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COMPENDIOUS LEXICOGRAPHIC METHOD FOR
MULTI-OBJECTIVE OPTIMIZATION

Ivan P. Stanimirović∗

Abstract. A modification of the standard lexicographic method, used for linear multi-
objective optimization problems, is presented. An algorithm for solving these kind
of problems is developed, for the cases of two and three unknowns. The algorithm
uses the general idea of indicating the lexicographic order to objective functions, com-
bined with the graphical method of linear programming. Implementation details and
some illustrative examples are provided by means of symbolic processing of the package
MATHEMATICA. Also, some comparative processing times showed that our method was
highly efficient on every 2D and 3D linear optimization problem.

1. Introduction

Multi-objective optimization is the problem of optimizing several objective func-
tions that can often be conflicted [3]. Therefore, lexicographic method is a way to
handle multi-objective optimization problems in general, where a pre-defined order
can be established amongst the objective functions. Then a sequence of single-
objective optimization problems is solved, where each objective is optimized at a
single point of time. Often, the decision-maker needs to determine some preferences
in order to establish the lexicographic ordering of the objectives, which can be dif-
ficult task. Some attempts have been made to dynamically change the ordering of
objectives, which reflects their preferences [5], eliminating the need for the decision
making.

The general multi-objective optimization problem is considered as an ordered
sequence of real objective functions with the set of constrains:

Maximize: F(x) = [F1(x), . . . , Fl(x)]T , x ∈ Rn

Subject to: gi(x) ≤ 0, i = 1, . . . , m(1.1)
hi(x) = 0, i = 1, . . . , k.
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The feasible design space (often called the constraints set) of (1.1) is denoted by
X ⊂ Rn, where the following expression holds:

X = {x| gi(x) ≤ 0, i = 1,m; hi(x) = 0, i = 1, k}.
The feasible criterion space Z (also called the feasible cost space) is defined as the
set

Z = {F(x)| x ∈ X}.
Feasibility implies that no constraints are violated. The term attainability means
that a point in the criterion space maps to a point in the design space. Notice that
each point x ∈ X is mapped to a point from the criterion space. Also, the point
xj
∗ that maximizes the j-th objective function subject to constraints in (1.1), is

obtained.
Pareto optimal solution is the adopted concept in multi-objective optimization

with applications in economics, engineering and social sciences. Generally, Pareto
optimal points are the ones where it is impossible to make one objective function
better without necessarily making some else worse. For the sake of completeness
we restate the definition of Pareto-optimal solution (see [2, 7, 8]).

Definition 1.1. A solution x∗ is said to be Pareto optimal solution of multi-
objective optimization problem (1.1) iff there does not exist another feasible solution
x ∈ X such that Qj(x) ≥ Qj(x∗) for all j = 1, . . . , l, and Qj(x) > Qj(x∗) for at
least one index j.

Informally, a point is Pareto optimal if there is no other point improving at
least one objective function without deterioration of another function. All Pareto
optimal points lie on the boundary of the feasible criterion space X.

Here we restate the main idea of the lexicographic method. The objective func-
tions are arranged in order of importance, either by the decision maker or by an
algorithm. Then the sequence of single-objective optimization problems is solved,
one problem at a time. It is assumed that the ordering of the objective functions is
given by the sequence {Q1(x) · · · Ql(x)}. Then the stated problem (1.1) is equiva-
lent to the following sequence of single-objective programming problems, associated
to the priority levels k, k = 1, . . . , l:

Maximize Fk(x)
Subject to: Fj(x) ≥ Fj(x∗j ), j = 1, . . . , k − 1, k ≥ 2,(1.2)

x ∈ X, x1 ≥ 0, . . . , xn ≥ 0,

where Fj(x∗j ), j = 1, k − 1, represent optimal values for the previously stated prob-
lems on the priority levels j = 1, k − 1, k ≥ 2.

