r,), known in a specific class of Vilenkin groups obtained
by an infinite product of the groups Z,, :={0,1,...,p, — 1}.

Let G be a Vilenkin group i.e. an infinite, totally disconnected, compact abelian
group which satisfies the second axiom of countability. The topology on G is de-
termined by a chain of open subgroups G = Go D G; D ... D G, D ... D
{0}, Ny_y Gn = {0}. We may assume that G,,/Gn41 is a cyclic group of prime
order p,y1 for every natural number n.

For j € N we denote m; := pips...pj, (mo :=1).

A classical example of a Vilenkin group is the product space

[ee]
[12.
j=1

where Zo = {0, 1} is the discrete cyclic group of second order, equipped with the
discrete topology and component adding (note that addition in each component is
done modulo 2). Its direct generalization is the group

o0
[] 2.
k=0

where Z,, :={0,1,...,n; — 1}, ng > 2, is a cyclic group of order ny (k € NU{0})
equipped with the discrete topology.
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For any fixed sequence of elements g; € G; \ Gi+1,1 € NU {0}, every z from G
can be written in a unique way as

(1.1) DE:ixiQia
i=0

where 0 < z; < piy1-

-1
n

Let p be a Haar measure on G. It is chosen so that u(Go) = 1, and pu(Gp,) =m
where m,, = p1ps...pn.

Each n € N can be uniquely represented in the following form

(1.2) n=" nymj, n; €{0,1,....pjs1 — 1}
j=0

where only a finite number of n; differ from zero. If j(n) € NU{0} is the smallest
of all s € NU {0} with the following property n; = 0 (Vj > s) and n(,) # 0, then

i(n)
(1.3) n=> nymj, n; €{0,1,...,pjr1 — 1}, 1 < ) < Pjny1
=0
which is equivalent to M)y <N < Mjp)t1-

G has a countable collection of characters, i.e., continuous complex valued func-
tions x, that satisfy the following condition

x(z +y) = x(x)x(), (Vz,y € G).

That collection is denoted by I'. The characters form an abelian group with
respect to the pointwise product of functions. The topology in I' is defined by a
neighborhood basis around the unit

Xo €T (xo(z) =1,Vz € G)
using the collection of all sets
U(Ae) :={xeTl:|x(a) -1 <e¢, Va € A},

where A goes over the collection of all compact subsets in G and € varies in the set
of positive numbers.

It is known [5] that (T, -) is a discrete, countable and abelian group with torsion.
Additionally, Vilenkin proved in [7] that T' is the union of the increasing sequence
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of groups I',, = {y € ' : y(x) = 1,V € Gy} and that T',41 /T, (Vn € NU{0}) is
cyclic with prime order p;, 1.

The characters on G are constructed in the following way:

For any n € NU {0}, there exists some X, € I'y1\I'n, such that x.m,, (g,) =

27i

ePn+1. However, the characters x,,, are arbitrary in I',,11\I';,, hence not uniquely
determined.

In [7] (see also [1]), the characters of I' are ordered as follows: put xo(zr) =
1,(Vz € G), the constant function, I'g := {xo}. Suppose that we have already
ordered all the elements of the subgroup

F] = {XO7X17 e 7ij—1}-
In T'j11\I'; choose an element x of minimal order and denote it by x;. For every
k such that m; < k < mjyq, put
Xk = X, * Xrs

where
k:kj~mj+7“, 1§k‘j<pj+1 AN 0<r<m;.

Then all the elements of the subgroup I'; 1 have been ordered and by induction
all the elements of T'. For n given by (1.2), we obviously have

oo
Xn =[]0 0<n; <pjsr.
§=0
Since I'j41/T; is a cyclic group of prime order p;41, we have
L\l ={x5, 1 1 < s <pjpa — 1}

and
it /T =A{,] 1 1 < s <pjpr — 1} D] = X0, - T

Therefore, every go € G \ Gj41 satisfies xum,(g0) # 1 A X%;rl(go) = 1. This
2mik
means that X, (go) = e?+!, for some 1 < k < p;;1. Therefrom,

2mika

feritt 1 1<z; <pjy1 -1}

is the set of all primitive p; 41 -th roots of 1 and follows {z;g0 : 1 < z; <pj41—1} =
G\ Gjy1. Hence, Xy, takes, on G \ Gj1, all values from the set

27is

{ePi+1 : 1 < s <pjp1 —1}
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and only those values. As a consequence, 3g; € G; \ G,41 such that

27

(1.4) Xm; (95) = €7+t

Without loss of generality we can assume that g; appearing in (1.1), are exactly
those g; with property (1.4).

