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Ser. Math. Inform. Vol. 27, No 2 (2012), 145–156

M-STEP ITERATIVE PROCESS FOR A FINITE FAMILY OF
MULTIVALUED GENERALIZED NONEXPANSIVE MAPPINGS IN

CAT(0) SPACES ∗

Ali Abkar and Elahe Najafi

Abstract. In this paper, we introduce a new m-step iterative process for a finite family
of multivalued mappings satisfying the condition (E). We then prove some strong and
∆-convergence theorems in CAT(0) spaces. In this way, we extend results of [8].

1. Introduction

A metric space X is said to be a CAT(0) space if it is geodesically connected,
and if every geodesic triangle in X is at least as thin as its comparison triangle in
the Euclidean plane. For more information on these spaces and on the fundamental
role they play in geometry we refer the reader to Bridson and Haefliger [1].

Fixed point theory for single-valued mappings in CAT(0) spaces was first studied
by W. A. Kirk (see [2] and [3]). Since then the fixed point theory for single valued
and multivalued mappings in CAT(0) spaces has been rapidly developed. The study
of fixed points for multivalued nonexpansive mappings by using the Hausdorff metric
was initiated by Markin [4].

In 2008, Suzuki [5] introduced a condition which is weaker than nonexpansiveness
and stronger than quasi nonexpansiveness. Suzuki’s condition was named by himself
the condition (C).

In 2011, Garcia-Falset et al.[6] introduced two conditions on single valued map-
pings, called conditions (E) and (Cλ), which are weaker than nonexpansiveness and
stronger than quasi nonexpansiveness.

Recently, Abkar and Eslamian [7] used a modified version of these conditions
for multivalued mappings, and proved some fixed point theorems for multivalued
mappings satisfying these conditions in a CAT(0) space.

The aim of this paper is to introduce a new m-step iterative process for a finite
family of mulivalued mappings satisfying condition (E) and prove some strong and
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∆-convergence theorems in a CAT(0) space. In this way, we extend the iterative
process that were introduced by Abkar and Eslamian in [8].

2. Preliminaries

Let (X,d) be a metric space. A geodesic path joining x ∈ X and y ∈ X (or, more
briefly, a geodesic) is a map c from a closed interval [0, l] ⊂ R to X such that
c(0) = x, c(l) = y and d(c(t), c(s)) = |t − s| for all s, t ∈ [0, l]. In particular, the
mapping c is an isometry and d(x, y) = l. The image of c is called a geodesic (or
metric) segment joining x and y. When it is unique this geodesic segment is denoted
by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X
are joined by a geodesic. The space X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y, for each x, y ∈ X. A subset Y of X is said to
be convex if Y includes every geodesic segment joining any two points of itself.
A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of △) and a geodesic segment between each pair of points
(the edges of △). A comparison triangle for △(x1, x2, x3) in (X, d) is a triangle
△(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane R2 such that dR2(xi, xj) =
d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic metric space X is said to be a CAT(0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom:

Let △ be a geodesic triangle in X and let △ be its comparison triangle in R2.
Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all compari-
son points x, y ∈ △, d(x, y) ≤ dR2(x, y).

We begin with the following property of a CAT(0) space.

Lemma 2.1. [10] Let (X, d) be a CAT(0) space.
(a) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z satisfying above relation.
(b) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

(c) ([1]) Let X be a CAT(0) space and D be a closed convex subset of X then
(1). For each x ∈ X, there exists an element PD(x) ∈ C such that d(x, PD(x)) =

dist(x,D).
(2). PD(x) = PD(x′) for all x′ ∈ [x, PD(x)].
(3). The mapping x 7→ PD is nonexpansive.

The mapping PD is called the convex projection from X into D.
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Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It’s Known (see, e.g., [11], Proposition 7) that in a CAT(0) space, A({xn}) consists
of exactly one point.
A notion of ∆-convergence in CAT(0) spaces based on the fact that in Hilbert spaces
a bounded sequence is weakly convergent to its unique asymptotic center has been
introduced in [12].

Definition 2.1. ([12] and [13]) A sequence {xn} in a CAT (0) space X is said
to ∆-converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case one writes ∆-limn xn = x and call x the
∆-limit of {xn}.

Lemma 2.2. ([12]) Every bounded sequence in a complete CAT (0) space has a
∆-convergence subsequence.