It is obvious that after each solved single-objective optimization problem, the
set of constraints is enlarged. This drastically increases the processing time of
the algorithm. Also, the implementation of the lexicographic algorithm is of great
importance and can greatly influence processor times (see [10, 11]).
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Our motivation is to reduce the constraints set in each step of the lexicographic
method. Therefore, the graphical method of linear programming is applied in each
step, where the output is used as the constrains set in the next step. Instead of
enlarging the constraints set by one inequality in each step, it can be reduced to
the set of optimal points generated by the graphical method. Since the majority of
MOO problems consists of maximally three unknowns and implies linear objective
functions, a modification of the lexicographic method based on graphical method
will be very applicable and effective. Also, since other methods for solving MOO
problems, such as weighted sum method, have some drawbacks ([4, 8]), our method
can be wealthy option for the specific case of problems.

We introduce the modification of standard lexicographic method, which uses the
graphical method for solving each single-objective programming problem. The pa-
per is organized as follows. In the second section a relation with linear programming
problem is discussed, where some necessary results are repeated and generalized.
The third section is organized to give main algorithms and theorems proving that
our algorithms generate only Pareto optimal points. The efficiency of introduced
method is reported through several illustrative examples. Finally, in appendix some
implementation details are provided in order to produce better processing times as
well as fine graphical representation of the results.

2. A relation to the linear programming problem

Relations between the linear programming and single and multi-objective optimiza-
tions have been well observed. Some known results were provided in [6], which we
mention here for the sake of completeness.

Firstly, let us observe the basic linear programming problem in the space Rn,
considering only the inequality constraints. Without loss of generality, we will
consider only the maximization problem:

Maximize: f(x) = f(x1, . . . , xn) = c1x1 + . . . + cnxn

Subject to:
n∑

j=1

aijxj ≥ bi, i = 1, . . . , m,(2.1)

where the constants aij , bi, cj ∈ R, i = 1, . . . , m, j = 1, . . . , n are given. Let us
mention some well-known results used for the graphical method.

An arbitrary solution (x1, x2, . . . , xn) ∈ Rn of the system of inequalities given
above is called a feasible solution. In geometric interpretation, this is a point of
n-dimensional space Rn. By Ω ⊂ Rn we denote the set of all feasible solutions of
the problem (2.1). Here we assume that Ω 6= Ø. Thus, the following lemma was
proven to be valid.

Lemma 2.1. The boundary set ΩP = {x|∑n
j=1 aijxj = bi, i = 1, . . . , m} of the

feasible solutions set Ω is the convex set.
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The optimal point x∗ = (x∗1, . . . , x
∗
n) ∈ Ω of the linear programming problem

(2.1) is the feasible solution which maximizes the objective function f(x1, . . . , xn).

If the restricting conditions are given in the form of inequalities, each of the cor-
responding straight lines divides the plane to two areas. The permissible conditions
are located in the sub-space Ω representing the region of feasible solutions. The
following lemma is well-known from the literature.

Lemma 2.2. The optimal value of the objective function f in (2.1) is gained in
one of the extreme points of the set of feasible solutions Ω.

The significance of this lemma is the reduction of the set of possible optimal
points from Ω (infinite in general case) to the finite set of extreme points. For a
linear programming problem with a bounded, feasible region defined by m linearly
independent constraints expressed by m linear equations, and with n variables, a
goal is to find one of the n!

m!(n−m)! basic solutions which maximizes the goal function
(linear in this case). Here we generalize some known results with the following
theorem.

Theorem 2.1. If two optimal solutions of the problem (2.1) are gained, then each
point on the line segment between these two points represents the optimal solution
of (2.1), i.e. if x(1), x(2) ∈ ΩP are two optimal solutions, then each point xλ of the
form

xλ = λx(1) + (1− λ)x(2), 0 ≤ λ ≤ 1

is the optimal solution of the problem (2.1).

