NEW INTEGRAL INEQUALITIES OF FENG QI TYPE VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRATION

Ahmed Anber, Zoubir Dahmani and Berrabah Bendoukha

Abstract

In this paper, we use the Riemann-Liouville integral operator to generate recent fractional integral inequalities of Qi type. Other inequalities are also presented.

1. Introduction

In [6], Ngo et al. proved that

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau^{\delta} f(\tau) d \tau \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau f^{\delta}(\tau) d \tau \tag{1.2}
\end{equation*}
$$

where $\delta>0$ and f is a positive continuous function on $[0,1]$ satisfying

$$
\int_{x}^{1} f(\tau) d \tau \geq \int_{x}^{1} \tau d \tau, x \in[0,1]
$$

s Then, in [4], W.J. Liu, G.S. Cheng and C.C. Li have established a more general result:

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(\tau) d \tau \geq \int_{a}^{b}(\tau-a)^{\alpha} f^{\beta}(\tau) d \tau \tag{1.3}
\end{equation*}
$$

where $\alpha>0, \beta>0$ and f is a positive continuous function on $[a, b]$ such that

$$
\int_{x}^{b} f^{\gamma}(\tau) d \tau \geq \int_{x}^{b}(\tau-a)^{\gamma} d \tau ; \gamma:=\min (1, \beta), x \in[a, b]
$$

Received July 08, 2012.
2010 Mathematics Subject Classification. 26D10; 26A33; 26E30

Recently, in [12], using the time scales theory, L. Yin and F. Qi proved the following result:

Theorem 1.1: Let $a, b \in T$. If $f \in C_{r d}(T, \mathbb{R})$ is positive and
then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p} \Delta x \geq\left[\int_{a}^{b} f(x) \Delta x\right]^{p-1} \tag{1.5}
\end{equation*}
$$

where $p>1$ or $p<0$.
If the function f satisfies

$$
\begin{equation*}
0<m \leq(f(x))^{p} \leq M<\infty, x \in[a, b] \tag{1.6}
\end{equation*}
$$

the authors proved

$$
\begin{equation*}
\left[\int_{a}^{b}[f(x)]^{p} \Delta x\right]^{\frac{1}{p}} \leq(b-a)^{-\frac{p+1}{q}}\left(\frac{M}{m}\right)^{\frac{2}{p q}}\left[\int_{a}^{b}(f(x))^{\frac{1}{p}} \Delta x\right]^{p} \tag{1.7}
\end{equation*}
$$

where $p>1, \frac{1}{p}+\frac{1}{q}=1$.
On the other hand, in [11], W.T. Sulaiman established the following result:
Theorem 1.2: Suppose $f \geq 0, g \geq 0$ on $[a, b]$ and g is non-decreasing. If

$$
\begin{equation*}
\int_{x}^{b} f(t) d t \geq \int_{x}^{b} g(t) d t, x \in[a, b] \tag{1.8}
\end{equation*}
$$

then the inequality holds

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\gamma-\delta} d x \leq \int_{a}^{b}[f(x)]^{\gamma}[g(x)]^{-\delta} d x, \gamma, \delta>0, \gamma-\delta>1 \tag{1.9}
\end{equation*}
$$

The following result, as well, was established in [11]:
Theorem 1.3: Let $f \geq 0, g \geq 0$ on $[a, b]$ such that f is non-decreasing and g is non-increasing or conversely, then we have the following reverse Chebyshev inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\gamma}[g(x)]^{\delta} d x \leq \frac{1}{b-a} \int_{a}^{b}[f(x)]^{\gamma} d x \int_{a}^{b}[g(x)]^{\delta} d x \tag{1.10}
\end{equation*}
$$

Many researchers have given considerable attention to (1.5) (1.9) and (1.10) and
several inequalities related to these functionals have appeared in the literature, to mention a few, see $[1,2,4-7]$ and the references cited therein.
The main purpose of this paper is to derive some new inequalities using the fractional integral theory. Our results have some relationship with [5, 9, 11, 12]. Some interested inequalities of these references can be deduced as some special cases.

