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SINGLE-FACILITY WEBER LOCATION PROBLEM
BASED ON THE LIFT METRIC

Predrag S. Stanimirović∗†, Marija S. Ćirić,

Lev A. Kazakovtsev, Idowu A. Osinuga‡

Abstract. The continuous planar single-facility min-sumWeber location problem based
upon the lift metric is investigated. Essentially, the problem is reduced to the known
algorithm which assumes the use of rectilinear distances in the plane. An effective
algorithm is developed for its solution. A numerical example illustrating the introduced
algorithm is given.

1. Introduction

Location problems represent a very important class of optimization tasks, where
the coordinate of locations and distances between them are the main parameters.
In the general case, the task of location problem is to define positions of some new
facilities from the actual space in which some other relevant objects (points) are
already placed. New facilities are centers that provide services and are called suppli-
ers. The existing facilities are the service users or clients, and are called customers.
Location problems occur frequently in real life. Many systems in the public and
private sectors are characterized by facilities that provide homogeneous services at
their locations to a given set of fixed points or customers. Examples of such facili-
ties include warehouse location, positioning a computer and communication units,
locating hospitals, police stations, locating fire stations in a city, or locating base
stations in wireless networks.

Different classifications of the location problems are known. The classification
scheme from [16] assumes five positions.
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In the present article we pay attention to the selection of the distance function
as the characterization criterion of the location problem. The distance between
two points is the length of the shortest path connecting them. The metric by
which the (generalized) distance between two points is measured may be different
in various instances [3]. In the calculating of distance between two points, the
most common distance metrics in a continuous space are those known as the class
of lp distance metrics, primarily rectangular (l1), Euclidean (l2) and Chebyshev
(l∞) metric. Detailed explanation of various metrics can be found in Dictionary
of distances [6]. Many factors affect the process of metrics choosing. The most
important factor is the nature of the problem. For example, if it is possible to move
rectilinearly between two points, the distance between them is exactly given by the
Euclidean (or straight-line distance) metric. On the other hand, in the cities where
streets intersect under the right angle mainly, the distance between two points will
be approximated using the rectangular metric (also known as the Manhattan, ”city
block” distance, the right-angle distance metric or taxicab distance). Measures of
distances in chess are a characteristic example. The distance between squares on
the chessboard for rooks is measured in Manhattan distance; kings and queens use
the Chebyshev distance, and bishops use the Manhattan distance.

We emphasize the next main contribution of our paper.

The Weber location problem (also called the Fermat-Weber problem) is a basic
model in the location theory which has received significant attention in the sci-
entific literature. For a detailed review see, for example, [34]. The paper [26]
investigated a reformulation of the unconstrained form of the classical Weber prob-
lem into an unconstrained minimum norm problem. The classical Weber problem
is established with the Euclidean norm underlying the definition of the distance
function. But, other measures, principally lp norms, also play an important role in
the theory and practice of location problems. The norms are arbitrary, in general.
The most popular method to solve the Weber problem with Euclidean distances
is given by a one-point iterative procedure which was first proposed by Weiszfeld
[33]. The procedure is readily generalized to lp distances (see, for example, [21],
Ch. 2). Solution of the continuous Weber problem in l1 distance is described in
[8]. The three-dimensional Fermat-Weber facility location problem with Tcheby-
chev distance is investigated in [27]. The Weber location problem with squared
Euclidean distances is considered in [8]; the same problem under the assumption
that the weights are selected from a given set of intervals at any point, is studied
in [10].

The lp norms have received the most attention from location analysts. But,
many other types of distances have been exploited in the facility location problem.
A review of metrics that are exploited in many variations of location problems is
presented in [8]:

- central metrics [28],

- distance functions based on altered norms [22, 23],

- weighted one-infinity norms [32],
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- mixed norms [17],

- block and round norms [29],

- mixed gauges [11],

- asymptotic distances [18],

- weighted sums of order p [2, 31].

In the present article we solve the Weber problem in the plane, under the as-
sumption that the distance is measured by the lift metric.

The paper is organized as follows. Some basic definitions and algorithms are
restated in the second section. In the third section we present an effective algorithm
for the solution of the single-facility continuous planar Weber problem, assuming
that distances are measured by the lift metric.