Proof. Since x(1) and x(2) are the optimal points of the problem (2.1), consid-
ering the objective function f , it is obviously satisfied that

f(x(1)) > f(x) ∧ f(x(2)) > f(x), ∀x ∈ Ω.

Therefore, for a point xλ = λx(1) + (1− λ)x(2) the following inequality is valid:

f(xλ) = f(λx(1) + (1− λ)x(2)) = λf(x(1)) + (1− λ)f(x(2))
≥ λf(x) + (1− λ)f(x)
= f(x), ∀x ∈ ΩP .

Then, each point xλ, 0 ≤ λ ≤ 1, maximizes the objective function f , representing
the optimal solution of the problem (2.1).

According to this statement we conclude that after the first step, the area of
feasible solutions will be a segment or a point. If the solutions are graphically repre-
sented in the Gaussian coordinate system, a convex polygon is generated. Amongst
the vertices of this polygon are the possible optimal solutions of our MOO problem.
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3. Main results

Let us introduce the modification of lexicographic method for solving the linear
MOO problem for the case of two or three unknowns. In spite of the classical
lexicographic method, in each single step, the feasible design space is reduced to
the set of optimal solutions gained in previous step, by implementing the graphical
method.

Now we can introduce the modification of the lexicographic method procedure.
The input parameters are the list of objective functions f , ordered by importance
and the list of constraints g.

Algorithm 3..1 Solving the multi-objective optimization problem (1.1), in the
case of two unknowns x1, x2.
Compendious Lexicographic Method 2D

Require: List of ordered objective functions f and the list of constraints g.
1: Set index i = 1 and the set R = Ø. Use the first function f1 as the

objective function and the list g as the set of constraints.
2: Solve the single-objective optimization problem for the given objective

function and the set of constraints, using the graphical method. Store the
solution in the set R.

3: If the solution from R is a line segment, represented by λx(1) +(1−λ)x(2),
where 0 ≤ λ ≤ 1, go to Step 4. Vice versa, if the solution R is a single
point, go to Step 5.

4: If i < l perform the following: increase index i by 1, use fi as the objective
function and the set R as the constraints set, and go to Step 2. In the case
of i = l, go to Step 5.

5: return the set R as the solution of the problem.

We conclude that the solution of multi-objective optimization problem using the
Algorithm 3..1 (Step 5) is provided as a line segment or a single point. After each
single-objective optimization problem solving in Step 2, the best solution (which
maximizes the objective function) is used. So, the following theorem can easily be
proven.

Theorem 3.1. Consider the multi-objective optimization problem (1.1), where x ∈
R2. For the list of ordered objective functions f and the list of constraints g, the
solution gained by the Algorithm 3..1 is Pareto optimal point of the observed MOO
problem (1.1).

Proof. Firstly, observe that by applying the algorithm we get the array of
solutions of maximally l single-objective optimization problems. Denote these sets
of solutions by Ri i ≤ l, in the i-th step. For each index 1 ≤ i ≤ l, there are two
possibilities:

1) the set Ri consists of only one point.
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2) the set Ri consists of a line segment.
Observe that fk(x(l)) ≥ fk(x(k)) is satisfied for each k = 1, l − 1. Suppose

contrary, that the solution x(l) is not a Pareto optimal point. Then there exists
another point x∗, such that

fk(x∗) ≥ fk(x(l)), ∀k ∈ {1, . . . , l},
where at least one inequality is strong. Suppose that, for example, for some index
t the inequality ft(x∗) > ft(x(l)) holds. Whereas ft(x(l)) ≥ ft(x(t)) holds, the
inequality ft(x∗) > ft(x(t)) is satisfied. This implies that x∗ /∈ Ω′P , where

Ω′P = ΩP ∩ {x | f1(x) ≥ f1(x(1)), . . . , ft−1(x) ≥ ft−1(x(t−1)).