Lemma 2.3. ([14]) If D is a closed convex subset of a complete CAT (0) space,
and if {xn} is a bounded sequence in D, then the asymptotic center of {xn} lies in
D.

Lemma 2.4. ([15]) Let X be a complete CAT (0) space, and let x ∈ X. Sup-
pose that {tn} is a sequence in [b, c] for some b, c ∈ (0, 1) and that {xn}, {yn} are
sequences in X such that lim supn→∞ d(xn, x) ≤ r, lim supn→∞ d(yn, x) ≤ r and
limn→∞ d(tnxn ⊕ (1− tn)yn, x) = r for some r ≥ 0. Then

lim
n→∞

d(xn, yn) = 0.

Let D be a subset of a CAT(0) space X. We denote by CB(D), K(D), P (D)
the collection of all nonempty closed bounded subsets, nonempty compact subsets,
nonempty proximal subsets of D, respectively. Let H be the Hausdorff metric with
respect to d, that is,

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(D) where dist(x,B) = infy∈B d(x, y).
An element x ∈ X is said to be a fixed point of a multivalued mapping T , if x ∈ Tx.
We denote by Fix(T ) the set of all fixed points of T .
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Definition 2.2. A multivalued mapping T : X → CB(X) is said to be nonexpan-
sive provided that

H(Tx, Ty) ≤ d(x, y), x, y ∈ X.

Definition 2.3. A multivalued mapping T : X → CB(X) is said to be quasi-
nonexpansive if Fix(T ) ̸= Ø and H(Tx, Tp) ≤ d(x, p) for all x ∈ X, p ∈ Fix(T ).

Definition 2.4. A multivalued mapping T : X → CB(X) is said to satisfy con-
dition (Eµ) provided that

dist(x, Ty) ≤ µdist(x, Tx) + d(x, y), x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

Lemma 2.5. Let T : X → CB(X) be a multivalued nonexpansive mapping. Then
T satisfies the condition (E1).

Lemma 2.6. ([10]) Let {xn} be a bounded sequence in a complete CAT(0) space
X, such that A({xn}) = {x}. Suppose {un} is a subsequence of {xn} such that
A({un}) = {u} and let {d(xn, u)} converges in R. Then x = u.

3. The main results

First, we recall the following lemma.

Lemma 3.1. ([8]) let D be a nonempty closed convex subset of a complete CAT (0)
space X. Suppose that a multivalued mapping T : D → K(D) satisfies condition
(E). If {xn} is a sequence in D such that ∆- lim

n→∞
xn=x and lim

n→∞
dist(xn, Txn)=0.

Then x ∈ Tx.

Lemma 3.2. Let D be a nonempty closed convex subset of a complete CAT (0)
space X. Let the multivalued mapping T : D → K(D) satisfies condition (E).
Suppose that {xn} is a bounded sequence in D such that limn→∞ dist(xn, Txn) = 0
and {d(xn, v)} converges for all v ∈ Fix(T ). Then Ww({xn}) ⊂ Fix(T ). Here
Ww({xn}) := ∪A({xn}) where the union is taken over all subsequences {un} of
{xn}. Moreover, Ww({xn}) consists of exactly one point.

Proof. Let u ∈ Ww({xn}). Then, there exists a subsequence {un} of {xn} such
that A({un}) = {u}. By Lemma 3.1, there exists a subsequence {vn} of {un} such
that {vn} is ∆-convergent in X. Let ∆− limn→∞ vn = v. By Lemma 3.2, v ∈ Tv,
v ∈ K. By Lemma 2.12, v = u. Thus, Ww({xn}) ⊂ Fix(T ). It is easy to show that
Ww({xn}) consists of exactly one point.

Lemma 3.3. Let D be a nonempty closed convex subset of a complete CAT (0)
space X. Let the multivalued mapping T : D → K(D) satisfy condition (E) and be
such that inf{dist(x, Tx) : x ∈ D} = 0. Then T has a fixed point in D.
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Proof. let A({xn}) = {x}. By the proof of Theorem 3.4 in [8], we can deduce the
argument.

