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INVERSE CHARACTER FORMULA FOR VILENKIN SYSTEMS

Nacima Memić and Samra Pirić

Abstract. The aim of this paper is to express indices of inverse characters in the
Vilenkin system. This latter follows specific transformations when constructed upon
different bases.

1. Introduction

A common way to define the Vilenkin system (χn)n is from the so-called basis of
Rademacher functions (rn)n known in a specific class of Vilenkin groups obtained
by an infinite product of the groups Zpn := {0, 1, . . . , pn − 1}.

Let G be a Vilenkin group i.e. an infinite, totally disconnected, compact abelian
group which satisfies the second axiom of countability. The topology on G is de-
termined by a chain of open subgroups G = G0 ⊃ G1 ⊃ . . . ⊃ Gn ⊃ . . . ⊃
{0},

∩∞
n=0 Gn = {0}. We may assume that Gn/Gn+1 is a cyclic group of prime

order pn+1 for every natural number n.

For j ∈ N we denote mj := p1p2 . . . pj , (m0 := 1).

A classical example of a Vilenkin group is the product space

∞∏
j=1

Z2,

where Z2 = {0, 1} is the discrete cyclic group of second order, equipped with the
discrete topology and component adding (note that addition in each component is
done modulo 2). Its direct generalization is the group

∞∏
k=0

Znk
,

where Znk
:= {0, 1, . . . , nk − 1}, nk ≥ 2, is a cyclic group of order nk (k ∈ N ∪ {0})

equipped with the discrete topology.
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For any fixed sequence of elements gi ∈ Gi \Gi+1, i ∈ N ∪ {0}, every x from G
can be written in a unique way as

x =
∞∑
i=0

xigi,(1.1)

where 0 ≤ xi < pi+1.

Let µ be a Haar measure onG. It is chosen so that µ(G0) = 1, and µ(Gn) = m−1
n ,

where mn = p1p2 . . . pn.

Each n ∈ N can be uniquely represented in the following form

n =

∞∑
j=0

njmj , nj ∈ {0, 1, . . . , pj+1 − 1}(1.2)

where only a finite number of nj differ from zero. If j(n) ∈ N∪{0} is the smallest
of all s ∈ N ∪ {0} with the following property nj = 0 (∀j > s) and nj(n) ̸= 0, then

n =

j(n)∑
j=0

njmj , nj ∈ {0, 1, . . . , pj+1 − 1}, 1 ≤ nj(n) < pj(n)+1(1.3)

which is equivalent to mj(n) ≤ n < mj(n)+1.

G has a countable collection of characters, i.e., continuous complex valued func-
tions χ, that satisfy the following condition

χ(x+ y) = χ(x)χ(y), (∀x, y ∈ G).

That collection is denoted by Γ. The characters form an abelian group with
respect to the pointwise product of functions. The topology in Γ is defined by a
neighborhood basis around the unit

χ0 ∈ Γ (χ0(x) = 1,∀x ∈ G)

using the collection of all sets

U(A, ε) := {χ ∈ Γ : |χ(a)− 1| < ε, ∀a ∈ A},

where A goes over the collection of all compact subsets in G and ε varies in the set
of positive numbers.

It is known [5] that (Γ, ·) is a discrete, countable and abelian group with torsion.
Additionally, Vilenkin proved in [7] that Γ is the union of the increasing sequence
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of groups Γn = {γ ∈ Γ : γ(x) = 1,∀x ∈ Gn} and that Γn+1/Γn (∀n ∈ N ∪ {0}) is
cyclic with prime order pn+1.

The characters on G are constructed in the following way:

For any n ∈ N ∪ {0}, there exists some χmn ∈ Γn+1\Γn, such that χmn(gn) =

e
2πi

pn+1 . However, the characters χmn are arbitrary in Γn+1\Γn, hence not uniquely
determined.

In [7] (see also [1]), the characters of Γ are ordered as follows: put χ0(x) =
1, (∀x ∈ G), the constant function, Γ0 := {χ0}. Suppose that we have already
ordered all the elements of the subgroup

Γj = {χ0, χ1, . . . , χmj−1}.