2. Preliminaries

The lift metric (or the raspberry picker metric, jungle river metric, barbed wire
metric) in the plane R

2 is defined by

L(A,B) =

{
|xA

1 − xB
1 |, xA

2 = xB
2

|xA
1 |+ |xA

2 − xB
2 |+ |xB

1 |, xA
2 �= xB

2
(2.1)

where A(xA
1 , x

A
2 ) and B(xB

1 , x
B
2 ) are given points (see, for example [6, 7]). It can

be defined as the minimum Euclidean length of all admissible connecting curves
between two given points, where a curve is called admissible if it consists of only
segments of straight lines parallel to x-axis, and of segments of y-axis [6, 7]. There-
fore, under the assumption xA

2 �= xB
2 the distance between two points A and B in

the lift metric equals the sum of lengths AA′, A′B′ and B′B, where A′ and B′ are
orthogonal projections of the points A and B to the y-axis, respectively (Figure 2.1,
Left). In the opposite case, xA

2 = xB
2 , the distance between A and B is simply the

length of the segment AB (Figure 2.1, Right).

The lift metric can be used as the distance measurement in the cities with
only one main street (corresponding to the y-axis) and other streets crossing it at
right angles. We are observed that in the main city of Zakynthos island in Greek-
Zakynthos, the streets are deployed on this way. Similar situation also occurs in
tier buildings where the lift (in the role of y-axis) connects tiers.

In this case, the rectangular metric does not coincide with the lift metric. For
example, in l1 metric we have

l1(A1(0, 2), B1(3, 0)) = l1(A2(1, 2), B2(4, 0)) = 3 + 2 = 5.

On the other hand,

L(A1(0, 2), B1(3, 0)) = 3 + 2 = 5 �= L(A2(1, 2), B2(4, 0)) = 4 + 2 + 1 = 7.
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Fig. 2.1: Left) The case xA
2 �= xB

2 Right) The case xA
2 = xB

2

Lift metric is defined as R2 metric. In the 3D case, it can be defined as follows.
Let A(x1, y1, z1) and B(x2, y2, z2) are some points in R3. We define the distance
between A and B in the 3D lift metric in the following way:

L(A,B) =

{
|x1|+ |y1|+ |z2 − z1|+ |x2|+ |y2|, z1 �= z2
|x1 − x2|+ |y1 − y2|, z1 = z2

(2.2)

Here, we assume that the underlying metric by levels is l1.

This metric can be used for a building with a lift (an elevator) or for location
problems in the mines. Also, the location problems in the rack storages can be
formulated as the problems with the lift metric if the goods transportation is per-
formed by the loading machines which are not able to move horizontally unless
the load is lowered. This is a real situation for the warehouses with highest rack
storages.

The 2-dimensional continuous Weber location problem can be briefly restated
as follows (see, for example [9, 34]). Let m demand centers A1, . . . , Am be given
in the plane R

2 (locations of given customers), where Ai(a
i
1, a

i
2), i = 1, . . . ,m.

It is necessarily to find a new point X(x1, x2) ∈ R
2 which has minimal sum of

weighted distances with respect to given points. Therefore, one needs to solve the
unconstrained optimization problem (single-facility min-sum problem), where it is
necessary to minimize the sum

min
X

f(X) =
m∑
i=1

wi · d(Ai, X).(2.3)

The real quantity wi is a positive weighted coefficient of the point Ai. Essentially,
the weight wi converts the distance d(Ai, Bk) into a cost of serving the demand of
customer Ai considerate towards kth offered facility location Bk.

For the sake of completeness, we restate well-known method which gives solution
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of the next optimization problem

min
x

f(x) =
m∑
i=1

wi|x− ai|,(2.4)

x, ai ∈ R, wi ∈ R+. Therefore, it is necessary to minimize the function f , i.e. to
find x for which the value of f is minimal.

Let the condition
a1 ≤ a2 ≤ . . . ≤ am

be valid. The derivation of the function (2.4) has the form

f ′(x) =

⎧⎨
⎩

−∑m
j=1 wj , x < a1∑i

j=1 wj −
∑m

j=i+1 wj , ai < x ≤ ai+1∑m
j=1 wj , x > am

(2.5)

Therefore, the function f(x) is piecewise lineal and convex. As the coefficient of
the direction obviously grow up at (2.5) with the growing of index i, it is easy to
see that the next statement, which gives the conditions for finding the minimum of
the function (2.4), x∗, holds.

