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Ser. Math. Inform. Vol. 27, No 1 (2012), 27–40

COUPLED STOCHASTIC OSCILLATORS
WITH DELAYS IN COUPLING ∗

Ines B. Grozdanović Nikola I. Burić;
Kristina D. Todorović and Neboǰsa T. Vasović

Abstract. Stochastic coherence (SC) and self-induced stochastic resonance (SISR) are
two distinct mechanisms of noise-induced coherent motion. Influence of small time-
delays on the coherence resonance in weak and strong coupled, stochastic,type II ex-
citable pairs of SC and SISR systems is studied. It is shown that the transition be-
tween different phenomena when the coupling strength is gradually changed from weak
to strong coupling is quite homogenous with some differences between SC and SISR
neurons, and that small time-delays can have interesting effect on the noise induced
coherent oscillations.

1. Introduction

Excitability is a common property of many physical and biological systems.
Although there is no unique definition [7] the intuitive meaning is clear: A small
perturbation from the single stable stationary state can result in a large and long
lasting excursion away from the stationary state before the system is returned back
asymptotically to equilibrium. Furthermore, in the framework of the bifurcation
theory, as an external parameter is changed, the global attractor in the form of
the stationary point bifurcates into a stable periodic orbit, and the excitability is
replaced by the oscillatory dynamics.

Typical example of excitable behavior is provided by the dynamics of neurons.
However, realistic models of coupled neurons, must include the following two phe-
nomena: (a) influence of different types of noise and (b) different time scales of
the creation of impulses on one hand and their transmission between neurons on
the other. It is well known that neurons in vivo function under influences of many
sources of noise [14]. It is also well known that the noise of an appropriate small
intensity can change the systems dynamics by turning the quiescent state of the
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neuron into the state of periodic firing [12]. There are different types of noise in-
duced coherent oscillations that could occur in examples of excitable systems [11], as
will be discussed later. Description of interactions between neurons should include
the details of the electrochemical processes in real synapses which occur on much
slower time scale then the occurrence of an impulse and its transport along axons
[9]. Alternatively, the transport of information between neurons can be phenomeno-
logically described by time-delayed inter-neuronal interaction. It is well known that,
depending on the parameters the time-delay can, but need not, induce drastic qual-
itative changes on the evolution of coupled deterministic excitable systems (please
see for example [18, 2, 3, 5, 16]). However, a system of delay-differential equations
is infinite dimensional with initial states represented by a vector functions on the
interval (−τ, 0). Stability of stochastic delay-differential equations has been studied
by mathematicians [13, 1]. Influence of noise on time-delay induced bifurcations
and properties of synchronization have been analyzed elsewhere, for example in
[4, 8, 17]. On the other hand our aim here is to investigate the influence of coupling
delay, on different types of coherent oscillations that have been induced solely by
the noise, when the neurons are both weak and strong coupled. Such a detailed
and extensive analyzes would supply information complementary to the research on
the effects of noise on the properties of oscillations and synchrony introduced by
sufficient time-lag in the delayed coupling. We would like to emphasis, that our goal
in this paper, is to study the effects of interplay between the time-delay, coupling
strength and noise, on different types of noise induced coherent oscillations in each
pair of the coupled units.

The structure of the paper is as follows. In the next section we present the model
of two FitzHugh-Nagumo excitable systems with noise perturbations, coupled by
delayed electrical synapses, with different strengths of coupling included in the
model. We restrict the parameter values to such domain that the deterministic
system has the stable stationary state as the only attractor for any value of the
time-delay. Both units are perturbed by noise which can induce different types
of coherent oscillations. In section 3 we present and discuss the results of our
extensive numerical computations. We have analyzed effects of small time delay
on coherence in the case that both units display the same type of noise induced
coherent oscillations, for weak and toward strong coupling units. We study the
effects of strength coupling and time-delay on coherence properties of both single
units. Finally, in section 4, we summarize our results and propose some future
projects.

2. The model

Excitable behavior of a single neuron could be of two qualitatively different
types [7]. They are distinguished phenomenologically by different properties of
the frequencies and the amplitudes of the oscillatory dynamics in each of the two
types, and the corresponding qualitative mathematical models are characterized
by different bifurcation mechanisms. In this paper we shall consider typical type
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II excitable systems, modeled by the FitzHugh-Nagumo differential equations [7],
where the excitable behavior bifurcates into the oscillatory regime via the Hopf
bifurcation. Each of the excitable neurons in the model is subjected to white noise
that could appear in the model equations in two qualitatively different ways. Thus
each neuron is described by the following stochastic differential equations:

εdx = f(x, y) = (x− x3/3− y)dt +
√

ε
√

2D1dW1

dy = g(x, y) = (x + a)dt +
√

2D2dW2,(2.1)

where dWx,y are independent increment of normalized Winer processes, i.e.
E(dWi) = 0, E(dWidWj) = δij , i, j = 1, 2 and E(. . .) denotes expectation with
respect to the stochastic process. The small parameter ε, which is in our paper
fixed as ε = 10−2, takes care of the different time scales in the dynamics of the exci-
tatory variable x (membrane potential) and the recovery variable y. The parameter
a is the bifurcation parameter. For |a| > 1 the deterministic system (1) is excitable
and for |a| < 1 the stationary state is unstable and there exists a stable limit cycle.
In this paper a is fixed to a = 1.05. The two noise terms can produces series of
spikes in the x variable which for certain values of the parameters D1 or D2 occur
regularly so that the dynamics appears simply periodic i.e. coherent with quite well
defined frequency. However the coherent oscillations induced by D1 = 0, D2 6= 0
are qualitatively different from those that occur due to D1 6= 0, D2 = 0. The first
case, i.e. D1 = 0, D2 6= 0 has been extensively studied, since it was reported in
[15]. The effect is traditionally called coherence resonance [12], but we shall use the
term stochastic coherence (SC) [19] in order to emphasize the noisy origin of the co-
herent oscillations. SC occurs only when the parameter a is close to its bifurcation
value, the properties of the ensuing oscillations resemble the Hopf limit cycle of the
deterministic system, and the properties of SC follow from this fact. The oscilla-
tions in the other case, D1 6= 0, D2 = 0 are induced by quite different mechanism
from that of the SC. It has been studied in details for example in [11], where it has
been called self-induced stochastic resonance (SISR). The main properties of SISR
(and the name) follow from the fact that the system (1) asymptotically resembles
a particle in a double well potential [11]. In particular SISR happens even when a
is far from the bifurcation value, and the resulting stochastic limit cycle does not
resemble anything that could occur in the deterministic system.

We shall study a pair of excitable FHN neurons (1) coupled by the electrical
synapses. This type of synapse is modeled by delayed diffusive coupling between the
membrane potentials of the coupled neurons. The model equations are as follows:

εdxi = f(xi, yi) + c(xj(t− τ)− xi)dt

dyi = g(xi, yi), i, j = 1, 2(2.2)

where f(xi, yi) and g(xi, yi) are given by (1). The coupling constant c in this
paper always assumes positive values, c = 0.01 for weak and c = 0.1 for strong
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coupling, which ensures that the system (2) with a = 1.05 and for D1, D2 all equal
to zero, has the stable stationary state as the only attractor for any value of the
time-lag τ . Thus, possible oscillatory behavior of (2) can occur only because of the
noise, and not because of strong coupling or time-delay. However, as we shall see,
once the noise has produced spike trains that look coherent, quite small time delay
for sufficiently strong coupling can induce important qualitative changes in the SC
and SISR as well as in the properties of synchronization between the two units.

3. Numerical results

Each of the isolated noisy FHN neurons can display a train of spikes due to
the noise even when the only attractor of the deterministic system is the stable
stationary solution. Time distribution of the spikes can be regular with almost
constant inter-spike interval. Occurrence of coherent series of spikes for particular
values of the noise intensity is the common manifestation of both SC and SISR.
However, the two cases occur via quite different mechanisms and have different
properties, like dependence of the inter-spike period and on the noise intensity.
Mechanisms of SC and SISR, and their properties, have been compared in [11].
Coupling between the neurons which are in the state of SC or SISR could preserve
the coherence of each of the units and furthermore lead to synchronization of noise
induced oscillations. This effects have been studied in the case of instantaneous
coupling (no time-delay) for example in [6] for the case of equal units, and in [19]
for the case of one unit in the state of SC and the other in the state of SISR. In
this section we illustrate the main effects of the time-delay in the weak and strong
coupling between the neurons on the properties of SC and SISR, for both units
either in the SC or in the SISR state.

The coherence of noise induced series of spikes in each of the neurons is commonly
characterized by a kind of signal to noise ratio defined by:

SNR =
Tk

[Var(Tk)]1/2
(3.1)

where Tk = tk − tk−1 is the k-th inter-spike time interval and the overline, like
in T k, denotes time averaging. Large SNR corresponds to high coherence of the
noise induced spike trains.