In Γj+1\Γj choose an element χ of minimal order and denote it by χmj . For every
k such that mj ≤ k < mj+1, put

χk = χkj
mj

· χr,

where
k = kj ·mj + r, 1 ≤ kj < pj+1 ∧ 0 ≤ r < mj .

Then all the elements of the subgroup Γj+1 have been ordered and by induction
all the elements of Γ. For n given by (1.2), we obviously have

χn =
∞∏
j=0

χnj
mj

, 0 ≤ nj < pj+1.

Since Γj+1/Γj is a cyclic group of prime order pj+1, we have

Γj+1\Γj = {χs
mj

: 1 ≤ s ≤ pj+1 − 1}

and
Γj+1/Γj = {[χs

mj
] : 1 ≤ s ≤ pj+1 − 1}, [χs

mj
] := χs

mj
· Γj .

Therefore, every g0 ∈ Gj \ Gj+1 satisfies χmj (g0) ̸= 1 ∧ χ
pj+1
mj (g0) = 1. This

means that χmj (g0) = e
2πik
pj+1 , for some 1 ≤ k < pj+1. Therefrom,

{e
2πikxj
pj+1 : 1 ≤ xj ≤ pj+1 − 1}

is the set of all primitive pj+1 -th roots of 1 and follows {xjg0 : 1 ≤ xj ≤ pj+1−1} =
Gj \Gj+1. Hence, χmj takes, on Gj \Gj+1, all values from the set

{e
2πis
pj+1 : 1 ≤ s ≤ pj+1 − 1}
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and only those values. As a consequence, ∃gj ∈ Gj \Gj+1 such that

χmj (gj) = e
2πi

pj+1 .(1.4)

Without loss of generality we can assume that gj appearing in (1.1), are exactly
those gj with property (1.4).

Meanwhile, the author in [6] works on groups of the form
∏∞

k=0 Znk
. In these

groups the generalized Rademacher functions are defined as

rn(x) := e
2πixn
mn (x ∈ Gm, n ∈ N).

Here we mention that the Rademacher functions can not be defined in every
Vilenkin group even if the element x is identified with the sequence (xn)n for

which x =
∞∑

n=0
xngn. Because from r

pn+1

i (gn) = 1, for every i, n ≥ 0, we get

ri(pn+1gn) = 1, for arbitrary i, n ≥ 0, and it implies that pn+1gn = 0 for all n. This
property is valid for

∏∞
k=0 Znk

but not true in every Vilenkin group.

However, the generalized Rademacher functions introduced in [2] or [8] are not
included in the previous discussion.

The principal motivations of this work are the comments made in [4] about the
non-validity of Lemma 7 obtained in [6]. The assertions made in Lemma 1 and The-
orem 1 in [4] are not general, but only related to the assumption made in formula
(21) [4]. This latter is supposed not to affect the general case, therefore there is no
reason to claim that Lemma 7 in [6] is not valid.

We prove that the counterexample provided in [4] is not an adequate tool. In
fact, it is based on a very specific construction of the Vilenkin system. This latter
is clearly not uniquely determined. Of course, this only means that the enumera-
tion of characters is modified, because the dual of a given group is obviously unique.

Here we give a proof of Lemma 7 [6] obtained for the group
∏∞

k=0 Znk
. For each

n ∈ N let ñ denote the positive integer for which χn(x)χñ(x) = 1, for every x ∈ G.

Lemma 1.1. [6] If n ∈ [mj ,mj+1), that is n =
j∑

i=0

nimi, 1 ≤ nj < pj+1; 0 ≤ ni <

pi+1, i = 0, 1, . . . , j−1, then ñ ∈ [mj ,mj+1) and ñ = (pj+1−nj)mj+
j−1∑

i=0,ni ̸=0

(pi+1−

ni)mi = mj+1 +
j−1∑

i=0,ni ̸=0

mi+1 − n.
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Proof. We only need to verify that χnχñ ≡ 1.