Now, we introduce the following iterative process.
(I). Let X be a CAT(0) space, D be a nonempty closed convex subset of X and
Ti,k : D → CB(D) (i=1,...,l and k=1,...,m) be l ×m given multivalued mappings.
Then, for x1 ∈ D and a(i)n,k ∈ [0, 1], we consider the following iterative process:

yn,1 = a(1)n,1z(1)n,1 ⊕ (1− a(1)n,1)(a(2)n,1z(2)n,1 ⊕ (1− a(2)n,1)(...
⊕(1− a(l−1)n,1)(a(l)n,1z(l)n,1 ⊕ (1− a(l)n,1)xn)...)), n ≥ 1,

yn,2 = a(1)n,2z(1)n,2 ⊕ (1− a(1)n,2)(a(2)n,2z(2)n,2 ⊕ (1− a(2)n,2)(...
⊕(1− a(l−1)n,2)(a(l)n,2z(l)n,2 ⊕ (1− a(l)n,2)xn)...)), n ≥ 1,
...

yn,m−1 = a(1)n,m−1z(1)n,m−1 ⊕ (1− a(1)n,m−1)(a(2)n,m−1z(2)n,m−1

⊕(1− a(2)n,m−1)(...⊕ (1− a(l−1)n,m−1)(a(l)n,m−1z(l)n,m−1

⊕(1− a(l)n,m−1)xn)...)), n ≥ 1,
xn+1 = a(1)n,mz(1)n,m ⊕ (1− a(1)n,m)(a(2)n,mz(2)n,m ⊕ (1− a(2)n,m)(...

⊕(1− a(l−1)n,m)(a(l)n,mz(l)n,m ⊕ (1− a(l)n,m)xn)...)), n ≥ 1,

where z(i)n,1 ∈ Ti,1(xn) and z(i)n,k ∈ Ti,k(yn,k−1) for i = 1, ..., l and k = 2, ...,m.
Note that if l = m = 1 then {xn} reduces to Mann’s iteration, and if m = 2 and
l = 1 then {xn} will be the Ishikawa’s iteration (see [15]); if l = 1 and m ∈ N then
{xn} is the iteration that which was introduced by Abkar and Eslamian (see [8]).

Theorem 3.1. Let D be a nonempty closed convex subset of a complete CAT(0)
space X. Let Ti,k : D → CB(D), (i = 1, ..., l and k = 1, ...,m) be a finite
family of quasi-nonexpansive multivalued mappings satisfying condition (E) with

F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F . Let xn ∈ X be the
iterative process defined by (I) and a(i)n,k ∈ (0, 1) (i = 1, ..., l and k = 1, ...,m).
Then
(i) limn→∞ d(xn, p) exists for all p ∈ F .
(ii) If we assume that
(∗) limn→∞ d(tnyn,k ⊕ (1 − tn)z(i)n,k, p) = limn→∞ d(xn, p) = limn→∞ d(tnxn ⊕
(1 − tn)z(i)n,k, p) for (tn) ⊂ (0, 1) and p ∈ F , then limn→∞ dist(xn, Ti,k(xn)) = 0,
i = 1, ..., l and k = 1, ...,m.

Proof. Let p ∈ F . Then using (I) and Lemma 2.1, and quasi nonexpansiveness of
Ti,k, we have

d(yn,1, p) = d(a(1)n,1z(1)n,1 ⊕ (1− a(1)n,1)(a(2)n,1z(2)n,1 ⊕ (1− a(2)n,1)(...
⊕(1− a(l−1)n,1)(a(l)n,1z(l)n,1 ⊕ (1− a(l)n,1)xn)...)), p)

≤ a(1)n,1d(z(1)n,1, p) + (1− a(1)n,1)d(a(2)n,1z(2)n,1 ⊕ (1− a(2)n,1)(...
⊕)(1− a(l−1)n,1)(a(l)n,1z(l)n,1 ⊕ (1− a(l)n,1)xn)...), p)
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...
≤ a(1)n,1d(z(1)n,1, p) + (1− a(1)n,1)(a(2)n,1d(z(2)n,1, p) + (1− a(2)n, 1)

(...+ a(l)n,1d(z(l)n,1, p) + (1− a(l)n,1)d(xn, p)...))
= a(1)n,1dist(z(1)n,1, T1,1p) + (1− a(1)n,1)(a(2)n,1dist(z(2)n,1, T2,1p)+

(1− a(2)n,1)(...+ a(l)n,1dist(z(l)n,1, Tl,1p) + (1− a(l)n,1)d(xn, p)...))
≤ a(1)n,1H(T1,1xn, T1,1p) + (1− a(1)n,1)(a(2)n,1H(T2,1xn, T2,1p)+

(1− a(2)n,1)(...+ a(l)n,1H(Tl,1xn, Tl,1p) + (1− a(l)n,1)d(xn, p)...))
≤ a(1)n,1d(xn, p) + (1− a(1)n,1)(a(2)n,1d(xn, p) + (1− a(2)n, 1)(...

