DRAGOMIR'S, BUZANO'S AND KERUPA'S INEQUALITIES IN HILBERT C^{*}-MODULES

Ahmed Roukbi

Abstract

In this paper we prove a type of Dragomir's, Buzano's and Kurepa's inequalities in Hilbert C^{*}-modules. Some applications for discrete and integral inequalities improving the Cauchy-Schwartz result are given.

1. Introduction

In ([1]), M.L. Buzano obtained the following extension of the Cauchy-Schwartz's inequality in a real or complex Hilbert space $(H,(.,)$.

$$
\begin{equation*}
|(a, x)(x, b)| \leq \frac{1}{2}[\|a\|\|b\|+|(a, b)|]\|x\|^{2} \tag{1.1}
\end{equation*}
$$

for any $a, b, x \in H$. It is clear that for $a=b$, the above inequality becomes the standard Cauchy-Schwartz's inequality

$$
\begin{equation*}
|(a, x)|^{2} \leq\|a\|^{2}\|x\|^{2}: \forall a, x \in H \tag{1.2}
\end{equation*}
$$

with equality if and only if there exists a scalar $\lambda \in \mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C})$ such that $x=\lambda a$.

It might be useful to observe that, out of (1.1) one may get the following discrete inequality

$$
\begin{equation*}
\left|\sum_{i=1}^{n} p_{i} a_{i} \bar{x}_{i} \sum_{i=1}^{n} p_{i} x_{i} \bar{b}_{i}\right| \leq \frac{1}{2}\left[\left(\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}\right)^{\frac{1}{2}}+\left|\sum_{i=1}^{n} p_{i} a_{i} \bar{b}_{i}\right|\right] \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \tag{1.3}
\end{equation*}
$$

where $p_{i} \geq 0, a_{i}, b_{i}, x_{i} \in \mathbb{C}, i \in\{1, \ldots, n\}$.
If one takes in (??) $b_{i}=\bar{a}_{i}$ for $i \in\{1, \ldots, n\}$, then one obtains

$$
\begin{equation*}
\left|\sum_{i=1}^{n} p_{i} a_{i} \bar{x}_{i} \sum_{i=1}^{n} p_{i} a_{i} x_{i}\right| \leq \frac{1}{2}\left[\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}+\left|\sum_{i=1}^{n} p_{i} a_{i}^{2}\right|\right] \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \tag{1.4}
\end{equation*}
$$

Received February 20, 2012
2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18
for any $p_{i} \geq 0, a_{i}, x_{i} \in \mathbb{C}, i \in\{1, \ldots, n\}$.
Note that, if $x_{i}, i \in\{1, \ldots, n\}$ are real numbers, then out of (1.4), we may deduce the Buijn's inequality ([2])

$$
\begin{equation*}
\left|\sum_{i=1}^{n} p_{i} x_{i} z_{i}\right|^{2} \leq \frac{1}{2}\left[\sum_{i=1}^{n} p_{i}\left|z_{i}\right|^{2}+\left|\sum_{i=1}^{n} p_{i} z_{i}^{2}\right|\right] \sum_{i=1}^{n} p_{i} x_{i}^{2} \tag{1.5}
\end{equation*}
$$

where $z_{i} \in \mathbb{C}, i \in\{1, \ldots, n\}$. In this way, Buzano's inequality (1.1) may be regarded as a generalization of the Buijn's inequality.

In ([4]) S.S, Dragomir established the following refinement of Busano's inequality

$$
\begin{equation*}
\left|\frac{(a, x)(x, b)}{\|x\|^{2}}-\frac{(a, b)}{\alpha}\right| \leq \frac{\|b \mid\|}{|\alpha| \| x| |}\left[|\alpha-1|^{2}|(a, x)|^{2}+\|x\|^{2}\|a\|^{2}-|(a, x)|^{2}\right] \tag{1.6}
\end{equation*}
$$

where $a, b, x \in H, x \neq 0$ and $\alpha \in \mathbb{K}-\{0\}$.
The case of equality holds in (1.6) if and only if there exists a scalar $\lambda \in \mathbb{K}$ such that

$$
\begin{equation*}
\alpha \frac{\langle a, x\rangle}{\|x\|^{2}} x=a+\lambda b \tag{1.7}
\end{equation*}
$$

The goal of this paper is to show some related as well as a extension of Buzano's and Dragomir's inequality (1.1) and (1.6) to Hilbert C^{*}-module. We can obtain various particular inequalities in Hilbert C^{*}-module. In section 3, we are given a extension of Kurepa's and Dragomir's inequality to Hilbert C^{*}-module, the corresponding applications for discrete and integral inequalities are also provided.

2. Preliminaries in Hilbert C^{*}-modules

In this section we briefly recall the definitions and examples of Hilbert C^{*}-modules. For information about Hilbert C^{*}-module, we refer to ($[5,6,7,9,11]$). Our references for C^{*}-algebras are $([3,13])$.

Let \mathbb{A} be a C^{*}-algebra (not necessarily unitary) and \mathcal{H} be a complex linear space.
Definition 2.1. A pre-Hilbert \mathbb{A}-module is a right \mathbb{A}-module \mathcal{H} equipped with a sesquilinear map (.,.) : $\mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{A}$ satisfying
(i) $(x, x) \geq 0 ;(x, x)=0$ if and only if $x=0$ for all x in \mathcal{H},
(ii) $(x, \alpha y+\beta z)=\alpha(x, y)+\beta(x, z)$ for all x, y, z in $\mathcal{H}, \alpha, \beta$ in \mathbb{C},
(iii) $(x, y)=(y, x)^{*}$ for all x, y in \mathcal{H},
(iv) $(x, y \cdot a)=(x, y) a$ for all x, y in \mathcal{H}, a in \mathbb{A}.