Proposition 2.1. [25] Under the solving of the task (2.4),(2.5), let mark with i∗

the index satisfying

s1 =

i∗−1∑
j=1

wj <
1

2

m∑
j=1

wj ≤
i∗∑
j=1

wj = s2.(2.6)

If the strict inequality holds at (2.6), then x∗ = ai
∗
, and if holds equality at (2.6),

then the optimal solution is any value from the interval [ai
∗
, ai

∗+1]. �

According to Proposition 2.1 we come to the well-known algorithm for solving
the problem (2.4) (one can find it in [13, 25, 30]). The first step in this procedure
is optional, but it can be used to accelerate the remaining two steps.

Algorithm 2.1. Solve the optimization task (2.4).

Input. Real quantities a1, . . . , am.

Step I. For each subset of identical elements ai1 = ai2 = · · · = aij perform the
following activities: put wi1 = wi1 +wi2 · · ·+wij , eliminate multiple elements ai2 , . . . , aij

as well as corresponding weights wi2 , . . . , wij and later perform appropriate shifting of the

indices of residual elements aj and their weights wj .

Step II. If Step I is applied, denote by q the cardinal number of different elements
in the set {a1, . . . , am}; otherwise, use q = m. Sort coordinates ai, i = 1, . . . , q in non-
descending order. Let the sorted sequence of coordinates is

a1′ ≤ a2′ ≤ · · · ≤ aq′ .
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Rearrange the weighting coefficients {w1, . . . , wq} → {w1′ , . . . , wq′} applying identical re-
placements on the weights. For the sake of simplicity, let us denote partial sums of the
array {w1′ , . . . , wq′} by

Sw[0] = 0, Sw[k] =

k∑

i=1

wi′ , 1 ≤ k ≤ q.(2.7)

Step III. There are two possibilities, denoted by P1 and P2.

P1. If the condition

Sw[k
∗ − 1] <

1

2
Sw[q] < S2[k

∗](2.8)

is satisfied for some k∗ ∈ {1, . . . , q}, then we end the algorithm returning the solution
x∗ = ak∗

.

P2. If the condition
1

2
Sw[q] = Sw[k

∗](2.9)

holds for some k∗ ∈ {1, . . . , q}, then the solution is multiple, i.e. the searched coordinate
x∗ can to have any value from the interval [ak∗

, ak∗+1].

Note that the previous algorithm is also used for the solution of the Weber
problem (2.3) in the case when the underlying distance function is defined by the
l1 metric. More precisely, two unknown coordinates in the planar Weber problem
can be derived from two separate optimization problems of the general form (2.4)
(see, for example, [13], Chapter 3).

3. Continuous Weber problem and lift metric

In the sequel we solve the single-facility min-sum Weber problem (2.3) applying
the lift metric (2.1). Therefore, the distance function is defined by

d(Ai, X)=L(Ai, X)=

{
|x1 − ai1|, x2 = ai2
|x1|+ |x2 − ai2|+ |ai1|, x2 �= ai2,

i=1, . . . ,m.(3.1)

Two major steps (denoted as Step 1 and Step 2) are separated in our algorithm,
as in the following.

Step 1. Generate the list X of permissible solutions of the problem. Its initial
value is the empty set X = Ø. Two different procedures are separated during the
construction of the set X, in accordance with the definition (3.1).

Procedure 1. Let us consider the quotient set S of the set S = {a12, . . . , am2 }

S = {S1 = [ai12 ], . . . , Sd = [aid2 ]},(3.2)

where the class Sj contains elements from S whose values are a
ij
2 . For each j =

1, . . . , d seek the second coordinate of the optimal point X(x1, x2) in the form

x2 ∈ Sj ⇔ x2 = a
ij
2 .(3.3)
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So, as we know value of the coordinate x2 (x2 = a
ij
2 ), it is necessary to determine

value of the coordinate x1. Denote by Qj the set of indices corresponding to points
whose second coordinates are contained in the set Sj . According to (3.1) and (3.3),
the objective function f(X) consists of two separated sums

f(X) =

m∑
i=1, i/∈Qj

wi

(|x1|+ |x2 − ai2|+ |ai1|
)
+

∑
i∈Qj

wi|x1−ai1|(3.4)

Taking into account x2 = a
ij
2 and grouping the first term in the first sum with the

second sum, we obtain

f(X) =
m∑

i=1, i/∈Qj

wi

(
|aij2 − ai2|+ |ai1|

)
+

m∑
i=1

wi|x1 − a
β(i)
1 |,(3.5)

where

a
β(i)
1 =

{
ai1, β(i) = i ∈ Qj

0, β(i) �∈ Qj .
(3.6)

As the first sum in the expression (3.5) is constant, the problem is reduced on
determining the minimum of the function

f1(x1) =

m∑
i=1

wi|x1 − a
β(i)
1 |.(3.7)

We apply Algorithm 2.1 in adapted form for our specific situation (3.6), (3.7). That
process consists of three major steps.