Meanwhile, the author in [6] works on groups of the form [];~,Z,,. In these
groups the generalized Rademacher functions are defined as

27Wixy

rp(z) :=e mn (z € Gp,n €N).

Here we mention that the Rademacher functions can not be defined in every
Vilenkin group even if the element x is identified with the sequence (x,), for

Pn41
i

o0
which z = > z,g9,. Because from r (gn) = 1, for every i,n > 0, we get

n=0
7i(Dnt19n) = 1, for arbitrary ¢,n > 0, and it implies that p, 19, = 0 for all n. This
property is valid for [[7 , Z,, but not true in every Vilenkin group.

However, the generalized Rademacher functions introduced in [2] or [8] are not
included in the previous discussion.

The principal motivations of this work are the comments made in [4] about the
non-validity of Lemma 7 obtained in [6]. The assertions made in Lemma 1 and The-
orem 1 in [4] are not general, but only related to the assumption made in formula
(21) [4]. This latter is supposed not to affect the general case, therefore there is no
reason to claim that Lemma 7 in [6] is not valid.

We prove that the counterexample provided in [4] is not an adequate tool. In
fact, it is based on a very specific construction of the Vilenkin system. This latter
is clearly not uniquely determined. Of course, this only means that the enumera-
tion of characters is modified, because the dual of a given group is obviously unique.

Here we give a proof of Lemma 7 [6] obtained for the group [[; Z,, . For each
n € N let 7 denote the positive integer for which x,,(z)xa(z) = 1, for every z € G.

J
Lemma 1.1. [6]Ifn € [mj,mji1), thatisn= Y n;m;, 1 <n; <p;11;0<n; <

=0
j—1
Pit1,t=0,1,...,5—1, thenn € [m;,mj11) andnn = (pj1—nj)mi+ >, (Piy1—
i=0,n;7#0

7j—1
nl)ml =Mmj41 + Z mi4y1 —N.
1=0,n;7#0
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Proof. We only need to verify that y,xz = 1.
We have

XnXn = H X )X Bar =) H xperrna)
i=0,n,;7#0 i=0,n,;7#0

—~

H Xt X T ) x et =)
i=0,n,;7#0

— H bt =1

i=0,n,;7#0

0. Using the notations of [3] and those of the previous result, as n 7 = 0, it
follows that Lemmal.l is a direct consequence of XpXm = Xnem (see [3, Sect. 1.5]).

Let analyze formula (21) in [4] upon which the counterexample in Proposition 1
[4] was constructed. It claims that X" = Xmy_,- It is clear that this assumption
does not match with the definition of Rademacher functions where yhiv™" = xo. It
is an expected fact that the authors in [4] and [6] obtain different formulae for the

expression of k.

On the other hand we analyze Lemma 1 (b) in [4] in which it is stated that
Xmy (gN—1) = exp(2mi pr1N+1 ). But this contradicts the part of introduction where
it is assumed that addition is made componentwise modulo p,,, because in this case
XN (9N=1) = Xmy (PNIN—1) = Xmy (0) = 1. Then the results obtained in [4] are

not compatlble with the structure of [[,— Zn,.

In the following section, we investigate the general formula that gives k in every
Vilenkin group.

2. Main results

As previously mentioned the character yhi' is not necessarily of the form

Xmy_1, Deither it is forcefully from I'y_; \ T'y—2. In the following result we give
the form of n in the general setting.

As the character ' belongs to I'y_1, it must be of the form

PNl_
+ me]7

where the nonnegative integers aév < pjt+1,J < N —1, are uniquely identified.
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N
Theorem 2.1. Let G be any Vilenkin group. Then, if n = Y. n;m;, then n =
i=0
N N N _ '
> amy, where ¢ satisfy > bin; + Y, Fyaf = Fipi+1 + ¢, for some explicit non-
1=0 i=l i=l+1
negative integers (F;);, and bf, 1 > 1 satisfy the equations

b, = piy1 — 1,

i
L t
bi+ Y Ripiof = Ripapiia,
t=1+1

for 1 <i, where the positive integers R;, j > 0, are recursively uniquely determined
as 0 < bj,al <pip1 —1, for every 0 <1 <i,t.
Proof. We first prove that in the case of n = my, ¢; = b{\' foreveryl =0,...,N.