The map (.,.) is called an \mathbb{A}-valued inner product of \mathcal{H}, and for $x \in \mathcal{H}$, we define $\|x\|=\|(x, x)\|^{\frac{1}{2}}$.

Proposition 2.1. Let \mathcal{H} be a pre-Hilbert \mathbb{A}-module, then
(i) $\|$.$\| is a norm on \mathcal{H}$,
(ii) $\|x . a\| \leq\|x\|\|a\|$ for all $x \in \mathcal{H}, a \in \mathbb{A}$,
(iii) $(x, y)(y, x) \leq\|y\|^{2}(x, x)$ for all $x, y \in \mathcal{H}$,
(iv) $\|(x, y)\| \leq\|x\|\|y\|$ for all $x, y \in \mathcal{H}$.

It is clair that (iii) and (iv) are a generalization of Cauchy-Schwartz's inequality to a pre-Hilbert \mathbb{A}-module. The equality holds in (iv) if there exists $\lambda \in \mathbb{C}$ so that $y=\lambda x$.

Definition 2.2. The completion of a pre-Hilbert -module with respect to the norm induced by the \mathbb{A}-valued inner product is called a Hilbert \mathbb{A}-module.

Example 2.1. 1. Let \mathbb{A} be a C^{*}-algebra. \mathbb{A} is Hilbert \mathbb{A}-module if an \mathbb{A}-valued inner product is defined as $(x, y)=x^{*} y$ for all $x, y \in \mathbb{A}$. Any closed right ideal of \mathbb{A} is sub- \mathbb{A}-module under the above \mathbb{A}-valued inner product.
2. Let $\left\{\mathcal{H}_{i}: i \in I\right\}$ be a finite family of Hilbert \mathbb{A}-modules. Then $\oplus_{i \in I} \mathcal{H}_{i}$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sum_{i \in I}\left(x_{i}, y_{i}\right)
$$

When $\left\{\mathcal{H}_{i}: i \in I\right\}$ is an infinite family of Hilbert \mathbb{A}-modules we define

$$
\oplus_{i \in I} \mathcal{H}_{i}=\left\{\left(x_{i}\right)_{i \in I}: \sum_{i}\left(x_{i}, x_{i}\right) \text { converges in norm in } \mathbb{A}\right\} .
$$

Thus $\oplus_{i \in I} \mathcal{H}_{i}$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sum_{i \in I}\left(x_{i}, y_{i}\right)
$$

3. Let \mathbb{A} be a C^{*}-algebra and n be a integer ≥ 1, then $\mathbb{A}^{n} \cong \oplus_{i=1}^{n} \mathbb{A}$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
(a, b)=\sum_{i=1}^{n} a_{i}^{*} b_{i} \text { for all } a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{A}^{n}
$$

4. Let \mathbb{A} be a C^{*}-algebra. Denote by $l^{2}(\mathbb{A})$ the linear space of all sequences $z=\left(z_{n}\right)_{n \geq 1}$ of elements \mathbb{A} so that

$$
\sum_{n=1}^{+\infty}\left\|z_{n}\right\|^{2}\langle+\infty
$$

Then $l^{2}(\mathbb{A})$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
\left(z, z^{\prime}\right)=\sum_{n=1}^{+\infty} z_{n}^{*} z_{n}^{\prime} \text { for all } z=\left(z_{n}\right)_{n \geq 1}, z^{\prime}=\left(z_{n}^{\prime}\right)_{n \geq 1} \in l^{2}(\mathbb{A})
$$

5. Let \mathbb{A} be a unitary C^{*}-algebra with unit e, and $\left(\rho_{n}\right)_{n \geq 1}$ be a sequence of positives reals numbers so that

$$
\sum_{n=1}^{+\infty} \rho_{n}=1
$$

Denote by $l_{\rho}^{2}(\mathbb{A})$ the linear space of all sequences $z=\left(z_{n}\right)_{n \geq 1}$ of elements \mathbb{A} so that

$$
\sum_{n=1}^{+\infty} \rho_{n}\left\|z_{n}\right\|^{2}\langle+\infty
$$

Then $l_{\rho}^{2}(\mathbb{A})$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
\left(z, z^{\prime}\right)=\sum_{n=1}^{+\infty} \rho_{n} z_{n}^{*} z_{n}^{\prime} \text { for all } z=\left(z_{n}\right)_{n \geq 1}, z^{\prime}=\left(z_{n}^{\prime}\right)_{n \geq 1} \in l_{\rho}^{2}(\mathbb{A})
$$

6. Let \mathbb{A} be a unitary commutative C^{*}-algebra with unit $e,(S, \Sigma, \mu)$ be a positive measure space and φ be a \mathbb{A}-valued function $S \longrightarrow \mathbb{A}$ so that $\varphi(t)$ is hermitian positive in \mathbb{A} for which $t \in S$, and

$$
\int_{S}\|\varphi(t)\|^{2} d \mu(t)\left\langle+\infty \text { and } \int_{S} \varphi(t) d \mu(t)=e\right.
$$

Denote by $\mathbb{L}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})$ the linear space of all \mathbb{A}-valued functions $f: S \longrightarrow \mathbb{A}$ such that

$$
\int_{S}\|\varphi(t)\|\|f(t)\|^{2} d \mu(t)\langle+\infty
$$

Then $\mathbb{L}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})$ is a Hilbert \mathbb{A}-module with its \mathbb{A}-valued inner product is defined as

$$
(f, g)_{\varphi}=\int_{S} \varphi(t) f(t)^{*} g(t) d \mu(t) \text { for all } f, g \in \mathbb{L}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})
$$

3. Buzano's and Dragomir's inequality in Hilbert C^{*}-modules

We let \mathbb{A} be a unitary C^{*}-algebra with unit e and \mathcal{H} be a Hilbert C^{*}-module over \mathbb{A}. The following results may be stated. It is a generalization of Dragomir's result (1.6).