+a(l)n,1d(xn, p) + (1− a(l)n,1)d(xn, p)...))
= (a(1)n,1+(1−a(1)n, 1)(a(2)n,1+(1−a(2)n,1)(...a(l)n,1+(1−a(l)n,1)...)))d(xn, p)
= d(xn, p),

and

d(yn,2, p) = d(a(1)n,2z(1)n,2 ⊕ (1− a(1)n,2)(a(2)n,2z(2)n,2 ⊕ (1− a(2)n,2)(...
⊕(1− a(l−1)n,2)(a(l)n,2z(l)n,2 ⊕ (1− a(l)n,2)xn)...)), p)

≤ a(1)n,2d(z(1)n,2, p) + (1− a(1)n,2)d(a(2)n,2z(2)n,2 ⊕ (1− a(2)n,2)(...
⊕)(1− a(l−1)n,2)(a(l)n,2z(l)n,2 ⊕ (1− a(l)n,2)xn)...), p)
...

≤ a(1)n,2d(z(1)n,2, p) + (1− a(1)n,2)(a(2)n,2d(z(2)n,2, p) + (1− a(2)n, 2)
(...+ a(l)n,2d(z(l)n,2, p) + (1− a(l)n,2)d(xn, p)...))

= a(1)n,2dist(z(1)n,2, T1,2p) + (1− a(1)n,2)(a(2)n,2dist(z(2)n,2, T2,2p)+
(1− a(2)n,2)(...+ a(l)n,2dist(z(l)n,2, Tl,2p) + (1− a(l)n,2)d(xn, p)...))

≤ a(1)n,2H(T1,2yn,1, T1,2p) + (1− a(1)n,2)(a(2)n,2H(T2,2yn,1, T2,2p)+
(1− a(2)n,2)(...+ a(l)n,2H(Tl,2yn,1, Tl,2p) + (1− a(l)n,2)d(xn, p)...))

≤ a(1)n,2d(yn,1, p) + (1− a(1)n,2)(a(2)n,2d(yn,1, p)+
(1− a(2)n,2)(...+ a(l)n,2d(yn,1, p) + (1− a(l)n,2)d(xn, p)...))

≤ a(1)n,2d(xn, p) + (1− a(1)n,2)(a(2)n,2d(xn, p) + (1− a(2)n, 2)(...
+a(l)n,2d(xn, p) + (1− a(l)n,2)d(xn, p)...))

= (a(1)n,2+(1− a(1)n, 2)(a(2)n,2+(1−a(2)n,2)(...a(l)n,2 + (1−a(l)n,2)...)))d(xn, p)
= d(xn, p).

Similarly, we have

d(yn,m−1, p) = d(a(1)n,m−1z(1)n,m−1 ⊕ (1− a(1)n,m−1)(a(2)n,m−1z(2)n,m−1 ⊕ (1−
a(2)n,m−1)(...⊕ (1− a(l−1)n,m−1)(a(l)n,m−1z(l)n,m−1 ⊕ (1− a(l)n,m−1)xn)...)), p)

≤ a(1)n,m−1d(z(1)n,m−1, p) + (1− a(1)n,m−1)d(a(2)n,m−1z(2)n,m−1 ⊕ (1−
a(2)n,m−1)(...⊕)(1− a(l−1)n,m−1)(a(l)n,m−1z(l)n,m−1 ⊕ (1− a(l)n,m−1)xn)...), p)

..

.
≤ a(1)n,m−1d(z(1)n,m−1, p) + (1− a(1)n,m−1)(a(2)n,m−1d(z(2)n,m−1, p)

+(1− a(2)n,m− 1)(...+ a(l)n,m−1d(z(l)n,m−1, p) + (1− a(l)n,m−1)d(xn, p)...))
= a(1)n,m−1dist(z(1)n,m−1, T1,m−1p) + (1− a(1)n,m−1)(a(2)n,m−1

dist(z(2)n,m−1, T2,m−1p) + (1− a(2)n,m−1)(...+ a(l)n,m−1dist(z(l)n,m−1, Tl,m−1p)
+(1− a(l)n,m−1)d(xn, p)...))