2. Preliminaries

In this section, we give some necessary definitions and properties which will be used in this paper. For more details, see $[3,8,10]$.

Definition 3: The Riemann-Liouville fractional integral operator of order $\alpha \geq 0$, for a continuous function on $[0, \infty[$ is defined as

$$
\begin{align*}
& J^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{b}(t-x)^{\alpha-1} f(x) d x ; \quad \alpha>0, t>0 \tag{2.1}\\
& J^{0} f(t)=f(t) .
\end{align*}
$$

For the convenience of establishing the results, we give one basic property

$$
\begin{equation*}
J^{\alpha} J^{\beta} f(t)=J^{\alpha+\beta} f(t) \tag{2.2}
\end{equation*}
$$

For the expression (2.1), when $f(t)=t^{\beta}$ we get another expression that will be used later:

$$
\begin{equation*}
J^{\alpha} t^{\beta}=\frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)} t^{\alpha+\beta} . \tag{2.3}
\end{equation*}
$$

3. Main Results

We start with the following lemmas:
Lemma 3.1: Let f, g be two positive functions on $[0, \infty[$, then for all $\alpha>0$, we have

$$
\begin{equation*}
J^{\alpha}\left[\frac{(f(t))^{p}}{(g(t))^{\frac{p}{q}}}\right] \geq \frac{\left(J^{\alpha} f(t)\right)^{p}}{\left(J^{\alpha} g(t)\right)^{\frac{p}{q}}}, \tag{3.1}
\end{equation*}
$$

where $t>0, p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
Proof:
For tow functions Φ and Ψ, using the fractional Holder inequality, we can write

$$
\begin{equation*}
J^{\alpha}|\Phi(t) \Psi(t)| \leq\left(J^{\alpha}|\Phi(t)|^{p}\right)^{\frac{1}{p}}\left(J^{\alpha}|\Psi(t)|^{q}\right)^{\frac{1}{q}}, t>0 \tag{3.2}
\end{equation*}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
Putting $\Phi(t)=\frac{f(t)}{(g(t))^{\frac{1}{q}}}$ and $\Psi(t)=(g(t))^{\frac{1}{q}}$ in (3.2), we obtain

$$
\begin{equation*}
J^{\alpha}(f(t))=J^{\alpha}\left(\frac{f(t)}{(g(t))^{\frac{1}{q}}}(g(t))^{\frac{1}{q}}\right) \leq\left[J^{\alpha}\left(\frac{(f(x))^{p}}{(g(t))^{\frac{p}{q}}}\right)\right]^{\frac{1}{p}}\left[J^{\alpha}(g(t))\right]^{\frac{1}{q}} \tag{3.3}
\end{equation*}
$$

Lemma 3.1 is thus proved.
Lemma 3.2: Let $\alpha>0, p>1, \frac{1}{p}+\frac{1}{q}=1$ and let f and g be two positive functions on $\left[0, \infty\left[\right.\right.$, such that $J^{\alpha} f^{p}(t)<\infty, J^{\alpha} g^{q}(t)<\infty, t>0$.
If

$$
\begin{equation*}
0<m \leq \frac{f(\tau)}{g(\tau)} \leq M<\infty, \tau \in[0, t] \tag{3.4}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\left[J^{\alpha} f(t)\right]^{\frac{1}{p}}\left[J^{\alpha} g(t)\right]^{\frac{1}{q}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}} J^{\alpha}\left[(f(t))^{\frac{1}{p}}(g(t))^{\frac{1}{q}}\right] \tag{3.5}
\end{equation*}
$$

holds.
Proof: Since $\frac{f(\tau)}{g(\tau)} \leq M, \tau \in[0, t], t>0$, therefore,

$$
\begin{equation*}
[g(\tau)]^{\frac{1}{q}} \geq M^{-\frac{1}{q}}[f(\tau)]^{\frac{1}{q}} \tag{3.6}
\end{equation*}
$$

and so,

$$
\begin{equation*}
[f(\tau)]^{\frac{1}{p}}[g(\tau)]^{\frac{1}{q}} \geq M^{-\frac{1}{q}}[f(\tau)]^{\frac{1}{q}}[f(\tau)]^{\frac{1}{p}}=M^{-\frac{1}{q}} f(\tau) \tag{3.7}
\end{equation*}
$$