Theorem 3.1. For all $x, y, z \in \mathcal{H}$ so that (x, x) is invertible in \mathbb{A} and for each invertible $a \in \mathbb{A}$, one has the inequality

$$
\begin{align*}
& \left\|(y, x)(x, x)^{-1}(x, z)-a^{-1}(y, z)\right\| \tag{3.1}\\
\leq & \frac{\|z\|}{\|a\|}\left\|(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)-(y, x)(x, x)^{-1}(x, y)\right\|^{\frac{1}{2}}
\end{align*}
$$

The case of equality holds in (??) if there exists $\lambda \in \mathbb{C}$ such that

$$
\begin{equation*}
x \cdot(x, x)^{-1}(y, x) a^{*}=y+\lambda z \cdot a^{*} \tag{3.2}
\end{equation*}
$$

Proof. Using Cauchy-Schwartz's inequality (Proposition 2(iii)), we have that

$$
\begin{align*}
& \left(x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}, z\right)\left(z, x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}\right) \tag{3.3}\\
\leq \quad & \|z\|^{2}\left(x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}, x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}\right)
\end{align*}
$$

and since

$$
\begin{aligned}
& \left(x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}, x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}\right) \\
= & (y, x)(x, x)^{-1}(x, x)(x, x)^{-1}(x, y)-(y, x)(x, x)^{-1}(x, y)\left(a^{-1}\right)^{*}-a^{-1}(y, x)(x, x)^{-1}(x, y) \\
& +a^{-1}(y, y)\left(a^{-1}\right)^{*} \\
= & a^{-1}\left[a(y, x)(x, x)^{-1}(x, y) a^{*}-a(y, x)(x, x)^{-1}(x, y)-(y, x)(x, x)^{-1}(x, y) a^{*}+(y, y)\right]\left(a^{-1}\right)^{*} \\
= & a^{-1}\left[(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)-(y, x)(x, x)^{-1}(x, y)\right]\left(a^{-1}\right)^{*},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}, z\right)\left(z, x \cdot(x, x)^{-1}(x, y)-y \cdot\left(a^{-1}\right)^{*}\right) \\
= & {\left[(y, x)(x, x)^{-1}(x ; z)-a^{-1}(y, z)\right]\left[(y, x)(x, x)^{-1}(x ; z)-a^{-1}(y, z)\right]^{*} }
\end{aligned}
$$

Using (3.3) we get that

$$
\begin{aligned}
& {\left[(y, x)(x, x)^{-1}(x ; z)-a^{-1}(y, z)\right]\left[(y, x)(x, x)^{-1}(x ; z)-a^{-1}(y, z)\right]^{*} } \\
\leq & \|z\|^{2} a^{-1}\left[(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)-(y, x)(x, x)^{-1}(x, y)\right]\left(a^{-1}\right)^{*}
\end{aligned}
$$

Passing to the norm in \mathbb{A}, we have that

$$
\begin{aligned}
& \left\|(y, x)(x, x)^{-1}(x ; z)-a^{-1}(y, z)\right\|^{2} \\
\leq & \frac{\|z\|^{2}}{\|a\|^{2}}\left\|(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)-(y, x)(x, x)^{-1}(x, y)\right\| .
\end{aligned}
$$

This proves (3.1).
The case of equality holds in (3.3) if there exists $\lambda \in \mathbb{C}$ so that $x .(x, x)^{-1}(x, y)-$ $y \cdot\left(a^{-1}\right)^{*}=\lambda z$. Or equivalently

$$
x \cdot(x, x)^{-1}(x, y) a^{*}=y+\lambda z \cdot a^{*}
$$

If \mathbb{A} is a commutative C^{*}-algebra, we obtain the following result.
Corollary 3.1. For all $x, y, z \in \mathcal{H}$ so that (x, x) is invertible in \mathbb{A} and for each invertible $a \in \mathbb{A}$, one has the inequality

$$
\begin{align*}
& \left\|\frac{(y, x)(x, z)}{(x, x)}-\frac{(y, z)}{a}\right\| \tag{3.4}\\
\leq & \frac{\|z\|}{\|a\|\|x\|}\left\|(a-e)\left(a^{*}-e\right)(y, x)(x, y)+(x, x)(y, y)-(y, x)(x, y)\right\|^{\frac{1}{2}}
\end{align*}
$$

where $\frac{1}{a}=a^{-1}$ is the inverse of a in \mathbb{A}. The case of equality holds in (3.4) if there exists $\lambda \in \mathbb{C}$ such that

$$
\begin{equation*}
x \cdot a \frac{(y, x)}{(x, x)}=y+\lambda z \tag{3.5}
\end{equation*}
$$

The following result also holds.