Step I. For each subset of identical elements a
β(i1)
1 = a

β(i2)
1 = · · · = a

β(ij)
1

perform the following: put wi1 = wi1 +wi2 + · · ·+wij , eliminate multiple elements

a
β(i2)
1 , . . . , a

β(ij)
1 as well as their weights wi2 , . . . , wij and then perform appropriate

renumeration of the indices of the remainder elements a
β(j)
1 and their weights wj .

Step II. If Step I is applied, denote by p the cardinal number of different

elements in the set {aβ(1)1 , . . . , a
β(m)
1 }; otherwise, use p = m. Sort coordinates

a
β(1)
1 , . . . , a

β(p)
1 in non-descending array. Furthermore we suppose that the ordered

sequence is

a1
′

1 ≤ a2
′

1 ≤ · · · ≤ ap
′

1 .

Rearrange the corresponding weighting coefficients w1, . . . , wp analogously in the
sequence

w1′ , w2′ , . . . , wp′ .

For the sake of simplicity, let us denote partial sums of the array {w1′ , . . . , wp′} by

Sw[0] = 0, Sw[k] =

k∑
i=1

wi′ , 1 ≤ k ≤ p.
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Step III. There are two possible cases capable to produce permissible minimizers
for f1, denoted by C1 and C2.

C1. If the inequalities

Sw[k
′ − 1] <

1

2
Sw[p] < Sw[k

′],(3.8)

are satisfied for some k′ ∈ {1, . . . , p}, then the searched coordinate is x1 = ak
′

1 .

Later, we use X(x1, x2) as the possible optimal point: X = X ∪ {(ak′
1 , a

ij
2 )}.

C2. If the condition
1

2
Sw[p] = Sw[k

′](3.9)

is satisfied for some k′ ∈ {1, . . . , p}, then the solution is multiple, i.e. the searched

coordinate x1 can to have any value from the interval [ak
′

1 , ak
′+1

1 ]. In our implemen-

tation we use the value x1 = (ak
′

1 +ak
′+1

1 )/2. Thus, we found the additional possible

solution of the starting problem (2.3), which implies X = X∪{((ak′
1 +ak

′+1
1 )/2, ai12 )}.

Procedure 2. Compute x2 under the assumption

x2 /∈ S ⇔ x2 �= ai2 for each i ∈ {1, . . . ,m}(3.10)

(under the assumptions opposite with respect to (3.3)), the function f(X) is reduced
to

f(X) =

m∑
i=1

wi

(|x1|+ |x2 − ai2|+ |ai1|
)
.(3.11)

It is necessary to minimize that function. Since the third term wi|ai1| in the function
f(X) defined in (3.11) is constant, one needs to minimize the next two objectives:

min
x1

f1(x1) =

m∑
i=1

wi|x1|(3.12)

min
x2

f2(x2) =

m∑
i=1

wi|x2 − ai2|.(3.13)

Thus, solving the problem (3.11) with two variables was reduced to solving two
independent tasks of unconstrained optimization (3.12) and (3.13) with one variable
(x1 and x2, respectively).

Solution of the optimization problem (3.12) is evidently x1 = 0. In order to
find optimal value for x2 it suffices to apply Algorithm 2.1 assuming that the input
sequence is a1 = a11, . . . , a

m = am2 and taking into account conditions (3.10).

Step I. For each subset of identical elements ai12 = ai22 = · · · = a
ij
2 perform

the following activities: put wi1 = wi1 + wi2 + · · · + wij , eliminate multiple ele-

ments ai22 , . . . , a
ij
2 as well as corresponding weights wi2 , . . . , wij and later perform

appropriate shifting of the indices of residual elements aj2 and their weights wj .
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Step II. If Step I is applied, denote by q the cardinal number of different
elements in the set {a12, . . . , am2 }; otherwise, use q = m. Sort coordinates ai2,
i = 1, . . . , q in non-descending order. Let the sorted sequence of coordinates be

a1
′

2 ≤ a2
′

2 ≤ · · · ≤ aq
′

2 .