Therefore, the point x∗ ∈ ΩP \ ΩPt, which implies that for some index i ∈
{1, . . . , k − 1} the inequality fi(x∗) < fi(x(i)) holds. This is contradictory to the
primordial statement that fk(x∗) ≥ fk(x(k)), for each k = 1, . . . , l. Obviously, the
solution x(l) must be Pareto optimal.

Since the graphical method is considered for the case of two and three variables,
the analogous algorithm to the Algorithm 3..1 can be stated, for the case of three
unknowns.

Algorithm 3..2 Solving the multi-objective optimization problem (1.1), in the
case of three unknowns x1, x2, x3.
Compendious Lexicographic Method 3D

Require: List of ordered objective functions f and the list of constraints g.
1: Set index i = 1 and the set R = Ø. Use the first function f1 as the

objective function and the list g as the set of constraints.
2: Solve the single-objective optimization problem for the given objective

function and the set of constraints, using the graphical method. Memorize
this solution in the set R.

3: If the solution set R consists of a single point, go to Step 5. Vice versa,
if the solution set R is represented by λ1x

(1) + λ2x
(2) + λ3x

(3), where
0 ≤ λ1, λ2, λ3 ≤ 1, λ1 + λ2 + λ3 = 1, and at least two coefficients are
greater than zero, go to Step 4.

4: If i < l perform the following: increase index i by 1, use fi as the objective
function and the set R as the constraints set, and go to Step 2. In the case
of i = l, go to Step 5.

5: return the set R as the solution of the problem.

Theorem 3.2. Consider the multi-objective optimization problem (1.1), where x ∈
R3. For the list of ordered objective functions f and the list of constraints g, the
solution gained by the Algorithm 3..1 is Pareto optimal point of the observed MOO
problem (1.1).

Proof. The proof is similar to the proof of the Theorem 3.1, with the difference
that for each index 1 ≤ i ≤ l, the solutions set Ri can consist of only one point,
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a line segment or a plane segment. It is represented by a linear combination of
three optimal points, i.e. by λ1x

(1) + λ2x
(2) + λ3x

(3), where 0 ≤ λ1, λ2, λ3 ≤
1, λ1 + λ2 + λ3 = 1.

4. Numerical examples

When the objective function is of two or three variables, a graphical procedure for
solving the linear programming problems can be applied [9]. The optimal solution
is found by drawing the graphic of the modified objective function f(x1, x2) = 0
and parallel shifting of this line in the direction of the gradient vector.

If two different solutions are found, then in accordance to Theorem 2.1 all points
on the line segment between these two points are optimal solutions. Therefore, the
modification of lexicographic method does not limit at finding only one Pareto
optimal solution.

Example 4.1. Solve the following multi-objective optimization problem:

Maximize : [8x + 12y, 14x + 10y, x + y]

Such that : 2x + y ≤ 150

2x + 3y ≤ 300

4x + 3y ≤ 360

x + 2y ≥ 120

x, y ≥ 0

using the lexicographic order as given in the constraints set.

Firstly we observe the first function by lexicographic order: f1 = 8x+12y. By applying
the graphical method we get that each point on the line segment λ{30, 80}+(1−λ){0, 100},
0 ≤ λ ≤ 1, maximizes the objective function f1. This result is depicted on the left picture
of the Figure 4.1.
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Fig. 4.1: The results on the first and the second iteration of Compendious lexico-
graphic algorithm
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After that, we search for points belonging to the given line segment, which maximize
the second objective function in the lexicographic order f2 = 14x + 10y. Respecting that
the line f2 = 0 is not parallel to given line segment, the maximal point is between the
vertices of the line segment. By testing, we conclude the maximal point is {30, 80}. The
subsequent computation stops here because the solution of the single-criteria optimization
problem is the single point.

So, the solution of this problem is the point {30, 80} (see the picture on the right-hand
side of the Figure 4.1), in which case the three given objective functions have the following
values, respectively: 1200, 1220, 110.