Proposition 3.1. For all $x, y, z \in \mathcal{H}$ such that (x, x) is invertible in \mathbb{A} and for each invertible $a \in \mathbb{A}$, one has the double inequality

$$
\begin{align*}
& \left\|a^{-1}(y, z)\right\|-\frac{\|z\|}{\|a\|} \|(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)- \\
& \quad(y, x)(x, x)^{-1}(x, y) \|^{\frac{1}{2}} \tag{3.6}\\
& \leq\left\|(y, x)(x, x)^{-1}(x, z)\right\| \leq \\
& \left\|a^{-1}(y, z)\right\|+\frac{\|z\|}{\|a\|} \|(a-e)(y, x)(x, x)^{-1}(x, y)\left(a^{*}-e\right)+(y, y)- \\
& \quad(y, x)(x, x)^{-1}(x, y) \|^{\frac{1}{2}}
\end{align*}
$$

Proof. Using the continuity of C^{*}-norm in \mathbb{A}, we get that

$$
\left\|\left\|(y, x)(x, x)^{-1}(x, z)\right\|-\right\| a^{-1}(y, z)\| \| \leq\left\|(y, x)(x, x)^{-1}(x, z)-a^{-1}(y, z)\right\|
$$

Using (3.1) we deduce the double inequality (3.6).

The following result is generalization of Buzano's inequality (1.1) to Hilbert C^{*}-module.

Corollary 3.2. For all $x, y, z \in \mathcal{H}$ so that (x, x) is invertible in \mathbb{A}, we have the inequality

$$
\begin{equation*}
\left\|(y, x)(x, x)^{-1}(x, z)\right\| \leq \frac{1}{2}[\|y\|\|z\|+\|(y, z)\|] \tag{3.7}
\end{equation*}
$$

Proof. In (3.6) we put $a=2 e$, then we get

$$
\left\|(y, x)(x, x)^{-1}(x, z)\right\| \leq \frac{1}{2}\|y\|\|z\|+\frac{1}{2}\|(y, z)\|
$$

this proves (3.7).

It is obvious that, out of (3.1) and (3.4), we can obtain various particular inequalities. A class of these which is

Corollary 3.3. For all $x, y, z \in \mathcal{H}$ so that (x, x) is invertible in \mathbb{A} and for each $\eta \in \mathbb{C}$ with $|\eta|=1$ and $\operatorname{Re}(\eta) \neq-1$, we have the following inequality

$$
\begin{equation*}
\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{1+\eta}(y, z)\right\| \leq \frac{1}{\sqrt{2} \sqrt{1+\operatorname{Re}(\eta)}}\|y\|\|z\| \tag{3.8}
\end{equation*}
$$

In particular for $\eta=1$, we have

$$
\begin{equation*}
\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{2}(y, z)\right\| \leq \frac{1}{2}\|y\|\|z\| \tag{3.9}
\end{equation*}
$$

Proof. In Theorem 1, on choosing $a=(1+\eta) e$, we get that

$$
\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{1+\eta}(y, z)\right\| \leq \frac{1}{|1+\eta|}\|z\|\|(y, y)\|^{\frac{1}{2}}
$$

then

$$
\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{1+\eta}(y, z)\right\| \leq \frac{1}{\sqrt{2} \sqrt{1+\operatorname{Re}(\eta)}}\|y\|\|z\|
$$

Finally, if $\eta=1$ we have the inequality (3.9).
If \mathbb{A} is a commutative C^{*}-algebra, we have the following result
Corollary 3.4. For all $x, y, z \in \mathcal{H}$ so that (x, x) is invertible in \mathbb{A} and for all unitary element $b \in \mathbb{A}$ so that $\operatorname{Re}(b) \neq-e$, we have the following inequality

$$
\begin{equation*}
\left\|\frac{(y, x)(x, z)}{(x, x)}-\frac{(y, z)}{e+b}\right\| \leq \frac{\|y\|\|z\|}{\sqrt{2} \sqrt{\|e+\operatorname{Re}(b)\|}} \tag{3.10}
\end{equation*}
$$

In particular, for $b=e$, we have the inequality

$$
\begin{equation*}
\left\|\frac{(y, x)(x, z)}{(x, x)}-\frac{(y, z)}{2}\right\| \leq \frac{1}{2}\|y\|\|\mid z\| \tag{3.11}
\end{equation*}
$$

Proof. Using Corollary 1, on choosing $a=e+b$, we get that

$$
\left.\left.\begin{array}{rl}
& \left\|\frac{(y, x)(x, z)}{(x, x)}-\frac{(y, z)}{e+b}\right\|
\end{array}\right) \frac{\|z\|}{\|e+b\|\|x\|} \times\left\|b b^{*}(y, x)(x, y)+(x, x)(y, y)-(y, x)(x, y)\right\|^{\frac{1}{2}}\right) ~\left(\left\|\frac{(y, x)(x, z)}{(x, x)}-\frac{(y, z)}{e+b}\right\| \leq \frac{\|z\|}{\|e+b\|\|x\|}\|(x, x)(y, y)\|^{\frac{1}{2}} .\right.
$$

The inequality (3.10) result by using the fact that

$$
\|e+b\|^{2}=\left\|(e+b)\left(e+b^{*}\right)\right\|=\| 2 e+2 \text { mathrmRe}(b)\|=2\| e+\operatorname{Re}(b) \|
$$

Finally, if $b=e$ we have the inequality (3.11).