Hence, we get

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha)} \underline{0} \bar{t} \int(t-\tau)^{\alpha-1}[f(\tau)]^{\frac{1}{p}}[g(\tau)]^{\frac{1}{q}} d \tau \geq \frac{1}{\Gamma(\alpha)} \underline{0} \bar{t} \int(t-\tau)^{\alpha-1} M^{-\frac{1}{q}} f(\tau) d \tau \tag{3.8}
\end{equation*}
$$

that is,

$$
\begin{equation*}
J^{\alpha}\left[(f(t))^{\frac{1}{p}}(g(t))^{\frac{1}{q}}\right] \geq M^{-\frac{1}{q}} J^{\alpha} f(t) \tag{3.9}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left(J^{\alpha}\left[(f(t))^{\frac{1}{p}}(g(t))^{\frac{1}{q}}\right]\right)^{\frac{1}{p}} \geq M^{-\frac{1}{p q}}\left(J^{\alpha} f(t)\right)^{\frac{1}{p}} \tag{3.10}
\end{equation*}
$$

On the other hand, since $m g(\tau) \leq f(\tau), \tau \in[0, t], t>0$, then we have

$$
\begin{equation*}
[f(\tau)]^{\frac{1}{p}} \geq m^{\frac{1}{p}}[g(\tau)]^{\frac{1}{p}} \tag{3.11}
\end{equation*}
$$

and so,

$$
\begin{equation*}
[g(\tau)]^{\frac{1}{q}}[f(\tau)]^{\frac{1}{p}} \geq m^{\frac{1}{p}}[g(\tau)]^{\frac{1}{p}}[g(\tau)]^{\frac{1}{q}}=m^{\frac{1}{p}} g(\tau) . \tag{3.12}
\end{equation*}
$$

Now, multiplying both sides of (3.12) by $\frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)}, \tau \in(0, t)$, then integrating the resulting inequality with respect to τ over $(0, t)$, we obtain

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}[f(\tau)]^{\frac{1}{p}}[g(\tau)]^{\frac{1}{q}} d \tau \geq \frac{m^{\frac{1}{p}}}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} g(\tau) d \tau \tag{3.13}
\end{equation*}
$$

Then we have,

$$
\begin{equation*}
J^{\alpha}\left[(f(t))^{\frac{1}{p}}(g(t))^{\frac{1}{q}}\right] \geq m^{\frac{1}{p}} J^{\alpha} g(t) \tag{3.14}
\end{equation*}
$$

Hence, we can write

$$
\begin{equation*}
\left(J^{\alpha}\left[(f(t))^{\frac{1}{p}}(g(t))^{\frac{1}{q}}\right]\right)^{\frac{1}{q}} \geq m^{\frac{1}{p q}}\left(J^{\alpha} g(t)\right)^{\frac{1}{q}} . \tag{3.15}
\end{equation*}
$$

Thanks to (3.10) and (3.15), we obtain (3.5).
Remark 3.1: If we take $\alpha=1$, then Lemma 3.1 becomes Theorem 2.1 in [9] on $[0, t]$.

Lemma 3.3: Let $\alpha>0, f$ and g be two positive functions on $[0, \infty[$, such that $J^{\alpha} f^{p}(t)<\infty, J^{\alpha} g^{q}(t)<\infty ; t>0$. If

$$
0<m \leq \frac{(f(\tau))^{p}}{(g(\tau))^{q}} \leq M<\infty, \tau \in[0, t]
$$

then we have

$$
\begin{equation*}
\left[J^{\alpha} f^{p}(t)\right]^{\frac{1}{p}}\left[J^{\alpha} g^{q}(t)\right]^{\frac{1}{q}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}} J^{\alpha}(f(t) g(t)), \tag{3.16}
\end{equation*}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
Proof: Replacing $f(\tau)$ and $g(\tau)$ respectively by $(f(\tau))^{p}$ and $(g(\tau))^{q}, \tau \in[0, t], t>$ 0 in Lemma 3.2, we obtain (3.16).