We developed a procedure LexicModif in programming package MATHEMATICA for test-
ing and verification purposes (see Appendix for details). The following instruction can be
used for solving this problem:

LexicModif[{8x + 12y, 14x + 10y, x + y},
2x + y<= 150, 2x + 3y<= 300, 4x + 3y<= 360, x + 2y>= 120, x>= 0, y>= 0]

Therefore, the following result is obtained

{{1200, 1220, 110}, {x → 30, y → 80}}.

Example 4.2. Solve the three-dimensional multi-objective optimization problem with
the constraints set determined in [12]:

Maximize : [x− 2y − z, x + y + z]

Such that : −x + 2y + z ≥ −3,

x− y + 2z ≤ 4,

x ≥ 0.

We determined, by the graphical method, that each point on the line λ{1,− 7
5
, 4

5
} + (1 −

λ){0,−2, 1}, 0 ≤ λ ≤ 1 maximizes the objective function f1 = x − 2y − z. This result is
depicted on the left picture of the Figure 4.2.

Fig. 4.2: The first two iterations of Compendious lexicographic algorithm depicted
by MATHEMATICA
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Table 4.1: Average processing times in seconds for randomly generated linear MOO
problems for n = 2.

n 2
l 3 10 25 100 250 1000
m 5 10 20 50 100 200
Lexicographic M. 0.1 0.4 1.0 4.8 14.0 57.3
Compend. Lexic. M. 0.1 0.2 0.4 0.9 2.2 8.5

Table 4.2: Average processing times in seconds for n = 3.

n 3
l 3 10 25 100 250 1000
m 5 10 20 50 100 200
Lexicographic M. 0.2 0.8 1.9 7.8 22.4 90.0
Compend. Lexic. M. 0.2 0.5 1.1 2.3 4.9 14.2

Next, search for points in the obtained line segment, which maximize the second ob-
jective function in the lexicographic order f2 = x+y+z. The following command for solv-
ing this problem is used: LexicModif[{x-2y-z, x+y+z}, {-x+2y+z+3>=0, x-y+2z<=4,

x>=0}]
The solution of this problem is the point {1,− 7

5
, 4

5
} (the picture on the right side of

the Figure 4.2), in which case the three given objective functions have the following values,
respectively: {3, 2

5
}.

Example 4.3. We have observed various random linear multi-objective optimization
problems with two and three unknowns. Therefore, the coefficients in the objective func-
tions and the ones in the inequality set are randomly generated from the set [−1000, 1000].
All processing times were evaluated as the average of 10 independent run times. Some of
the results are depicted in Table 4.1 and Table 4.2. Notice that the number of variables
is denoted by n, the number of objective functions is represented by l and that m denotes
the number of inequalities of the constraints set.

Obviously, Compendious lexicographic algorithm improves the standard lexicographic
algorithm for bigger MOO problems, considering l, m > 3. For large test examples, Com-
pendious lexicographic algorithm is drastically better than the standard algorithm and
several times more efficient. The reason for this is that Compendious lexicographic algo-
rithm finishes the computation at some objective function (usually at the second or the
third objective function) depending of the construction of the constraints set. Despite this,
the basic lexicographic algorithm continues the computation until the last objective and
enlarges the constraints set in each iteration (notice that at the final iteration the size of
the constraints set is nearly doubled!). The benefits of using Compendious lexicographic
algorithm for the mentioned class of problems are obvious, even though it applies the
graphical method procedure. Its efficiency is based on the reduction of the constraints
set in each iteration and the ending of the computation when the result is a single Pareto
optimal solution.
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5. Conclusions

A modification of the lexicographic method for solving multi-objective optimization
problems is developed. Therefore, two algorithms, for the cases of two and three
unknowns, are introduced in order to deal with MOO problems. The general idea
of the lexicographic ordering of objective functions combined with the graphical
method of linear programming produces Pareto optimal points more effectively.
This is proved via theorems, where some well known results of linear programming
theory are taken into consideration.