N .
As b{v + > Fia = EFipi41 + ¢, we only need to show that F; = 0 for each
i=I+1
1=0,...,N.

From b% = Fnpn41 + ¢n, it is clear that ¢y = b% and then Fy = 0.

Assume that F; = 0 for every i =1+ 1,..., N, for some fixed ] < N — 1. It
follows that bfv = Fipi+1 + ¢, hence ¢; = bfv and F; = 0.

If we prove the result for numbers of the form n = m;, then we will have for any
N
n= Y. n;m, that
i=0

X = Xn

N
_ oM
B Hszt
i=0
N
_ n;
- Hxﬁw
=0

N q

b \n;
= H( X )™
=0 (=0
N N

b;n,
= I

=0 1=l

N o

= Hsz

=0

N
N-1 bing
_ byny EL !
= Xmn H Xmy
=0
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N— 2: bln1
F p +14,C I |

N1 sz” +Fnaf)

= anN H sz

Here, the nonnegative integers Fy and ¢y € {0,1,...,pn+1 — 1}
uniquely determined.

Suppose that for some k € {1,2,..., N — 1} we have

N .
N—k (Z binit 3 Fia))

N
xa= II x It 77

I=N—k+1 1=0
This yields

205

are clearly

N . N X .
(3 by_pnit > Fiay ) Nkl (szm+ Z Fiad)
o i=N—k i=N_k+1 i=N_k+
Xn = H XlemN K sz

I=N—-k+1 =0

Let Fy_r and c¢y_j be the unique nonnegative integers satisfying

N N
Z by _gni + Z Fialy_j, = FN—kPN—k+1 + CN—k,
i=N—k i=N—k+1

with ey—x € {0,1,...,pnN—g+1 — 1}. We have

N
N—k—1 (Zb’n+ >
— Fn_kpN—k CN_k i=N—k-+1
Xi = H X X EPN bt ok Xt
I=N—k+1 1=0
N .
N N—k-1 (Eblnr‘r > Fioj+Fy_pap %)
o a i=N—k+1
- Xml H Xml
I=N—k =0

N N—k-1 (sz"+ Z FO‘I)
= H Xml H Xml
=N-—

l k

Then, for k = N — 1, x5 has the form

E bo”IJFZ F; ao)
Xi = HXlemo

c
H X
=0
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Let prove the result for n = my for some fixed N.
As a first step we show the relation

€5 L
Efta2a® . alN k
. cee QG N
(2.1)my (gs) = exp(2mi( Z E— +
1,02, sim€{s,5+1,..., N—1} Dii+1---Dip, +1PN+1 PN+1

)

for s < N, where the integer ky € {0,...,py+1 — 1} is not uniquely determined
but fixed, and e =1 if i; # s and & = 0 when i; = s.

The relation (2.1) can be obtained recursively. We first calculate x,,_,,(gs). We
have

s+1

Xhit2(gs) = xm. (9s)
s+1

exp(2m'a5 ),
Ps+1

because Xm,(9s) = 1if j < s — 1. This is true if and only if X, ,(9s) =
exp(QWi(L Fot1

v T o)), for some integer kgiy € {0, psr2 — 1}

Suppose now that (2.1) is valid for x,(gs), for every s +1 < j < N and show
it for N 4+ 1. We have

N QN+
p _ J
oz (gs) = [t (99)
Jj=s
N+1
e
exp(2mi(—
Ps+1
N €1 iy i j
k. Ya2at o k.
N+1 11t t2 T Ty J
D D e D DR T rieyd))
j=s+1 i1yizeim€lsy st 1,1} Lot Pim HLEG+L 41
It follows that
aN+1
. S
Xmns1(9s) = exp(2mi(———
Ps+1PN+2
N € in is J Nt N+
+Z Z kil ol ap a; N kjaj +]<;N+1
Jms L i1 izssim € {5541 ”_jil}Piﬁl~~~Pim+1pg‘+1p1v+2 Pj+1PN+2  PN+2
es
ka2l oML ey
= exp(2ril > o Onlit By ANL))

01102 ,ersiv €455+ 1,0 N} Piy+1 -+ Dip+1PN4+2  DPN+2
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The relation (2.1) is proved.