We give also the following result:
Theorem 3.1: Let $\alpha>0, p>1$ and f be a positive function on $[0, \infty[$, such that for all $t>0$,

$$
\begin{equation*}
J^{\alpha}(f(t)) \geq\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{p-1} \tag{3.17}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
J^{\alpha}(f(t))^{p} \geq\left(J^{\alpha} f(t)\right)^{p-1} \tag{3.18}
\end{equation*}
$$

holds.
Proof: Using Lemma 3.1 and the condition (3.17), we obtain

$$
\begin{gather*}
J^{\alpha}\left((f(t))^{p}\right)=J^{\alpha}\left(\frac{(f(t))^{p}}{1^{p-1}}\right) \geq \frac{\left(J^{\alpha} f(t)\right)^{p}}{\left(J^{\alpha} 1\right)^{p-1}}=\left(\frac{\Gamma(\alpha+1)}{t^{\alpha}}\right)^{p-1}\left(J^{\alpha} f(t)\right)^{p} \tag{3.19}\\
\geq\left(J^{\alpha} f(t)\right)^{p-1}
\end{gather*}
$$

This ends the proof of Theorem 3.1.
Remark 3.1: Applying Theorem 3.1 for $\alpha=1$, we obtain Theorem A of [5].
We further have:
Theorem 3.2: Let $\alpha>0, p>1$ with $\frac{1}{p}+\frac{1}{q}=1$, such that $t>0, J^{\alpha} f^{p}(t)<\infty, t>$ 0. If

$$
\begin{equation*}
0<m \leq f^{p}(\tau) \leq M<\infty, \tau \in[0, t] \tag{3.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left[J^{\alpha} f^{p}(t)\right]^{\frac{1}{p}} \leq\left(\frac{M}{m}\right)^{\frac{2}{p q}}\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{-\frac{p+1}{q}}\left(J^{\alpha} f^{\frac{1}{p}}(t)\right)^{p} \tag{3.21}
\end{equation*}
$$

Proof: Putting $g(\tau)=1$ into lemma 3.3 yields

$$
\begin{equation*}
\left[J^{\alpha} f^{p}(t)\right]^{\frac{1}{p}}\left[J^{\alpha}\left(1^{q}\right)\right]^{\frac{1}{q}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}} J^{\alpha}(f(t) \times 1) \tag{3.22}
\end{equation*}
$$

which is equivalent to:

$$
\begin{equation*}
\left[J^{\alpha} f^{p}(t)\right]^{\frac{1}{p}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}}\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{-\frac{1}{q}} J^{\alpha} f(t) \tag{3.23}
\end{equation*}
$$

Substituting $g(\tau)=1$ into lemma 3.2, we obtain

$$
\begin{equation*}
\left[J^{\alpha} f(t)\right]^{\frac{1}{p}}\left[J^{\alpha}(1)\right]^{\frac{1}{q}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}} J^{\alpha}\left(f^{\frac{1}{p}}(t)\right) \tag{3.24}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left[J^{\alpha} f(t)\right]^{\frac{1}{p}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p^{2} q}}\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{-\frac{1}{q}} J^{\alpha}\left(f^{\frac{1}{p}}(t)\right) \tag{3.25}
\end{equation*}
$$

Hence, we can write

$$
\begin{equation*}
J^{\alpha} f(t) \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}}\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{-\frac{p}{q}}\left[J^{\alpha}\left(f^{\frac{1}{p}}(t)\right)\right]^{p} \tag{3.26}
\end{equation*}
$$

Combining (3.26) with (3.24), the inequality (3.21) follows.
Remark 3.2: Applying Theorem 3.2 for $\alpha=1$, we obtain the inequality (1.7) on $[0, t]$.