Remark 3.1. Using the continuity of C^{*}-norm in \mathbb{A}, we get from (??) that

$$
\begin{equation*}
\left\|(y, x)(x, x)^{-1}(x, z)\right\| \leq \frac{\|z\|\|y\|+\|(y, z)\|}{\sqrt{2} \sqrt{|1+\operatorname{Re}(\eta)|}} \tag{3.12}
\end{equation*}
$$

for each $\eta \in \mathbb{C}$ such that $|\eta|=1$ and $\operatorname{Re}(\eta) \neq-1$.
Let n be a integer $\geq 1,\left(\rho_{i}\right)_{1 \leq i \leq n}$ be a finite family of positives reals numbers and $\mathcal{H}=\mathbb{A}^{n} \cong \oplus_{i=1}^{n} \mathbb{A}$ the Hilbert \mathbb{A}-module with the \mathbb{A}-valued inner product

$$
(a, b)=\sum_{i=1}^{n} \rho_{i} a_{i}^{*} b_{i} \text { for all } a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{A}^{n}
$$

It might be useful to observe that, out of (3.7), we obtain the following discrete inequality
$\left\|\sum_{i=1}^{n} \rho_{i} a_{i}^{*} x_{i}\left(\sum_{i=1}^{n} \rho_{i} x_{i}^{*} x_{i}\right)^{-1} \sum_{i=1}^{n} \rho_{i} x_{i}^{*} b_{i}\right\| \leq \frac{1}{2}\left[\left(\sum_{i=1}^{n} \rho_{i}\left\|a_{i}\right\|^{2} \sum_{i=1}^{n} \rho_{i}\left\|b_{i}\right\|^{2}\right)^{\frac{1}{2}}+\left\|\sum_{i=1}^{n} \rho_{i} a_{i} b_{i}^{*}\right\|\right]$,
where $a_{i}, b_{i}, x_{i} \in \mathbb{A}, i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} \rho_{i} x_{i}^{*} x_{i}$ is invertible in \mathbb{A}.
If one takes in (3.13) $b_{i}=a_{i}^{*}$ for $i \in\{1, \ldots, n\}$, then we obtain

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} \rho_{i} a_{i} x_{i}\left(\sum_{i=1}^{n} \rho_{i} x_{i}^{*} x_{i}\right)^{-1} \sum_{i=1}^{n} \rho_{i} x_{i}^{*} a_{i}\right\| \leq \sum_{i=1}^{n} \rho_{i}\left\|a_{i}\right\|^{2} . \tag{3.14}
\end{equation*}
$$

Note that, if x_{i} is hermitian for $i \in\{1, \ldots, n\}$ then, out of (3.13), we may deduce the following generalization of Bruijn's inequality (1.5) (see [2]).

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} \rho_{i} a_{i} x_{i}\left(\sum_{i=1}^{n} \rho_{i} x_{i}^{2}\right)^{-1} \sum_{i=1}^{n} \rho_{i} x_{i} a_{i}\right\| \leq \frac{1}{2}\left[\left(\sum_{i=1}^{n} \rho_{i}\left\|a_{i}\right\|^{2}\right)+\left\|\sum_{i=1}^{n} \rho_{i} a_{i}^{2}\right\| \|\right] \tag{3.15}
\end{equation*}
$$

We closed this section by noting the following result.
Corollary 3.5. Let \mathcal{H} be a Hilbert C^{*}-module over a unitary C^{*}-algebra \mathbb{A}. For all $x, y, z \in \mathcal{H}$ such that (x, x) is invertible in \mathbb{A}, we have the following double inequality

$$
\begin{align*}
\left\|(y, x)(x, x)^{-1}(x, z)\right\| & \leq\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{2}(y, z)\right\|+\frac{1}{2}\|(y, z)\| \tag{3.16}\\
& \leq \frac{1}{2}[\|y\|\|z\|+\|(y, z)\|]
\end{align*}
$$

Proof. Using (3.9) we get for all $x, y, z \in \mathcal{H}$ that

$$
\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{2}(y, z)\right\| \leq \frac{1}{2}\|y\|\|z\|
$$

the continuity of C^{*}-norm in \mathbb{A} implies that

$$
\left|\left\|(y, x)(x, x)^{-1}(x, z)\right\|-\frac{1}{2}\|(y, z)\|\right| \leq\left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{2}(y, z)\right\|
$$

then

$$
\begin{aligned}
\left\|(y, x)(x, x)^{-1}(x, z)\right\| \leq & \left\|(y, x)(x, x)^{-1}(x, z)-\frac{1}{2}(x, x)(y, z)\right\|+\frac{1}{2}\|(y, z)\| \leq \\
& \frac{1}{2}[\|y\||z\|\mid+\|(y, z) \|]
\end{aligned}
$$

Remark 3.2. In (3.4) on choosing $a=e$, we get that

$$
\begin{equation*}
\left\|(y, x)(x, x)^{-1}(x, z)-(y, z)\right\| \leq\|z\|\left\|(y, y)-(y, x)(x, x)^{-1}(x, y)\right\|^{\frac{1}{2}} \tag{3.17}
\end{equation*}
$$

where $x, y, z \in \mathcal{H}$ and (x, x) is invertible in \mathbb{A}.