We have

χnχñ = (

j∏
i=0,ni ̸=0

χni
mi

)χ(pj+1−nj)
mj

j−1∏
i=0,ni ̸=0

χ(pi+1−ni)
mi

(

j−1∏
i=0,ni ̸=0

χni
mi

χ(pi+1−ni)
mi

)χnj
mj

χ(pj+1−nj)
mj

=

j∏
i=0,ni ̸=0

χpi+1
mi

≡ 1.

. Using the notations of [3] and those of the previous result, as n ⊕ ñ = 0, it
follows that Lemma1.1 is a direct consequence of χnχm = χn⊕m (see [3, Sect. 1.5]).

Let analyze formula (21) in [4] upon which the counterexample in Proposition 1
[4] was constructed. It claims that χ

pN+1
mN = χmN−1

. It is clear that this assumption
does not match with the definition of Rademacher functions where χ

pN+1
mN = χ0. It

is an expected fact that the authors in [4] and [6] obtain different formulae for the
expression of k̃.

On the other hand we analyze Lemma 1 (b) in [4] in which it is stated that
χmN (gN−1) = exp(2πi 1

pNpN+1
). But this contradicts the part of introduction where

it is assumed that addition is made componentwise modulo pn, because in this case
χpN
mN

(gN−1) = χmN
(pNgN−1) = χmN

(0) = 1. Then the results obtained in [4] are
not compatible with the structure of

∏∞
k=0 Znk

.

In the following section, we investigate the general formula that gives k̃ in every
Vilenkin group.

2. Main results

As previously mentioned the character χ
pN+1
mN is not necessarily of the form

χmN−1
, neither it is forcefully from ΓN−1 \ ΓN−2. In the following result we give

the form of ñ in the general setting.

As the character χ
pN+1
mN belongs to ΓN−1, it must be of the form

χpN+1
mN

=
N−1∏
j=0

χ
αN

j
mj ,

where the nonnegative integers αN
j ≤ pj+1, j ≤ N − 1, are uniquely identified.



204 N. Memić and S. Pirić

Theorem 2.1. Let G be any Vilenkin group. Then, if n =
N∑
i=0

nimi, then ñ =

N∑
l=0

clml, where cl satisfy
N∑
i=l

bilni +
N∑

i=l+1

Fiα
i
l = Flpl+1 + cl, for some explicit non-

negative integers (Fi)i, and bil, i ≥ l satisfy the equations

bii = pi+1 − 1,

bil +
i∑

t=l+1

Rt+1α
t
l = Rl+1pl+1,

for l < i, where the positive integers Rj, j ≥ 0, are recursively uniquely determined
as 0 ≤ bil, α

t
l ≤ pl+1 − 1, for every 0 ≤ l ≤ i, t.

Proof. We first prove that in the case of n = mN , cl = bNl for every l = 0, . . . , N .

As bNl +
N∑

i=l+1

Fiα
i
l = Flpl+1 + cl, we only need to show that Fi = 0 for each

i = 0, . . . , N .

From bNN = FNpN+1 + cN , it is clear that cN = bNN and then FN = 0.

Assume that Fi = 0 for every i = l + 1, . . . , N , for some fixed l ≤ N − 1. It
follows that bNl = Flpl+1 + cl, hence cl = bNl and Fl = 0.

If we prove the result for numbers of the form n = mi, then we will have for any

n =
N∑
i=0

nimi that

χñ = χ̄n

=
N∏
i=0

χ̄ni
mi

=

N∏
i=0

χni

m̃i

=

N∏
i=0

(

i∏
l=0

χ
bil
ml)

ni

=

N∏
l=0

N∏
i=l

χ
bilni
ml

=
N∏
l=0

χ

N∑
i=l

bilni

ml

= χ
bNNnN
mN

N−1∏
l=0

χ

N∑
i=l

bilni

ml
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= χFNpN+1
mN

χcN
mN

N−1∏
l=0

χ

N∑
i=l

bilni

ml

= χcN
mN

N−1∏
l=0

χ
(

N∑
i=l

bilni+FNαN
l )

ml .