≤ a(1)n,m−1H(T1,m−1yn,m−2, T1,m−1p) + (1− a(1)n,m−1)(a(2)n,m−1

H(T2,m−1yn,m−2, T2,m−1p) + (1− a(2)n,m−1)(...+ a(l)n,m−1
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H(Tl,m−1yn,m−2, Tl,m−1p) + (1− a(l)n,m−1)d(xn, p)...))
≤ a(1)n,m−1d(yn,m−2, p) + (1− a(1)n,m−1)(a(2)n,m−1d(yn,m−2, p)+

(1− a(2)n,m−1)(...+ a(l)n,m−1d(yn,m−2, p) + (1− a(l)n,m−1)d(xn, p)...))
≤ a(1)n,m−1d(xn, p) + (1− a(1)n,m−1)(a(2)n,m−1d(xn, p) + (1− a(2)n,m− 1)(...

+a(l)n,m−1d(xn, p) + (1− a(l)n,m−1)d(xn, p)...))
= (a(1)n,m−1 + (1− a(1)n,m− 1)(a(2)n,m−1 + (1− a(2)n,m−1)(...a(l)n,m−1+

(1− a(l)n,m−1)...)))d(xn, p) = d(xn, p),

and also

d(xn+1, p) = d(a(1)n,mz(1)n,m ⊕ (1− a(1)n,m)(a(2)n,mz(2)n,m ⊕ (1− a(2)n,m)(...
⊕(1− a(l−1)n,m)(a(l)n,mz(l)n,m ⊕ (1− a(l)n,m)xn)...)), p)

≤ a(1)n,md(z(1)n,m, p) + (1− a(1)n,m)d(a(2)n,mz(2)n,m ⊕ (1− a(2)n,m)(...
⊕)(1− a(l−1)n,m)(a(l)n,mz(l)n,m ⊕ (1− a(l)n,m)xn)...), p)

..

.
≤ a(1)n,md(z(1)n,m, p) + (1− a(1)n,m)(a(2)n,md(z(2)n,m, p) + (1− a(2)n,m)

(...+ a(l)n,md(z(l)n,m, p) + (1− a(l)n,m)d(xn, p)...))
= a(1)n,mdist(z(1)n,m, T1,mp) + (1− a(1)n,m)(a(2)n,mdist(z(2)n,m, T2,mp)+

(1− a(2)n,m)(...+ a(l)n,mdist(z(l)n,m, Tl,mp) + (1− a(l)n,m)d(xn, p)...))
≤ a(1)n,mH(T1,myn,m−1, T1,mp) + (1− a(1)n,m)(a(2)n,mH(T2,myn,m−1, T2,mp)+

(1− a(2)n,m)(...+ a(l)n,mH(Tl,myn,m−1, Tl,mp) + (1− a(l)n,m)d(xn, p)...))
≤ a(1)n,md(yn,m−1, p) + (1− a(1)n,m)(a(2)n,md(yn,m−1, p)+

(1− a(2)n,m)(...+ a(l)n,md(yn,m−1, p) + (1− a(l)n,m)d(xn, p)...))
≤ a(1)n,md(xn, p) + (1− a(1)n,m)(a(2)n,md(xn, p) + (1− a(2)n,m)(...

+a(l)n,md(xn, p) + (1− a(l)n,m)d(xn, p)...))
= (a(1)n,m + (1− a(1)n,m)(a(2)n,m + (1− a(2)n,m)(...a(l)n,m

+(1− a(l)n,m)...)))d(xn, p) = d(xn, p).