4. Kurepa's and Dragomir's inequality in Hilbert C^{*}-module

In 1960, N.G. Bruijn ([2]), obtained the following refinement of the Cauchy-BunyakovskySchwartz inequality

$$
\begin{equation*}
\left|\sum_{i=1}^{n} a_{i} z_{i}\right|^{2} \leq \frac{1}{2} \sum_{i=1}^{n} a_{i}^{2}\left[\sum_{i=1}^{n}\left|z_{i}\right|^{2}+\left|\sum_{i=1}^{n} z_{i}\right|^{2}\right] \tag{4.1}
\end{equation*}
$$

provided that a_{i} are real numbers while z_{i} are complex for each $i \in\{1, \ldots, n\}$.
In an effort to extend this result to Hilbert space, S. Kurepa ([9]) obtained the following results

Theorem 4.1. Let $(H ;(.,)$.$) be a real Hilbert space and \left(H_{\mathbb{C}} ;(., .)_{\mathbb{C}}\right)$ its complexification. Then for any $a \in H$ and $z \in H_{\mathbb{C}}$, one has the following refinement of Cauchy-Schwartz's inequality

$$
\begin{equation*}
\left|(a, z)_{\mathbb{C}}\right|^{2} \leq \frac{1}{2}\|a\|^{2} \quad\left[\|z\|_{\mathbb{C}}^{2}+\|(z ; \bar{z})\right] \leq\|a\|^{2}\|z\|_{\mathbb{C}}^{2} \tag{4.2}
\end{equation*}
$$

where \bar{z} denote the conjugate of $z \in H_{\mathbb{C}}$.
As consequences of these results, S. Kerupa noted the following integral, respectively, discrete inequality.

Corollary 4.1. Let $\left(S, \sum, \mu\right)$ be a positive measure space and let $a, z \in L_{2}\left(S, \sum, \mu\right)$, the Hilbert space of complex-valued 2- μ-integrable functions defined on S. If a is a real function and z is a complex function, then

$$
\begin{equation*}
\left|\int_{S} a(t) z(t) d \mu(t)\right|^{2} \leq \frac{1}{2} \int_{S} a^{2}(t) d \mu(t)\left(\int_{S}|z(t)|^{2} d \mu(t)+\left|\int_{S} z^{2}(t) d \mu(t)\right|\right) \tag{4.3}
\end{equation*}
$$

Corollary 4.2. If a_{1}, \ldots, a_{n} are real numbers, z_{1}, \ldots, z_{n} are complex numbers and $A=\left(\alpha_{i, j}\right)$ is a positive definite real matrix of order $n \times n$, then

$$
\begin{equation*}
\left|\sum_{i, j=1}^{n} \alpha_{i, j} a_{i} z_{j}\right|^{2} \leq \frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i, j} a_{i} a_{j}\left(\sum_{i, j=1}^{n} \alpha_{i, j} z_{i} \bar{z}_{j}+\left|\sum_{i, j=1}^{n} \alpha_{i, j} z_{i} \bar{z}_{j}\right|\right) \tag{4.4}
\end{equation*}
$$

In [4] S.S. Dragomir proved the following refinement of Kurepa's results
Theorem 4.2. Let $(H ;(.,)$.$) be a real Hilbert space and \left(H_{\mathbb{C}} ;(., .)_{\mathbb{C}}\right)$ its complexification. Then for any $v \in H$ and $\omega \in H_{\mathbb{C}}$, one has the following inequality

$$
\begin{align*}
\left|(\omega, v)_{\mathbb{C}}\right|^{2} & \leq\left|(\omega, v)_{\mathbb{C}}^{2}-\frac{1}{2}(\omega, \bar{\omega})_{\mathbb{C}}\|v\|^{2}\right|+\frac{1}{2}\left|(\omega, \bar{\omega})_{\mathbb{C}}\right|\|v\|^{2} \\
& \leq \frac{1}{2}\|v\|^{2} \quad\left(\|\omega\|_{\mathbb{C}}^{2}+\left\|(\omega, \bar{\omega})_{\mathbb{C}}\right\|\right) \tag{4.5}
\end{align*}
$$

In an effort to extend the Dragomir's and Kurepa's results to Hilbert C^{*}-module, I considered the following setting

Let \mathbb{A} be a real unitary C^{*}-algebra and $\mathbb{A}_{\mathbb{C}}$ its complexification, it is clear that $\mathbb{A}_{\mathbb{C}}$ be a unitary C^{*}-algebra. A element $a \in \mathbb{A}$ is sided positive if its positive in $\mathbb{A}_{\mathbb{C}}$.

Definition 4.1. Let \mathbb{A} be a real unitary C^{*}-algebra, a real pre-Hilbert \mathbb{A}-module is a real vector space \mathcal{H} which is an algebraic right \mathbb{A}-module equipped with a bilinear map (., .) : $\mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{A}$ satisfying
(i) $(x, x) \geq 0 ;(x, x)=0$ if and only if $x=0$ for all x in \mathcal{H}.
(ii) $(x, \alpha y+\beta z)=\alpha(x, y)+\beta(x, z)$ for all x, y, z in $\mathcal{H}, \alpha, \beta$ in \mathbb{R},
(iii) $(x, y)=(y, x)^{*}$ for all x, y in \mathcal{H},
(iv) $(x, y \cdot a)=(x, y) a$ for all x, y in \mathcal{H}, a in \mathbb{A}.

The map (.,.) is called an \mathbb{A}-valued inner product of \mathcal{H}, and for all $x \in \mathcal{H}$, we define a norm in \mathcal{H} by $\|x\|=\|(x, x)\|^{\frac{1}{2}}$
The completion of a real pre-Hilbert \mathbb{A}-module with respect to the norm induced by the \mathbb{A}-valued inner product is called a real Hilbert \mathbb{A}-module.