Here, the nonnegative integers FN and cN ∈ {0, 1, . . . , pN+1 − 1} are clearly
uniquely determined.

Suppose that for some k ∈ {1, 2, . . . , N − 1} we have

χñ =
N∏

l=N−k+1

χcl
ml

N−k∏
l=0

χ
(

N∑
i=l

bilni+
N∑

i=N−k+1

Fiα
i
l)

ml .

This yields

χñ =
N∏

l=N−k+1

χcl
ml

χ
(

N∑
i=N−k

biN−kni+
N∑

i=N−k+1

Fiα
i
N−k)

mN−k

N−k−1∏
l=0

χ
(

N∑
i=l

bilni+
N∑

i=N−k+1

Fiα
i
l)

ml .

Let FN−k and cN−k be the unique nonnegative integers satisfying

N∑
i=N−k

biN−kni +
N∑

i=N−k+1

Fiα
i
N−k = FN−kpN−k+1 + cN−k,

with cN−k ∈ {0, 1, . . . , pN−k+1 − 1}. We have

χñ =
N∏

l=N−k+1

χcl
ml

χFN−kpN−k+1
mN−k

χcN−k
mN−k

N−k−1∏
l=0

χ
(

N∑
i=l

bilni+
N∑

i=N−k+1

Fiα
i
l)

ml

=
N∏

l=N−k

χcl
ml

N−k−1∏
l=0

χ
(

N∑
i=l

bilni+
N∑

i=N−k+1

Fiα
i
l+FN−kα

N−k
l )

ml

=

N∏
l=N−k

χcl
ml

N−k−1∏
l=0

χ
(

N∑
i=l

bilni+
N∑

i=N−k

Fiα
i
l)

ml .

Then, for k = N − 1, χñ has the form

χñ =

N∏
l=1

χcl
ml

χ
(

N∑
i=0

bi0ni+
N∑

i=1

Fiα
i
0)

m0

=
N∏
l=0

χcl
ml

.



206 N. Memić and S. Pirić

Let prove the result for n = mN for some fixed N .

As a first step we show the relation

χmN
(gs) = exp(2πi(

∑
i1,i2,...,im∈{s,s+1,...,N−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αN

im

pi1+1 . . . pim+1pN+1
+

kN
pN+1

)),(2.1)

for s < N , where the integer kN ∈ {0, . . . , pN+1− 1} is not uniquely determined
but fixed, and εsi1 = 1 if i1 ̸= s and εsi1 = 0 when i1 = s.

The relation (2.1) can be obtained recursively. We first calculate χms+1(gs). We
have

χps+2
ms+1

(gs) = χ
αs+1

s
ms (gs)

= exp(2πi
αs+1
s

ps+1
),

because χmj (gs) = 1 if j ≤ s − 1. This is true if and only if χms+1(gs) =

exp(2πi(
αs+1

s

ps+1ps+2
+ ks+1

ps+2
)), for some integer ks+1 ∈ {0, . . . , ps+2 − 1}.

Suppose now that (2.1) is valid for χmj (gs), for every s+ 1 ≤ j ≤ N and show
it for N + 1. We have

χpN+2
mN+1

(gs) =
N∏
j=s

χ
αN+1

j
mj (gs)

= exp(2πi(
αN+1
s

ps+1

+

N∑
j=s+1

αN+1
j (

∑
i1,i2,...,im∈{s,s+1,...,j−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im

pi1+1 . . . pim+1pj+1
+

kj
pj+1

))).

It follows that

χmN+1
(gs) = exp(2πi(

αN+1
s

ps+1pN+2

+

N∑
j=s+1

∑
i1,i2,...,im∈{s,s+1,...,j−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im
αN+1
j

pi1+1 . . . pim+1pj+1pN+2
+

kjα
N+1
j

pj+1pN+2
+
kN+1

pN+2
))

= exp(2πi(
∑

i1,i2,...,im∈{s,s+1,...,N}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αN+1

im

pi1+1 . . . pim+1pN+2
+

kN+1

pN+2
)).
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The relation (2.1) is proved.