207

Following [4] in the proof of Theorem 1, the equations verified by bY can also
be proved recursively. We first show that b% = pn4+1 — 1. We have

pNy1— 1 _
eXp(ng;VT) = Xmn(9N)

= Xﬁm (gn)

= mel gn)
= Hx%z(gw)

bN

In order to calculate bY_,, we write

)_CmN (gN—l)

= XmN (gN)
by
= exp(2mi——).
PN+1
Then bY = py41 — 1 follows immediately from by € {0,1,...,pn41 — 1}.
Xmn (gN—l)
N
b

=[x (gn-1)

1=0

bN 1 by
= Xmn_1 (gN—1)Xniy (9N 1)
by k ¥
= exp(2mi—~—L) exp(2mi(pyg1 — 1)(— Nl
N PN+1  PNPN+1
. b%—1 + O‘%—l kn 0‘%—1
= exp(2mi( -
PN PN+1  PNPN+1
Y | +al

= Ymn (gN_l)eXp(Qm%)7

from which we get b%71 + a%71 = py. Hence, Ry = 1, where we have taken that

RN+1 =1.

Suppose there exists s < N — 2 such that for all j = s + 1
bN+ Z RZHa = Rjt1pj+1. Then, we prove that b2 + Z Riy10t =0 (mod

i=7+1

ps+1)'

1=s+1

,N — 1, we have
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Indeed,

N b
)ZmN(gs) = HXﬁ?Lj (gs)
Jj=s

N-1
N N by
= i (95)xmn (95) [T xom; (99)
Jj=s+1
es . .
by k,ra2al . alY k
:eXp(?Tri( S —|—b%( Z i1 g g im N
Pst1 W12y im€{8,541,...,N—1} Piy+1 -+ Pipy +1PN+1  PN+1
N—1 e ;
SIS by oo o, | by

J=HL inineim €Lt 1oty DT Pim 1P P

N N-1
= exp(2mi(—— + Z R Z

Ps+1 . o ) .
st Jj=s+1 01,82, ,im €{s,8+1,...,5 =1}

ES . . .

i1 12 13 J

kool ..o
71 11 12 tm

Piy+1---Pip+1

N-1 J

N kil ol ot
R' 11 11 12 " Ty )
- ( 1+1

F=t L i1 sin, i €4S, j—1} i)t 1 Dir+1 -+ Pip+1Pj+1

) S
P iy 2 13 N
k]aj) Z ki taas .o

Pitt i st N 1)

+ Rip1

+

Piy4+1 - Pip+1

e L
102,03 N
ki taZal .o kn

E : i i1 2 im

i1,i2,eyim €{8,5+1,..., N—1} Diy+1---Pim+1PN+1  PN+1

From

N-1 €5 o i S .
kool . ol o k;al
1 J

N
Z ( Z Z Ry -t tmJ 4R,

G=5+1 i1ingeim€ls,541,...,j—1} i=j+1 Pirt1 -+ - Pip+1Pj+1 Pj+1
N -1 €5 io s i i
ki taagd . oo kjad
=2 D ) Riy1— —— ) 4 Rigy
=512 =511 i1 iz E{5 541,01} Pir 41+ Pip+1P5+1 Pj+1
and
i—1 €f1 i 13 J i )
Z ( Z kil alal .o Al N kjaj)
j=st1 i1 ierim €485t enj— 1} Pii+1 - Pi+1P5+1 Pj+1
Efl iz 13 4 i
B Z ki toart . oo _ag
- )
Diy+1-- - Pip+1 Ps+1

i1,42,...,im €{s,s+1,...,i—1}
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Xm (gs) becomes

N
s

N o
+ Z Ry Ssl)-

Xmn (98) = Xmn (98> exp 2mi(
i=s+1 Ps+

ps—l-l

N .
This is only true when b + 37 Rii1ai = 0 (mod psi1), or when bV +
1=s+1
N .
> Riy10% = Rsy1psy1, where Ry is determined in a unique way.
1=s+1

This ends the proof. [
Lemma 7 in [6] and Theorem 1 in [4] are direct consequences of Theorem 2.1.

This can be seen in the following corollaries, applicable in two different specific
situations.

Corollary 2.1. Let G be a Vilenkin group, using the notations above, let (Xn)n
be a Vilekin system such that aj—v =0, forevery N >1,j=0,...,N —1. Then,
cq=pi41—ny ifng #0 and ¢, =0 if ng = 0.