Rearrange the weighting coefficients {w1, . . . , wq} → {w1′ , . . . , wq′} applying identi-
cal replacements on the weights. Subsequently, generate the partial sums Sw[i], i =
0, . . . , q of the array {w1′ , . . . , wq′} as in (2.7).

Step III. There are two possibilities, denoted by P1 and P2.

P1. If the condition (2.8) is satisfied for some k∗ ∈ {1, . . . , q}, then the algorithm
is finished without any solution. Indeed, the formal solution x2 = ak

∗
2 is eliminated

according to assumption (3.10), actual for this case.

P2. If the condition (2.9) holds for some k∗ ∈ {1, . . . , q}, then the solution is
multiple, i.e. the searched coordinate x2 can to have any value from the interval
(ak

∗
2 , ak

∗+1
2 ). We use the midpoint value x2 = (ak

∗
2 + ak

∗+1
2 )/2, so that the possible

optimal point is X(0, x2). Place the point X at the end of the list X by X =

X ∪ {(0, (ak∗
2 + ak

∗+1
2 )/2)}.

Step 2. Thus, we got one or more permissible solutions of the starting problem
(2.3). For all obtained values X from X we determine the values of the function
f(X) defined in (2.3), with D = L. Solution of the Weber problem will be the
point X∗(x∗

1, x
∗
2) for which the function f(X) has a minimal value. Actually in this

step we are solving generated discrete location problem, where the set X contains
in advance defined feasible locations of the supplier.

Let X1, . . . , Xr be r locations on which it is possible to set a new desired object
(supplier). The sum of weighted distances from the permissible location Xk, k ∈
{1, . . . , r} of the supplier to the customers is equal to

Wk =
m∑
i=1

wi · L(Ai, Xk).(3.14)

The task is to determine the location Bk∗ for which the sum of weighted distances
is minimal, i.e.

Wk∗ = min {Wk| 1 ≤ k ≤ r}.

In accordance with the previous considerations, we state the following general
algorithm.

Algorithm 3.1. Solution of the single-facility min-sum Weber problem in the
lift metric.

Input. List lp = {(a1
1, a

2
1), . . . , (a

1
m, a2

m)} and the list of corresponding weights lt =
{w1, . . . , wm}.



184 P.S. Stanimirović, M.S. Ćirić, L.A. Kazakovtsev, I.A. Osinuga

Step 1: Form the quotient set of S = {a1
2, . . . , a

m
2 } in the form S = {S1, . . . , Sd},

where each equivalence class Sj contains identical elements from S with the value a
ij
2 .

Step 2: Generate the list X applying the procedure included into the possibilities C1

and C2 (included in Procedure 1.) to all distinctive values a
ij
2 of the set S, i.e. using

x2 = a
ij
2 , j = 1, . . . , d.

Step 3: Extend the list X applying the method defined in the case P2 (included in
Procedure 2.).

Step 4: Solve the discrete location problem using given locations lp, discrete set X of
possible solutions and the weights lt.

For the 3D case with l1 underlying metric (2.2), the algorithm proposed can be
easily adapted.

Let’s formulate the basic equations for the 3D case. If the set of the demand
points is {A1 = (a11, a

1
2, a

1
3), · · · , Am = (am1 , am2 , am3 )}, the equation (3.2) must be

formulated as
S = {S1 = [(ai13 ], . . . , Sd = [aid3 ]}.(3.15)

The Steps I, II and III of the Procedure 1 must be passed twice. For the 1st
pass, we implement the original form of the equation (3.6). For the 2nd pass,

a
β(i)
2 =

{
ai2, β(i) = i ∈ Qj

0, β(i) �∈ Qj .
(3.16)

Here, Qj is the set of indices corresponding to points whose 3rd coordinates are
contained in the set Sj .

In the Step II of the Procedure 1, the 1st pass does not differ from the 2D
case. At the 2nd pass, denote by p2 the cardinal number of different elements in the

set {aβ(1)2 , . . . , a
β(m)
2 } and sort coordinates a

β(1)
2 , . . . , a

β(p)
2 in non-descending array.

Rearrange the corresponding weighting coefficients w1, . . . , wp analogously in the
sequence

w1′′ , w2′′ , . . . , wp2
′′ .