Notice that great effort is taken to present implementation details and technics
to handle the introduced algorithms. Illustrative examples are provided by means
of the package MATHEMATICA. Therefore, one of our goals is to demonstrate and
use symbolic features of the programming language MATHEMATICA in the considered
MOO problem. The lacking of the functions to deal with multi-objective optimiza-
tion problems in MATHEMATICA and other symbolic-based languages is an additional
motivation in this paper.

Appendix

In accordance to the discussions in the third and fourth section, the implementation
of graphical method in the case of two unknowns can be written as follows. In this
function formal parameters are criterion function f and the set of constraints g.

LinProgGraphicalM@f_, g_ListD :=

Module@8res = 8<, var = Variables@fD, i, j, h, gE, t, r<,

For@i = 1, i £ Length@gD, i++, var = Union@Variables@First@g@@iDDDD, varDD;

h = g �. 8List ® And<;

h = Reduce@h, varD;

If@h � False, Print@"The problem is inadmissible"D; Break@D;D;

gE = g �. 8LessEqual ® Equal, GreaterEqual ® Equal, Less ® Equal, Greater ® Equal<;

For@i = 1, i £ Length@gED - 1, i++,

For@j = i + 1, j £ Length@gED, j++, t = FindInstance@gE@@iDD && gE@@jDD && h, varD;

If@t ¹ 8<, AppendTo@res, 8ReplaceAll@f, t@@1DDD, t@@1DD<D;D;D;D;

For@i = 1, i £ Length@resD - 1, i++,

For@j = i + 1, j £ Length@resD, j++, If@res@@i, 1DD < res@@j, 1DD, r = res@@iDD;

res@@iDD = res@@jDD;

res@@jDD = r;D;D;D;

If@res@@1, 1DD � res@@2, 1DD, r = 8res@@1, 2DD, res@@2, 2DD<, r = 8res@@1, 2DD<;D;

Return@rD;D

By solving the system of inequalities given by g we obtain the region of the
feasible solutions, represented with the variable h. At that point the function
FindInstance (similar way of determining the points satisfying the system of in-
equalities is used in [1]). The extreme points are saved in the list R. These points
are found in the intersection of each two straight lines gained by compilation of
inequalities from the list of constraints to equalities. After that, the list of extreme
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points R is sorted in non-descending order depending of the distance from the line
f(x1, x2) = 0. The optimal solution is the maximal element of this list.

Here we provide the implementation of the modification of lexicographic method
using the graphical method for linear programming.

LexicModif@f_List, g_ListD :=

Module@8l = Length@fD, var = Variables@fD, r, q, q1, q2, i, m1, m2<,

r = LinProgGraphicalM@f@@1DD, gD;

Print@rD;

q = RegionPlot@g, 8var@@1DD, 0, 10<, 8var@@2DD, 0, 10<, AspectRatio ® 1D;

For@i = 2, Hi £ lL && HLength@rD � 2L, i++, m1 = ReplaceAll@f@@iDD, r@@1DDD;

m2 = ReplaceAll@f@@iDD, r@@2DDD;

If@m1 > m2, r = 8r@@1DD<D;

If@m2 > m1, r = 8r@@2DD<D;D;

If@Length@rD > 1, Print@"Pareto optimal solutions have the form: @LambdaD*",

r@@1DD, "+H1-@LambdaDL*", r@@2DD, ", 0<=@LambdaD<=1"D;

q1 = Graphics@8Thick, Line@rD<D,

Print@"Pareto optimal solution is: ", r@@1DDDD;

q2 = ListPlot@r, PlotStyle ® 8PointSize@0.03D<, DisplayFunction ® IdentityD;

Return@8ReplaceAll@f, r@@1DDD, r@@1DD<D;D

Here we use the function RegionPlot (see [12]), in order to represent the set
of feasible solutions, on which the search for possible optimal solutions are carried
out. This set is after each step reduced to the set of optimal solutions from the
previous problem of single-criteria problem. This idea provides the speeding-up of
the program execution.
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