Let \mathcal{H} be a real Hilbert \mathbb{A}-module with the \mathbb{A}-valued inner product (.,.) and the norm $\|$.$\| . The complexification \mathcal{H}_{\mathbb{C}}=\mathcal{H} \oplus i \mathcal{H}$ of \mathcal{H} endowed with the following operations

$$
\begin{aligned}
(x+i y)+\left(x^{\prime}+i y^{\prime}\right) & \doteqdot\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right): x, x^{\prime}, y, y^{\prime} \in \mathcal{H} \\
(\alpha+i \beta) \cdot(x+i y) & \doteqdot(\alpha x-\beta y)+i(\beta x+\alpha y): x, y \in \mathcal{H} ; \alpha, \beta \in \mathbb{C} \\
(x+i y) \cdot(a+i b) & \doteqdot(x \cdot a-y \cdot b)+i(x \cdot b+y \cdot a): x, y \in \mathcal{H} ; a, b \in \mathbb{A}
\end{aligned}
$$

is complex vector space and right $\mathbb{A}_{\mathbb{C}}$-module. On $\mathcal{H}_{\mathbb{C}}$ one can consider the $\mathbb{A}_{\mathbb{C}}$-valued inner product defined by

$$
\left(z, z^{\prime}\right)_{\mathbb{C}} \doteqdot\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)+i\left[\left(y, x^{\prime}\right)-\left(x, y^{\prime}\right)\right]
$$

where $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime} \in \mathcal{H}_{\mathbb{C}}$, then $\mathcal{H}_{\mathbb{C}}$ is Hilbert $\mathbb{A}_{\mathbb{C}}$-module. We define the conjugate of a vector $z=x+i y \in \mathcal{H}_{\mathbb{C}}$ by $\bar{z}=x-i y$.

The next results is a generalization of Dragomir's results (Theorem 3) to Hilbert C^{*}-module

Theorem 4.3. For each $v \in \mathcal{H}$ so that (v, v) is invertible in \mathbb{A} and for each $w \in \mathcal{H}_{\mathbb{C}}$, one has the double inequality

$$
\begin{equation*}
\left\|(w, v)_{\mathbb{C}}(v, v)^{-1}(v, w)_{\mathbb{C}}^{*}\right\| \leq \tag{4.6}
\end{equation*}
$$

$$
\left\|(w, v)_{\mathbb{C}}(v, v)^{-1}(w, v)_{\mathbb{C}}-\frac{1}{2}(w, \bar{w})_{\mathbb{C}}\right\|+\frac{1}{2}\left\|(w, \bar{w})_{\mathbb{C}}\right\| \leq \frac{1}{2}\left[\|w\|^{2}+\left\|(w, \bar{w})_{\mathbb{C}}\right\|\right]
$$

Proof. By applying the corollary 12 , for $\mathcal{H}_{\mathbb{C}}$ and $x=v, y=w$ and $z=\bar{w}$, then we have

$$
\begin{equation*}
\left\|(w, v)_{\mathbb{C}}(v, v)^{-1}(v, \bar{w})_{\mathbb{C}}\right\| \leq \tag{4.7}
\end{equation*}
$$

$$
\left\|(w, v)_{\mathbb{C}}(v, v)^{-1}(v, \bar{w})_{\mathbb{C}}-\frac{1}{2}(w, \bar{w})_{\mathbb{C}}\right\|+\frac{1}{2}\left\|(w, \bar{w})_{\mathbb{C}}\right\| \leq \frac{1}{2}\left[\|w\|\|\bar{w}\|+\left\|(w, \bar{w})_{\mathbb{C}}\right\|\right]
$$

If we assume that $w=x+i y \in \mathcal{H}_{\mathbb{C}}$ then, we have

$$
\begin{aligned}
(w, v)_{\mathbb{C}} & =(x+i y, v)_{\mathbb{C}}=(x, v)+i(y, v)=(v, x)+i(v, y) \\
(v, \bar{w})_{\mathbb{C}} & =(v, x-i y)_{\mathbb{C}}=(v, x)+i(v, y)=(w, v)_{\mathbb{C}}=(v, w)_{\mathbb{C}}^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
(w, w)_{\mathbb{C}} & =(x, x)+(y, y) \\
(\bar{w}, \bar{w})_{\mathbb{C}} & =(x, x)+(y, y)
\end{aligned}
$$

then $\|w\|_{\mathbb{C}}=\|\bar{w}\|_{\mathbb{C}}$. Therefore, by (4.7), we deduce the desired results (4.6).
If \mathbb{A} is a real unitary commutative C^{*}-algebra, we have the following result.
Theorem 4.4. For each $v \in \mathcal{H}$ and $w \in \mathcal{H}_{\mathbb{C}}$, one has the double inequality

$$
\begin{align*}
\left\|(w, v)_{\mathbb{C}}\right\|^{2} \leq & \left\|(w, v)_{\mathbb{C}}^{2}-\frac{1}{2}(v, v)(w, \bar{w})_{\mathbb{C}}\right\|+\frac{1}{2}\left\|(w, \bar{w})_{\mathbb{C}}\right\|\|v\|^{2} \leq \tag{4.8}\\
& \frac{1}{2}\|v\|^{2}\left[\|w\|^{2}+\|(w, \bar{w})\|\right]
\end{align*}
$$

Proof. By similar argument.
As a consequence of this inequality, we obtain the following two inequalities.
Let \mathbb{A} be a unitary commutative C^{*}-algebra with unit e, and $\left(\rho_{n}\right)_{n \geq 1}$ be a sequence of positives reals numbers so that

$$
\sum_{n=1}^{+\infty} \rho_{n}=1
$$

If $\mathcal{H}=l_{\rho}^{2}(\mathbb{A})$, then we have the following discrete inequality