For the sake of simplicity, let us denote partial sums of the array {w1′′ , . . . , wp2
′}

by

Sw[0] = 0, Sw[k] =

k∑
i=1

wi′′ , 1 ≤ k ≤ p2.

The 2nd pass of Step III is performed as follows. There are two possible cases,
C′

1 and C′
2.

C′
1. If the inequalities

Sw[k
′ − 1] <

1

2
Sw[p] < Sw[k

′′],

are satisfied for some k′′ ∈ {1, . . . , p2}, then the searched coordinate is x2 = ak
′′

2 .

Later, we use X(x1, x2, x3) as the possible optimal point: X = X∪ {(ak′
1 , ak

′′
2 , a

ij
3 )}.
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Table 3.1: Algorithm data, part 1

coordinates (ai
′
1 ) 0 0 4 6

weights (wi′) 1 3 4 2
k 1 2 3 4

Sw[k] =
∑k

i=1 wi′ 1 4 8 10

C′
2. If the condition

1

2
Sw[p] = Sw[k

′′]

is satisfied for some k′′ ∈ {1, . . . , p2}, then the solution is multiple, i.e. the searched

coordinate x2 can have any value from the interval [ak
′′

2 , ak
′′+1

2 ]. In our implemen-

tation, we use the value x2 = (ak
′′

2 +ak
′′+1

2 )/2. X = X∪{((ak′
1 , ak

′′
2 +ak

′′+1
2 )/2, ai13 )}.

So, in the 3D case, the Step II and Step III, solve 2 problems (2.4).

Example 3.1. Solve Weber problem using the specified algorithm with the next data:

A1(4, 4), w1 = 4, A2(3, 1), w2 = 1, A3(6, 4), w3 = 2, A4(6, 2), w4 = 3.

We have S = {4, 1, 4, 2}. The quotient set of S is defined as S1 = [4], S2 = [1], S3 = [2].
Therefore, it is necessary to consider three possibilities for the cases C1 and C2.

1. Let be x2 = 4. Then the function f(X) has the following form:

f(x) = w2(|x1|+ |x2 − a2
2|+ |a2

1|) + w4(|x1|+ |x2 − a4
2|+ |a4

1|)
+ w1|x1 − a1

1|+ w3|x1 − a3
1|.

According to the constant value x2 = 4 of the coordinate x2, the function f just depend
on x1, so we can consider the next function

f1(x1) = w1|x1 − a1
1|+ w2|x1 − 0|+ w3|x1 − a3

1|+ w4|x1 − 0|
=

∑4
i=1 wi|x1 − a

β(i)
1 |,

where a
β(1)
1 = a1

1 = 4, a
β(3)
1 = a3

1 = 6, a
β(2)
1 = a

β(4)
1 = 0.

Let us sort the coordinates a
β(i)
1 → ai′

1 and rearrange corresponding weights wi → wi′ ,
using the same replacements (Table 3.1).

We firstly assume that Step I is omitted. According to 1
2

∑4
i=1 wi′ = 5, the condition

Sw[k
′ − 1] <

1

2
Sw[4] < Sw[k

′]

is satisfied for k′ = 3, so x1 = a3′
1 = 4. Therefore, one possible solution is X1(4, 4).

In the case when Step I is applied, data from Table 3.1 reduce to Table 3.2.

Then conditions (3.8) are satisfied for k = 2, so that the same possible solution is
generated.
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Table 3.2: Algorithm data, part 2

coordinates (ai
′
1 ) 0 4 6

weights (wi′ ) 4 4 2
k 1 2 3

Sw[k] =
∑k

i=1 wi′ 4 8 10

Table 3.3: Algorithm data, part 3

coordinates (ai
′
1 ) 0 0 0 3

weights (wi′) 4 2 3 1
k 1 2 3 4

Sw[k] =
∑k

i=1 wi′ 4 6 9 10

The list of permissible solutions is now equal to X = {X1}.

2. In this case it is assumed x2 = 1. Now the function f1(x1) looks like:

f1(x1) = w1|x1 − 0|+ w2|x1 − 3|+ w3|x1 − 0|+ w4|x1 − 0|.

On the similar procedure as in the case 1. we get the Table 3.3.

Inequalities (3.8) are valid for k′ = 2, so x1 = a2′
1 = 0, i.e. we got the second possible

solution X2(0, 1).

In the case when Step I is applied, Table 3.3 transforms to Table 3.4.