Proof. From the definitions of (¢;); and bly, we have for [ = N cy = bNnx
(modpyy1) = (pnv+1 — D)ny (modpy41). Then ¢y = pyy1 — ny as ny # 0.
Applying

N N
> bini+ > Faj = Fpiy +a,
i=l i=l+1

for | < N —1, with b} =0 when [ <i— 1 and b} = p;11 — 1, we get ¢; + Fipi41 =
(pi+1 — )ny, then ¢; = pjp1 — ny (modp;+1). Hence, ¢; = pjp1 — ny if ny # 0 and
¢ =0if n; =0. [l

Corollary 2.2. Let G be a Vilenkin group, using the notations above, let (Xn)n
be a Vilekin system such that aév =0, for every N> 1,5 =0,...,N —2 and
oz?,LI =1. Then, cy = pn+1 —nn and ¢g = pip1 —ny — 1, for every Il < N — 1.

Proof. We first prove this assertion for n = my for some fixed N. This means
that we need to prove that bfv =p41—1lfor Il <N —1.

From the definition of bfV and by Ry = Ry+1 = 1, we deduce from b%_l +
Rny41 = Rypn, that 0N _; =py — 1.

If Rj42 =1 for some ! < N—2, then b{v—l—RHg = Ry11pi41 implies that R4 =1
and b = p;11 — 1. By induction it follows that R; = 1 for each [ = 1,..., N + 1,
and blN =p41— 1, fori=0,...,N.

This ends the proof for n = my.
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From R; =1,1=1,..., N+1, it is easily seen that bf =pp1—1,forl=0,...,i—
N
1, 4 < N — 1. Introducing these values in the expression of ¢; for n = > n;m;, we
i=0
obtain
N

(P41 — 1) va + Fi = Fipry +a,
=l
fori{ < N —1, and
(pn4+1 — D)ny = Fypn41 + N

This can be written as

N N

(22) pl+1(z n; — ) + Fiy = Zni + a,

i=l i=l

(ny — FN)pN+1 =nn +cn.

As ny # 0, the second expression is only valid when ny = Fy + 1, and then
CN = PN+1 — N
Now if we suppose that Fjy; = E?;Hl n; — 1 for some | < N — 1, then (2.2)

becomes
N

P () ni—F)=1+n+c.
i=l
Similarly, this is only true when F; = vazl n; — 1, and then ¢, = pj41 —ny — 1.
By induction, we deduce that F; = Zi\;l n; — 1, for every I < N — 1, hence ¢; =
P41 —ny—1lforevery IS N—-1. O

REFERENCES

1. G. H. AGgaev , N. JA. VILENKIN, G. M. DzZHAFARLI and A. I. RUBINSHTEIN:
Multiplicative systems of functions and harmonic analysis on 0-dimensional
groups , 1zd.(”ELM”), Baku 1981. (Russian)

2. G. GAT: Best approzimation by Vilenkin-like systems , Acta Math. Acad. Paed.
Nyiregyh. 17(3) (2001), pp. 161-169.

3. B. I. GoruBov , A. V. EriMOV and V. A. SKVORTSOV: Walsh series and trans-
forms , Nauka, Moscow, 1987; English transl., Kluwer, Dordrecht, 1991.

4. M. PEP1¢:  About characters on Vilenkin groups, Matematicki Bilten 32 (2008),
(31-42).

5. E. HEwITT and K. A. Ross: Abstract harmonic analysis, vol. I, Springer - Verlag,
Berlin, 1963; translated in Nauka, Moskva, 1975.



Inverse character formula for Vilenkin systems 211

6. N. TANOVIG-MILLER: Integrability and L1 convergence classes for unbounded
Vilenkin systems, Acta Sci. Math. (Szeged) 69 (2003), 687-732.

7. N. YA. VILENKIN: On a class of complete orthonormal systems, Izv. Akad. Nauk.
SSSR Ser. Math. 11 (1947), 363-400; translated in Amer. Math. Soc. Transl. 28
(1963), 1-35.

8. N. YA. VILENKIN: On a theory of lacunar orthogonal systems , Izv. Akad. Nauk
SSSR, Ser. Mat. 13 (1949), pp. 245-252.

Nacima Memié

University of Sarajevo

Department of Mathematics

Zmaja od Bosne 35

71000 Sarajevo, Bosnia and Herzegovina

nacima.o@gmail.com

Samra Pirié¢

University of Tuzla

Department of Mathematics
Univerzitetska 4

75000 Tuzla, Bosnia and Herzegovina

samra.piric@untz.ba