Following [4] in the proof of Theorem 1, the equations verified by bNs can also
be proved recursively. We first show that bNN = pN+1 − 1. We have

exp(2πi
pN+1 − 1

pN+1
) = χ̄mN

(gN )

= χm̃N (gN )

=
N∏
l=0

χcl
ml

(gN )

=
N∏
l=0

χ
bNl
ml(gN )

= χ
bNN
mN (gN )

= exp(2πi
bNN

pN+1
).

Then bNN = pN+1 − 1 follows immediately from bNN ∈ {0, 1, . . . , pN+1 − 1}.
In order to calculate bNN−1, we write

χ̄mN (gN−1) = χm̃N (gN−1)

=
N∏
l=0

χ
bNl
ml(gN−1)

= χ
bNN−1
mN−1(gN−1)χ

bNN
mN (gN−1)

= exp(2πi
bNN−1

pN
) exp(2πi(pN+1 − 1)(

kN
pN+1

+
αN
N−1

pNpN+1
))

= exp(2πi(
bNN−1 + αN

N−1

pN
− (

kN
pN+1

+
αN
N−1

pNpN+1
)))

= χ̄mN
(gN−1) exp(2πi

bNN−1 + αN
N−1

pN
),

from which we get bNN−1 + αN
N−1 = pN . Hence, RN = 1, where we have taken that

RN+1 = 1.

Suppose there exists s ≤ N − 2 such that for all j = s + 1, . . . , N − 1, we have

bNj +
N∑

i=j+1

Ri+1α
i
j = Rj+1pj+1. Then, we prove that bNs +

N∑
i=s+1

Ri+1α
i
s ≡ 0 (mod

ps+1).
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Indeed,

χ̄mN
(gs) =

N∏
j=s

χ
bNj
mj (gs)

= χ
bNs
ms(gs)χ

bNN
mN (gs)

N−1∏
j=s+1

χ
bNj
mj (gs)

= exp(2πi(
bNs
ps+1

+ bNN (
∑

i1,i2,...,im∈{s,s+1,...,N−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αN

im

pi1+1 . . . pim+1pN+1
+

kN
pN+1

)

+
N−1∑
j=s+1

bNj (
∑

i1,i2,...,im∈{s,s+1,...,j−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im

pi1+1 . . . pim+1pj+1
+

kj
pj+1

)))

= exp(2πi(
bNs
ps+1

+
N−1∑
j=s+1

Rj+1

∑
i1,i2,...,im∈{s,s+1,...,j−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im

pi1+1 . . . pim+1

−
N−1∑
j=s+1

(
∑

i1,i2,...,im∈{s,s+1,...,j−1}

N∑
i=j+1

Ri+1

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im
αi
j

pi1+1 . . . pim+1pj+1

+ Ri+1

kjα
i
j

pj+1
) +

∑
i1,i2,...,im∈{s,s+1,...,N−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αN

im

pi1+1 . . . pim+1

−
∑

i1,i2,...,im∈{s,s+1,...,N−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αN

im

pi1+1 . . . pim+1pN+1
− kN

pN+1
)).

From

N−1∑
j=s+1

(
∑

i1,i2,...,im∈{s,s+1,...,j−1}

N∑
i=j+1

Ri+1

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im
αi
j

pi1+1 . . . pim+1pj+1
+Ri+1

kjα
i
j

pj+1
)

=
N∑

i=s+2

i−1∑
j=s+1

(
∑

i1,i2,...,im∈{s,s+1,...,j−1}

Ri+1

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im
αi
j

pi1+1 . . . pim+1pj+1
) +Ri+1

kjα
i
j

pj+1
,

and

i−1∑
j=s+1

(
∑

i1,i2,...,im∈{s,s+1,...,j−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αj

im
αi
j

pi1+1 . . . pim+1pj+1
+

kjα
i
j

pj+1
)

=
∑

i1,i2,...,im∈{s,s+1,...,i−1}

k
εsi1
i1

αi2
i1
αi3
i2
. . . αi

im

pi1+1 . . . pim+1
− αi

s

ps+1
,
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χ̄mN
(gs) becomes

χ̄mN (gs) = χ̄mN (gs) exp 2πi(
bNs
ps+1

+

N∑
i=s+1

Ri+1
αi
s

ps+1
).