Condition (3.8) holds for k = 1, so that X2 is again the second eventual solution.

We have X = {X1, X2}.

3. Let us now start from the assumption x2 = 2.

f1(x1) = w1|x1 − 0|+ w2|x1 − 0|+ w3|x1 − 0|+ w4|x1 − 2|.

The relational table is Table 3.5.

Since the equality of the form (3.9) are satisfied for k′ = 2, the solution x1 is from the

interval [a2′
1 , a3′

1 ] = [0, 0], i.e. x1 = 0, which implies X3(0, 2).

Table 3.4: Algorithm data, part 4

coordinates (ai
′
1 ) 0 3

weights (wi′ ) 9 1
k 1 2

Sw[k] =
∑k

i=1 wi′ 9 10
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Table 3.5: Algorithm data, part 5

coordinates (ai
′
1 ) 0 0 0 2

weights (wi′) 4 1 2 3
k 1 2 3 4

Sw[k] =
∑k

i=1 wi′ 4 5 7 10

Table 3.6: Algorithm data, part 6

coordinates (ai
′
1 ) 0 2

weights (wi′ ) 5 3
k 1 2

Sw[k] =
∑k

i=1 wi′ 7 10

The list X is expanded: X = {X1, X2, X3}.
Let us observe that Step I transforms Table 3.5 into the next Table 3.6.

Now, condition (3.8) is satisfied for k = 1, so that X3(0, 2) is possible optimal point.

4. Let x2 �= 1, 2, 4. In this case, we take x1 = 0 and then seek for the minimum of the
function

f2(x2) =

4∑

i=1

wi|x2 − ai
2|

Let us sort the coordinates ai
2 → ai′

2 and perform analogous rearrangement wi → wi′ .
The results are shown in Table 3.7.

Inequalities of the form (2.8) hold for k∗ = 3. We stop algorithm. This case has no
solution, since the assumption x2 �= 4 is made.

Let us mention that Step I gives the next Table 3.8.

Therefore, the conclusion is the same as from Table 3.7.

At the end, in order to solve Step 2 of Algorithm 3.1, we must compute and compare
the values of the function f at each point Xi, i = 1, 2, 3. We get

f(X1) = 50, f(X2) = 55, f(X3) = 62.

Table 3.7: Algorithm data, part 7

coordinates (ai
′
2 ) 1 2 4 4

weights (wi′) 1 3 4 2
k 1 2 3 4

Sw[k] =
∑k

i=1 wi′ 1 4 8 10
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Table 3.8: Algorithm data, part 8

coordinates (ai
′
2 ) 1 2 4

weights (wi′ ) 1 3 6
k 1 2 3

Sw[k] =
∑k

i=1 wi′ 1 4 10

Therefore, the solution of the Weber problem will be the point in which the function f
has a minimal value, i.e. X∗ = X1 = A1 = (4, 4).

4. Conclusion and future work

Our paper is the first attempt to solve the discrete and the single-facility min-
sum continuous location problem with the lift metric as the measure of distances.

A couple of variants and extensions of continuous location problems have been
investigated in literature. Let us mention the most important among them. More
complex problems include the placement of multiple facilities. Problems with bar-
riers are the subject in [5, 15, 19, 20]. The location of undesirable (obnoxious)
facilities requires maximization of minimum distances (see, e.g., [1, 12, 14, 24]. Lo-
cation models with both desirable and undesirable facilities have been analyzed in
[4]. It seems interesting to investigate these extensions in the sense of the lift metric
or in the more general nonconvex case, where the shortest length of arc is used as
distance instead of a particular metrics.

Also, the 3D lift metric with the underlying Euclidean metric l2 or the rectilinear
l1 metric will be the subject of our future research.
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est minimum, Tôhoku Math. J. 43 (1937), 355–386.

34. G. Wesolowsky: The Weber problem: History and perspectives, Location Science 1
(1993), 5–23.

Predrag S. Stanimirović
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1800 Nǐs, Serbia

marijamath@yahoo.com

Lev A. Kazakovtsev

Siberian State Aerospace University

Department of Information Technologies

prosp.Krasnoyarskiy Rabochiy, 31

660014 Krasnoyarsk, Russian Federation

levk@ieee.org

Idowu A. Osinuga

Federal University of Agriculture

College of Natural Sciences

Department of Mathematics

PMB 2240, Abeokuta, Nigeria

osinuga08gmail.com