For the generalization related to [11], we give the following three theorems.
Theorem 3.3: Let $f \geq 0, g \geq 0$ be two functions defined on $[0, \infty[$ such that g is non-decreasing.
If

$$
\begin{equation*}
J^{\alpha} f(t) \geq J^{\alpha} g(t), t>0 \tag{3.27}
\end{equation*}
$$

then for all $\gamma, \delta>0, \alpha>0, \gamma-\delta \geq 1$, we have

$$
\begin{equation*}
J^{\alpha} f^{\gamma-\delta}(t) \leq J^{\alpha} f^{\gamma}(t) g^{-\delta}(t) \tag{3.28}
\end{equation*}
$$

Proof:

We use the arithmetic-geometric inequality. For $\gamma>0, \delta>0$, we have:

$$
\begin{equation*}
\frac{\gamma}{\gamma-\delta} f^{\gamma-\delta}(x)-\frac{\delta}{\gamma-\delta} g^{\gamma-\delta}(x) \leq f^{\gamma}(x) g^{-\delta}(x), x \in[0, t], t>0 \tag{3.29}
\end{equation*}
$$

Multiplying both sides of (3.29) by $\frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)}, x \in(0, t)$, yields

$$
\begin{equation*}
\frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)} \frac{\gamma}{\gamma-\delta} f^{\gamma-\delta}(x)-\frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)} \frac{\delta}{\gamma-\delta} g^{\gamma-\delta}(x) \leq \frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)} f^{\gamma}(x) g^{-\delta}(x) \tag{3.30}
\end{equation*}
$$

Then integrating (3.30) with respect to x over $(0, t)$, we can write

$$
\begin{gather*}
\frac{\gamma}{(\gamma-\delta) \Gamma(\alpha)}\left(\int_{0}^{t}(t-x)^{\alpha-1} f^{\gamma-\delta}(x) d x-\int_{0}^{t}(t-x)^{\alpha-1} g^{\gamma-\delta}(x) d x\right) \leq \tag{3.31}\\
\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-x)^{\alpha-1} f^{\gamma}(x) g^{-\delta}(x) d x
\end{gather*}
$$

Consequently,

$$
\begin{equation*}
\frac{\gamma}{(\gamma-\delta)} J^{\alpha} f^{\gamma-\delta}(t)-\frac{\delta}{(\gamma-\delta)} J^{\alpha} g^{\gamma-\delta}(t) \leq J^{\alpha} f^{\gamma}(t) g^{-\delta}(t) \tag{3.32}
\end{equation*}
$$

This implies that,

$$
\begin{gather*}
\frac{\gamma}{(\gamma-\delta)} J^{\alpha} f^{\gamma-\delta}(t) \leq J^{\alpha}\left[f^{\gamma}(t) g^{-\delta}(t)\right]+\frac{\delta}{(\gamma-\delta)} J^{\alpha} g^{\gamma-\delta}(t) \tag{3.33}\\
\leq J^{\alpha}\left[f^{\gamma}(t) g^{-\delta}(t)\right]+\frac{\delta}{(\gamma-\delta)} J^{\alpha} f^{\gamma-\delta}(t)
\end{gather*}
$$

Thus we get (3.28) .

Remark 3.3: Applying Theorem 3.3 for $\alpha=1$, we obtain Theorem 1.2 on $[0, t]$.
Theorem 3.4: Let $\alpha>0$ and f and g be two positive functions on $[0, \infty[$, such that f is non-decreasing and g is non-increasing. Then

$$
\begin{equation*}
J^{\alpha} f^{\gamma}(t) g^{\delta}(t) \leq \frac{\Gamma(\alpha+1)}{t^{\alpha}} J^{\alpha} f^{\gamma}(t) J^{\alpha} g^{\delta}(t) \tag{3.34}
\end{equation*}
$$

for any $t>0, \gamma>0, \delta>0$.
Proof: Let $x, y \in[0, t], t>0$. For any $\gamma>0, \delta>0$, we have

$$
\begin{equation*}
\left(f^{\gamma}(x)-f^{\gamma}(y)\right)\left(g^{\delta}(y)-g^{\delta}(x)\right) \geq 0 \tag{3.35}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f^{\gamma}(x) g^{\delta}(y)+f^{\gamma}(y) g^{\delta}(x) \geq f^{\gamma}(y) g^{\delta}(y)+f^{\gamma}(x) g^{\delta}(x) \tag{3.36}
\end{equation*}
$$