And d(z(i)n,k, p) = dist(z(i),n,k, Ti,kp) ≤ d(xn, p). Therefore, {d(xn, p)} is decreas-
ing and bounded below. This implies that limn→∞ d(xn, p) exists for any p ∈ F .
We suppose that limn→∞ d(xn, p) = c for some c ≥ 0. Thus limn→∞ d(xn+1, p) = c.
Since d(z(i)n,k, p) ≤ d(xn, p) then by taking limit superior on both sides, we ob-
tain lim supn d(z(i)n,k, p) ≤ c (i = 1, ..., l and k = 1, ...,m). Also, limn d(yn,k, p) ≤
limn d(xn, p) = c. On the other hand, we have

d(tnyn,k ⊕ (1− tn)z(i)n,k, p) ≤ tnd(yn,k, p) + (1− tn)d(z(i)n,k, p)
≤ tnd(xn, p) + (1− tn)d(xn, p) = d(xn, p)

so that limn d(tnyn,k⊕(1−tn)z(i)n,k, p) ≤ limn d(xn, p) for all (tn)n ⊆ [a, b] ⊂ (0, 1).
But by the assumption (∗), limn d(tnyn,k ⊕ (1 − tn)z(i)n,k, p) = limn d(xn, p) =
c. Then by Lemma 2.5, limn d(yn,k, z(i)n,k) = 0. Again, by using Lemma 2.5
and the assumption (∗), we get limn d(xn, z(i)n,k) = 0. Hence, dist(xn, Ti,1xn) ≤
d(xn, z(i)n,1) → 0, as n → ∞ and dist(xn, Ti,kyn,k−1) ≤ d(xn, z(i)n,k) → 0, as n →
∞ for (i = 1, ..., l and k = 2, ...,m). Also, we have d(xn, yn,k−1) ≤ d(xn, z1n,k−1) +
d(yn,k−1, z(1)n,k−1), so that limn d(xn, yn,k−1) = 0. By condition (E), we get for
some µ ≥ 1,

dist(xn, Ti,kxn) ≤ d(xn, yn,k−1) + dist(yn,k−1, Ti,kxn)

≤ d(xn, yn,k−1) + µdist(yn,k−1, Ti,kyn,k−1) + d(xn, yn,k−1)

≤ d(xn, yn,k−1)+µdist(xn, Ti,kyn,k−1)+µd(xn, yn,k−1)+d(xn, yn,k−1)

≤ (µ+ 2)d(xn, yn,k−1) + µdist(xn, Ti,kyn,k−1);
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So, for i = 1, ..., l and k = 1, ...,m, limn→∞ dist(xn, Ti,kxn) = 0.

Now, we turn to some strong and ∆ convergence theorems:

Theorem 3.2. Suppose that X,D, Ti,k : D → K(D) (i = 1, ..., l, k = 1, ...,m) are

as in Theorem 3.4 with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F .
Let xn ∈ X be the iterative process defined by (I) and a(i)n,k ∈ (0, 1) (i = 1, ..., l
and k = 1, ...,m). Let the assumption (∗) of Theorem 3.4(ii) hold. Then {xn} is

∆-convergent to a common fixed point of {Ti,k}l,m1 .

Proof. By Theorem 3.4, we have limn→∞ dist(xn, Ti,kxn) = 0. Let

Ww({xn}) := ∪A({un})

where the union is taken over all subsequences {un} of {xn}. By Lemma 3.2,
Ww({xn}) ⊂ F and Ww({xn}) consists of exactly one point, {x}. This means
that x ∈ F is the unique asymptotic center of each subsequence of {xn}. Thus
∆-limn→∞ xn = x.

Theorem 3.3. Let D be a nonempty compact convex subset of a complete CAT(0)
space X. Let Ti,k : D → CB(D) (i = 1, ..., l and k = 1, ...,m) be a finite family
of quasi-nonexpansive multivalued mappings satisfying the condition (E) with F =∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F . Let xn ∈ X be the iterative
process defined by (I) and a(i)n,k ∈ [a, b] ⊂ (0, 1) (i = 1, ..., l and k = 1, ...,m).
Let the condition (∗) in Theorem 3.4(ii) hold. Then {xn} converges strongly to a

common fixed point of {Ti,k}l,m1 .

Proof. By Theorem 3.4, for i = 1, ..., l and k = 1, ...,m, we have

lim
n→∞

dist(xn, Ti,kxn) = 0.

SinceD is compact, there exists a subsequence {xnt} of {xn} such that limt→∞ xnt =
w for w ∈ D. By condition (E), we have for some µ ≥ 1,

dist(w, Ti,kw) ≤ d(w, xnt) + dist(xnt , Ti,kw)
≤ µdist(xnt , Ti,kxnt) + 2d(w, xnt) → 0, as t → ∞.