Corollary 4.3. If $a=\left(a_{n}\right)_{n \geq 1}$ is a sequence of hermitian elements of \mathbb{A} so that $a \in l_{\rho}^{2}(\mathbb{A})$, then for any $z=\left(z_{n}\right)_{n \geq 1} \in l_{\rho}^{2}(\mathbb{A})$, one has the double inequality

$$
\begin{align*}
\left\|\sum_{n=1}^{+\infty} \rho_{n} a_{n} z_{n}\right\|^{2} & \leq\left\|\left(\sum_{n=1}^{+\infty} \rho_{n} a_{n} z_{n}\right)^{2}-\frac{1}{2}\left(\sum_{n=1}^{+\infty} \rho_{n} a_{n}^{2}\right)\left(\sum_{n=1}^{+\infty} \rho_{n}\left(z_{n}^{*}\right)^{2}\right)\right\| \tag{4.9}\\
+\frac{1}{2}\left\|\sum_{n=1}^{+\infty} \rho_{n} a_{n}^{2}\right\|\left\|\sum_{n=1}^{+\infty} \rho_{n} z_{n}^{2}\right\| & \leq \frac{1}{2}\left\|\sum_{n=1}^{+\infty} \rho_{n} a_{n}^{2}\right\|\left[\left\|\sum_{n=1}^{+\infty} \rho_{n} z_{n} z_{n}^{*}\right\|+\left\|\sum_{n=1}^{+\infty} \rho_{n} z_{n}^{2}\right\|\right] .
\end{align*}
$$

Let (S, Σ, μ) be a positive measure space and φ be a \mathbb{A}-valued function $S \longrightarrow \mathbb{A}$ so that $\varphi(t)$ is hermitian and positive in \mathbb{A} for which $t \in S$, and

$$
\int_{S}\|\varphi(t)\|^{2} d \mu(t)\left\langle+\infty \text { and } \int_{S} \varphi(t) d \mu(t)=e\right.
$$

Similarly, if $\mathcal{H}=\mathbb{L}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})$ the linear space of all \mathbb{A}-valued functions $f: S \longrightarrow \mathbb{A}$ such as

$$
\int_{S}\|\varphi(t)\|\|f(t)\|^{2} d \mu(t)\langle+\infty
$$

then, we have the following integral inequality
Corollary 4.4. For $a \in \mathbb{A}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})$ such that $a(t)$ is hermitian in \mathbb{A} for which $t \in S$, and any $f \in \mathbb{L}_{\varphi}^{2}(S, \Sigma, \mu, \mathbb{A})$, we have the inequality

$$
\begin{align*}
& \left\|\int_{S} \varphi(t) a(t) f(t) d \mu(t)\right\|^{2} \tag{4.10}\\
\leq & \left\|\left(\int_{S} \varphi(t) a(t) f(t)^{*} d \mu(t)\right)^{2}-\frac{1}{2}\left(\int_{S} \varphi(t) a^{2}(t) d \mu(t)\right)\left(\int_{S} \varphi(t)\left(f(t)^{*}\right)^{2} d \mu(t)\right)\right\| \\
& \left.+\frac{1}{2}\left\|\int_{S} \varphi(t) a^{2}(t) d \mu(t) \mid\right\| \| \int_{S} \varphi(t) f^{2}(t) d \mu(t)\right) \| \\
\leq & \left.\frac{1}{2}\left\|\int_{S} \varphi(t) a^{2}(t) d \mu(t)\right\|\left[\left\|\int_{S} \varphi(t) f(t) f(t)^{*} d \mu(t)\right\|+\| \int_{S} \varphi(t) f^{2}(t) d \mu(t)\right) \|\right]
\end{align*}
$$

REFERENCES

1. M. L. BUZANO: Generalizzane della disgualianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. e Politech. Torino 31 (1971-73). (1974), 405-409.
2. N. De BGUIJN: Problem 12. Wisk. Opgaven 21 (1960), 12-14.
3. F. R. DAVIDSON: C^{*}-algebra by exemple. Fields Ins. Monog; 1996.
4. S. S. DRAGOMIR: Refinement of Buzano's and Kurepa's inequalities in inner product spaces. Facta universitatis (NIS). Ser. Math. Inform.20(2005), 63-73.
5. M. FRANK: Self-duality and C^{*}-reflexivity of Hilbert C^{*}-modules. Zeitschr Anal. anw. 9(1990), 165-176.
6. M. FRANK: A multiplier approach to the Lance-Blecher theorem. J. Of anl and its appl, 16(1997), No 3, 565-573.
7. M. FRANK: Geometrical aspets of Hilbert C^{*}-modules. Positivity, 1998.
8. M. FUJII AND F. KUBO: Buzano's inequality and bounds for roots of algebraic equations. Proc. Amer. Math. Soc117(2). (1993), 356-361.
9. I. KAPLANSKY: Modules over operateur algebras. Amer. J. Math; (7591953), 839858.
10. S. KUREPA: On the Buniakowsky-Cauchy-Schwarz inequality. Glasnik Mathematicki 1(21) (2). (1966), 147-158.
11. E. C. LANCE: Hilbert C^{*}-modules. LMS Lecture Note series 210, CUP, 1995.
12. U. RICHARD: Sur des inégalités de type Wirtinger et leurs applications aux équations différentielles ordinaires. Collquium of analysis held in Rio de Janeiro, August, 1972, pp, 233-244.
13. N. E. WEGGE-OLSEN: K-Theory and C^{*}-algebras, a friendly approach. (Oxford, England : Oxford Univ. Press) (1993).

Ahmed Roukbi
Faculty of Science
Department of Mathematics and Informatics
Ibn Tofail University,
BP:14000. Kenitra, Morocco
rroukbi.a2000@gmail.com