And consequently,

$$
\begin{align*}
& J^{\alpha} f^{\gamma}(t) g^{\delta}(t)+f^{\gamma}(y) g^{\delta}(y) \frac{t^{\alpha}}{\alpha \Gamma(\alpha)} \tag{3.37}\\
& \leq g^{\delta}(y) J^{\alpha} f^{\gamma}(t)+f^{\gamma}(y) J^{\alpha} g^{\delta}(t)
\end{align*}
$$

Multiplying both sides of (3.37) by $\frac{(t-y)^{\alpha-1}}{\Gamma(\alpha)}, y \in(0, t)$, we get

$$
\begin{align*}
& \frac{(t-y)^{\alpha-1}}{\Gamma(\alpha)} J^{\alpha} f^{\gamma}(t) g^{\delta}(t)+\frac{(t-y)^{\alpha-1}}{\Gamma(\alpha)} f^{\gamma}(y) g^{\delta}(y) \frac{t^{\alpha}}{\alpha \Gamma(\alpha)} \\
& \leq \frac{(t-y)^{\alpha-1}}{\Gamma(\alpha)} g^{\delta}(y) J^{\alpha} f^{\gamma}(t)+\frac{(t-y)^{\alpha-1}}{\Gamma(\alpha)} f^{\gamma}(y) J^{\alpha} g^{\delta}(t) \tag{3.38}
\end{align*}
$$

Then integrating (3.38) with respect to y over $(0, t)$, we obtain

$$
\begin{align*}
& J^{\alpha} f^{\gamma}(t) g^{\delta}(t) \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-y)^{\alpha-1} d y+\frac{t^{\alpha}}{\alpha \Gamma(\alpha) \Gamma(\alpha)} \int_{0}^{t}(t-y)^{\alpha-1} f^{\gamma}(y) g^{\delta}(y) d y \tag{3.39}\\
& \quad \leq \frac{J^{\alpha} f^{\gamma}(t)}{\Gamma(\alpha)} \int_{0}^{t}(t-y)^{\alpha-1} g^{\delta}(y) d y+\frac{J^{\alpha} g^{\delta}(t)}{\Gamma(\alpha)} \int_{0}^{t}(t-y)^{\alpha-1} f^{\gamma}(y) d y .
\end{align*}
$$

Consequently,
$\underset{\substack{\alpha \Gamma(\alpha) \\(3.40)}}{t^{\alpha}} J^{\alpha} f^{\gamma}(t) g^{\delta}(t)+\frac{t^{\alpha}}{\alpha \Gamma(\alpha)} J^{\alpha} f^{\gamma}(t) g^{\delta}(t) \leq J^{\alpha} f^{\gamma}(t) J^{\alpha} g^{\delta}(t)+J^{\alpha} g^{\delta}(t) J^{\alpha} f^{\gamma}(t)$.
Then we can write

$$
\begin{equation*}
J^{\alpha} f^{\gamma}(t) g^{\delta}(t) \leq \frac{\alpha \Gamma(\alpha)}{t^{\alpha}} J^{\alpha} f^{\gamma}(t) J^{\alpha} g^{\delta}(t) \tag{3.41}
\end{equation*}
$$