Thus w ∈ F . Since {xnt} converges strongly to w and limn d(xn, w) exists (by
Theorem 3.4), we conclude that {xn} converges strongly to w.

Theorem 3.4. Suppose that X,D, Ti,k (i = 1, ..., l, k = 1, ...,m) are as in The-

orem 3.4 with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F .
Let xn ∈ X be the iterative process defined by (I) and a(i)n,k ∈ [a, b] ⊂ (0, 1)
(i = 1, ..., l and k = 1, ...,m). Let the condition (∗) of Theorem 3.4(ii) hold.

Then {xn} converges strongly to a common fixed point of {Ti,k}l,m1 if and only
if lim infn dist(xn, F ) = 0.
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Proof. By using Theorem 3.4, and an argument similar to that in the proof of
Theorem 3.8 in ([8]) we can finish the job.

Inspired by the condition (A′) for two mappings that was introduced in ([16]), we’d
like to consider it for a finite family of multivalued mappings:
A finite family of multivalued mappings Ti,k : D → CB(D) is said to satisfy condi-
tion (A′′) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,
f(r) > 0 for all r > 0 such that for some i = 1, ..., l and k = 1, ...,m

dist(x, Ti,kx) ≥ f(dist(x, F )),

for all x ∈ D where F =
∩l,m

i,k=1 Fix(Ti,k).

Theorem 3.5. Suppose that X,D, Ti,k (i = 1, ..., l, k = 1, ...,m) are as in The-

orem 3.4 with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F . Let
xn ∈ X be the iterative process defined by (I) and a(i)n,k ∈ [a, b] ⊂ (0, 1) (i = 1, ..., l
and k = 1, ...,m). Let the condition (∗) in Theorem 3.4(ii) hold and let Ti,k sat-
isfy the condition (A′′). Then {xn} converges strongly to a common fixed point of

{Ti,k}l,m1 .

Proof. By Theorem 3.4, we have limn→∞ dist(xn, Ti,kxn) = 0 for each i, k. So by
condition (A′′), we get limn dist(xn, F ) = 0. Now, the conclusion follows from
Theorem 3.7.

Corollary 3.1. Suppose that X,D are as in Theorem 3.4, and let Ti,k : D →
CB(D) (i = 1, ..., l and k = 1, ...,m) be a finite family of nonexpansive multivalued

mappings with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø and Ti,k(p) = {p} for each p ∈ F .
Let xn ∈ X be the iterative process defined by (I) and a(i)n,k ∈ [a, b] ⊂ (0, 1)
(i = 1, ..., l and k = 1, ...,m). Let the condition (∗) in Theorem 3.4(ii) hold and let
Ti,k satisfy the condition (A′′). Then {xn} converges strongly to a common fixed

point of {Ti,k}l,m1 .

Corollary 3.2. Suppose that X,D are as in Theorem 3.4, and let Ti,k : D → D
(i = 1, ..., l and k = 1, ...,m) be a finite family of single valued mappings satisfying

the condition (E) with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø. Let xn ∈ X be the iterative
process defined by (I) and a(i)n,k ∈ (0, 1) (i = 1, ..., l and k = 1, ...,m). Let the
condition (∗) in Theorem 3.4(ii) hold and let Ti,k satisfy the condition (A′′). Then

{xn} converges strongly to a common fixed point of {Ti,k}l,m1 .

Now, we introduce the improved iteration (I) for a finite family of multivalued
nonself mappings:
(I ′). Let Ti,k : D → CB(X) (i=1,...,l and k=1,...,m) be l × m given multivalued
nonself mappings. Then, for x1 ∈ D and a(i)n,k ∈ [0, 1], we consider the following
iterative process:

yn,1 = PD(a(1)n,1z(1)n,1 ⊕ (1− a(1)n,1)(a(2)n,1z(2)n,1 ⊕ (1− a(2)n,1)(...
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⊕(1− a(l−1)n,1)(a(l)n,1z(l)n,1 ⊕ (1− a(l)n,1)xn)...))), n ≥ 1,
yn,2 = PD(a(1)n,2z(1)n,2 ⊕ (1− a(1)n,2)(a(2)n,2z(2)n,2 ⊕ (1− a(2)n,2)(...