This is only true when bNs +
N∑

i=s+1

Ri+1α
i
s ≡ 0 (mod ps+1), or when bNs +

N∑
i=s+1

Ri+1α
i
s = Rs+1ps+1, where Rs+1 is determined in a unique way.

This ends the proof.

Lemma 7 in [6] and Theorem 1 in [4] are direct consequences of Theorem 2.1.
This can be seen in the following corollaries, applicable in two different specific
situations.

Corollary 2.1. Let G be a Vilenkin group, using the notations above, let (χn)n
be a Vilekin system such that αN

j = 0, for every N ≥ 1, j = 0, . . . , N − 1. Then,
cl = pl+1 − nl if nl ̸= 0 and cl = 0 if nl = 0.

Proof. From the definitions of (cl)l and blN , we have for l = N cN ≡ bNNnN

(modpN+1) ≡ (pN+1 − 1)nN (modpN+1). Then cN = pN+1 − nN as nN ̸= 0.
Applying

N∑
i=l

bilni +
N∑

i=l+1

Fiα
i
l = Flpl+1 + cl,

for l ≤ N − 1, with bil = 0 when l ≤ i − 1 and bii = pi+1 − 1, we get cl + Flpl+1 =
(pl+1 − 1)nl, then cl ≡ pl+1 − nl (modpl+1). Hence, cl = pl+1 − nl if nl ̸= 0 and
cl = 0 if nl = 0.

Corollary 2.2. Let G be a Vilenkin group, using the notations above, let (χn)n
be a Vilekin system such that αN

j = 0, for every N ≥ 1, j = 0, . . . , N − 2 and

αN
N−1 = 1. Then, cN = pN+1 − nN and cl = pl+1 − nl − 1, for every l ≤ N − 1.

Proof. We first prove this assertion for n = mN for some fixed N . This means
that we need to prove that bNl = pl+1 − 1 for l ≤ N − 1.

From the definition of bNl and by RN = RN+1 = 1, we deduce from bNN−1 +
RN+1 = RNpN , that bNN−1 = pN − 1.

If Rl+2 = 1 for some l ≤ N−2, then bNl +Rl+2 = Rl+1pl+1 implies that Rl+1 = 1
and bNl = pl+1 − 1. By induction it follows that Rl = 1 for each l = 1, . . . , N + 1,
and bNl = pl+1 − 1, for l = 0, . . . , N .

This ends the proof for n = mN .
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From Rl = 1, l = 1, . . . , N+1, it is easily seen that bil = pl+1−1, for l = 0, . . . , i−

1, i ≤ N − 1. Introducing these values in the expression of cl for n =
N∑
i=0

nimi, we

obtain

(pl+1 − 1)

N∑
i=l

ni + Fl+1 = Flpl+1 + cl,

for l ≤ N − 1, and

(pN+1 − 1)nN = FNpN+1 + cN .

This can be written as

pl+1(
N∑
i=l

ni − Fl) + Fl+1 =
N∑
i=l

ni + cl,(2.2)

and

(nN − FN )pN+1 = nN + cN .

As nN ̸= 0, the second expression is only valid when nN = FN + 1, and then
cN = pN+1 − nN .

Now if we suppose that Fl+1 =
∑N

i=l+1 ni − 1 for some l ≤ N − 1, then (2.2)
becomes

pl+1(
N∑
i=l

ni − Fl) = 1 + nl + cl.

Similarly, this is only true when Fl =
∑N

i=l ni − 1, and then cl = pl+1 − nl − 1.

By induction, we deduce that Fl =
∑N

i=l ni − 1, for every l ≤ N − 1, hence cl =
pl+1 − nl − 1 for every l ≤ N − 1.
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