Theorem 3.4 is thus proved.
Remark 3.4: It is clear that on $[0, t]$, Theorem 1.3 would follow as a special case
of Theorem 3.4, when $\alpha=1$.
Theorem 3.5: Let f and g be two positive functions on $[0, \infty[$, such that f is non-decreasing and g is non-increasing. Then for any $\alpha>0, \beta>0, t>0$, we have

$$
\begin{align*}
& \frac{t^{\beta}}{\Gamma(\beta+1)} J^{\alpha}\left(f^{\gamma}(t) g^{\delta}(t)\right)+\frac{t^{\alpha}}{\Gamma(\alpha+1)} J^{\beta}\left(f^{\gamma}(t) g^{\delta}(t)\right) \tag{3.42}\\
& \leq\left(J^{\alpha} f^{\gamma}(t)\right)\left(J^{\beta} g^{\delta}(t)\right)+\left(J^{\alpha} g^{\delta}(t)\right)\left(J^{\beta} f^{\gamma}(t)\right)
\end{align*}
$$

Proof:

Using (3.37), we obtain

$$
\begin{align*}
& J^{\alpha} f^{\gamma}(t) g^{\delta}(t) \frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-y)^{\beta-1} d y+\frac{t^{\alpha}}{\alpha \Gamma(\alpha) \Gamma(\beta)} \int_{0}^{t}(t-y)^{\beta-1} f^{\gamma}(y) g^{\delta}(y) d y \tag{3.43}\\
& \quad \leq \frac{J^{\alpha} f^{\gamma}(t)}{\Gamma(\beta)} \int_{0}^{t}(t-y)^{\beta-1} g^{\delta}(y) d y+\frac{J^{\alpha} g^{\delta}(t)}{\Gamma(\beta)} \int_{0}^{t}(t-y)^{\beta-1} f^{\gamma}(y) d y
\end{align*}
$$

which implies (3.44).
Theorem 3.5 is thus proved.
Remark 3.5: Applying Theorem 3.5 for $\alpha=\beta$ we obtain Theorem 3.4.

REFERENCES

1. Z. Dahmani, L. Tabharit: Certain inequalities involving fractional integrals. J. Adv. Res. Sci. Comput. 2(1) (2010), 55?60.
2. Z. Dahmani, S. Belarbi: Some inequalities of Qi type using fractional integration. Int. J Nonlinear Sci., (2011), in press.
3. R. Gorenflo, F. Mainardi: Fractional Calculus; Integral and Differential Equations of Fractional Order. Springer Verlag, Wien, 1997, 223-276.
4. W. J. Liu, G. S. Cheng, C. C. Li: Further development of an open problem concerning an integral inequality. JIPAM. J. Inequal. Pure Appl. Math. 9(1) (2008), Art. 14.
5. W. J. Liu, Q. A. Ngo, V. N. HuY: Several interesting integral inequalities. J. Math. Inequal. 3(2) (2009), 201 ?212.
6. Q. A. Ngo, D. D. Thang, T. T. Dat, D. A. Tuan: Notes on an integral inequality. JIPAM. J. Inequal. Pure Appl. Math. 7(4) (2006), Art. 120.
7. T. K. Pogany: On an open problem of F. Qi. J. Inequal. Pure Appl. Math. 3(4), (2002), Art. 54.
8. I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, (1999).
9. S. Saitoh, V. K. Tuan, M. Yamamoto: Reverse convolution inequalities and applications to inverse heat source problems. J. Inequal. Pure. Appl. Math. 3(5) (2002), Art. 80.
10. G. Samko, A. A. Kilbas, O. I. Marichev: Fractional integral and derivative, Theory and Application. Gordon and Breach, Yverdon, (1993).
11. W. T. Sulaiman: Several Ideas on Some Integral Inequalities. Advances in Pure Mathematics, 1 2011, 63-66.
12. L. Yin, F. Qi: Some Integral Inequalities on Time Scales. Available online at: arxiv.org/pdf/1105.1566.

Ahmed Anber
Faculty of Science
Department of Mathematics
USTO University
Oran, Algeria
ah.anber@gmail.com

Zoubir Dahmani, Berrabah Bendoukha
LMPA, Faculty SEI
UMAB, University of Mostaganem
Mostaganem
27000, Algeria
zzdahmani@yahoo.fr, bbendoukha@gmail.com