⊕(1− a(l−1)n,2)(a(l)n,2z(l)n,2 ⊕ (1− a(l)n,2)xn)...))), n ≥ 1,
...

yn,m−1 = PD(a(1)n,m−1z(1)n,m−1 ⊕ (1− a(1)n,m−1)(a(2)n,m−1z(2)n,m−1

⊕(1− a(2)n,m−1)(...⊕ (1− a(l−1)n,m−1)(a(l)n,m−1z(l)n,m−1

⊕(1− a(l)n,m−1)xn)...))), n ≥ 1,
xn+1 = PD(a(1)n,mz(1)n,m ⊕ (1− a(1)n,m)(a(2)n,mz(2)n,m ⊕ (1− a(2)n,m)(...

⊕(1− a(l−1)n,m)(a(l)n,mz(l)n,m ⊕ (1− a(l)n,m)xn)...))), n ≥ 1,

where z(i)n,1 ∈ Ti,1(xn) and z(i)n,k ∈ Ti,k(yn,k−1) for i = 1, ..., l and k = 2, ...,m
and PD is the convex projection from X into D in Lemma 2.1(iii). Since PD is
nonexpansive, we have the following remark.

Remark 3.1. All of the previous results hold true for {xn} given by (I ′).

Now, we consider the following iteration process:
(II). Let Ti,k : D → CB(X) (i=1,...,l and k=1,...,m) be l × m given multivalued
mappings and PTi,k

= {y ∈ Ti,k(x) : d(x, y) = dist(x, Ti,k(x))}. Then, for x1 ∈ D
and a(i)n,k ∈ [0, 1], we consider the following iterative process:

yn,1 = a(1)n,1z(1)n,1 ⊕ (1− a(1)n,1)(a(2)n,1z(2)n,1 ⊕ (1− a(2)n,1)(...
⊕(1− a(l−1)n,1)(a(l)n,1z(l)n,1 ⊕ (1− a(l)n,1)xn)...)), n ≥ 1,

yn,2 = a(1)n,2z(1)n,2 ⊕ (1− a(1)n,2)(a(2)n,2z(2)n,2 ⊕ (1− a(2)n,2)(...
⊕(1− a(l−1)n,2)(a(l)n,2z(l)n,2 ⊕ (1− a(l)n,2)xn)...)), n ≥ 1,
...

yn,m−1 = a(1)n,m−1z(1)n,m−1 ⊕ (1− a(1)n,m−1)(a(2)n,m−1z(2)n,m−1

⊕(1− a(2)n,m−1)(...⊕ (1− a(l−1)n,m−1)(a(l)n,m−1z(l)n,m−1

⊕(1− a(l)n,m−1)xn)...)), n ≥ 1,
xn+1 = a(1)n,mz(1)n,m ⊕ (1− a(1)n,m)(a(2)n,mz(2)n,m ⊕ (1− a(2)n,m)(...

⊕(1− a(l−1)n,m)(a(l)n,mz(l)n,m ⊕ (1− a(l)n,m)xn)...)), n ≥ 1,

where z(i)n,1 ∈ PTi,1(xn) and z(i)n,k ∈ PTi,k
(yn,k−1) for i = 1, ..., l and k = 2, ...,m.

Assume that for (tn) ⊂ (0, 1) and p ∈ F we have

lim
n→∞

d(tnyn,k⊕(1−tn)z(i)n,k, p)= lim
n→∞

d(xn, p)= lim
n→∞

d(tnxn⊕(1−tn)z(i)n,k, p) (∗∗).

Theorem 3.6. Suppose that X,D, Ti,k : D → P (D) (i = 1, ..., l, k = 1, ...,m) are

as in Theorem 3.4 with F =
∩l,m

i,k=1 Fix(Ti,k) ̸= Ø. Let xn ∈ X be the iterative
process defined by (II) and a(i)n,k ∈ (0, 1) (i = 1, ..., l and k = 1, ...,m). Let Ti,k

satisfy the condition (A′′), and for (tn) ⊂ (0, 1) and p ∈ F we have

lim
n→∞

d(tnyn,k ⊕ (1− tn)z(i)n,k, p)

= lim
n→∞

d(xn, p) = lim
n→∞

d(tnxn ⊕ (1− tn)z(i)n,k, p).
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Then {xn} converges strongly to a common fixed point of {Ti,k}l,m1 .

Proof. The proof essentially goes in the same lines as in the proof of Theorem 3.4,
and in the proof of Theorem 3.12 ([8]). We omit the details.
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