There are different types of synchronization between the two coherently spiking
neurons that could be of interest. For example, the strongest kind is the exact
synchronization, i.e. x1(t) = x2(t) for all t > t0, and another commonly studied is
the synchronization between the phases of the two oscillators. We shall analyze the
kind of synchronization such that each spike of one of the neurons occurs within the
duration of some spike of the other neuron. This notion of synchrony is motivated
by neurological considerations [10], and is quantified by the so called coincidence
function (CF). This is defined as the time average of the ratio between the number of
spikes of one of the neurons, which are coincident with some of the spikes of the other
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neuron, and the average number of spikes per neuron. Two spikes are considered
coincident whenever the sum of x1(t) + x2(t) is larger then some threshold, say the
hight of spikes max{xi}. This type of synchrony does not assume coherent spiking
and is weaker than either exact or phase synchronization.

In our numerical integration we have used the Runge-Kutta 4-th order routine
for the deterministic part of (2) and the Euler method for the stochastic part.
Many sample paths for each value of the variable parameters D1,2 and τ have been
calculated. Values of SNR that are presented in what follows represent values that
have been obtained with single typical sample paths.

Results of our numerical calculations are illustrated in figures 1, 2, 3, 4 and
5 where on each figure a), b), c), d) corresponds to two SC and e), f), g), h) to
two SISR neurons. We fix the noise intensity of one of the neurons, say D2 to the
maximal coherence of SC type (a, b, c, d on all the figures) or D1 to the maximal co-
herence of SISR type (e, f, g, h on all the figures) and study the dependence of firing
coherence of both neurons on the noise intensity D1 or D2 of the adjustable unit,
on the time-lag τ and on coupling strength: c = 0.01(fig.1); 0.03(fig.2); 0.05(fig.3);
0.07(fig.4); 0.1(fig.5). We consider only relatively small time-lags up to the refrac-
tory period of a single spike of an isolated excitable FHN neuron, which is about
τ ≤ 1.3. On each of the figures 1-5 values of time-lags are: τ = 0 and τ = 0.4 (on
the a, e); τ = 0 and τ = 0.7 (on the b, f); τ = 0 and τ = 1 (on the c, g); τ = 0 and
τ = 1.3(on the d, h).

From fig.1 and fig.2 we can see that the coherence of noise induced spiking
for both SC and SISR type neurons is not qualitatively affected by weak coupling
(c = 0.01 and c = 0.03) for time-delay τ ≤ 1, but for τ = 1.3 even for still weak
coupling value c = 0.03 we can see first ”reaction on the coupling strength” in both
SC and SISR cases, which is shown in fig.2d and 2h respectively. Stronger coupling
introduces significant modifications which very much depend on the time-lag and is
illustrated in fig.3,4 and 5.

Figures 3a,b,c,d (c = 0.05) and fig.2a,b,c,d (c=0.03) (SC type) are qualitatively
the same, but the qualitative and quantitative changes in curves SNR1(log10 D1)
and SNR2(log10 D1) for SISR type in fig.3h (for τ = 1.3) are obvious which means
significant improvement in coherence comparing with the previous fig.2h (for same
value of the time-delay).

Figure 4 presents improvement in coherence for lower intensity of the noise
−4 < log10 D2 < −2.5 of the curves SNR1(log10 D2) and SNR2(log10 D2) for
coupled neurons of SC type in the fig.4d for τ = 1.3, while the other diagrams are
qualitatively the same as in previous figure 3.

Typical effects of the influence of small time lag are shown in fig.5b and illus-
trated with τ = 0.7, when both neurons are of the SC type and the noise intensity
of one of them is held fixed at the SC maximum for single neuron. Other values of
the time-lag less then τ < 1 cause similar small modifications of the dependencies
SNR1(log10 D2) and SNR2(log10 D2). However, large influence of the time-delay
on SNR1(log10 D2) and SNR2(log10 D2) is demonstrated for all τ ≥ 1, as is illus-
trated in fig. 5c,d for τ = 1 and τ = 1.3 respectively. The curves SNR1(log10 D2)
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and SNR2(log10 D2) with τ ≥ 1 are qualitatively and quantitatively different from
those with τ < 1. Let us stress that deterministic systems with delayed coupling of
the same coupling strength c = 0.1 show no bifurcations or other qualitative changes
for any τ ≥ 0. Thus, qualitative change in the properties of noise induced spiking
coherence achieved with τ ≥ 1 should be attributed to the simultaneous action of
noise and time-delay. Figures 5e, f, g, h illustrate the same effects in the case when
the two neurons are of the SISR type with fixed noise intensity in one of them.
The situation is qualitatively similar to the previous case: small τ < 1 introduces
only small quantitative changes, but τ ≥ 1 changes the curves SNR1(log10 D1) and
SNR2(log10 D1) drastically. Observe that the influence of time-delay for τ = 1 in
the SC-SC case is quite different from the SISR-SISR case.

In summary we can conclude that for any coupling strength small time-lag τ <
1 only slightly changes the properties of noise induced coherence in each of the
considered cases. On the other hand, τ ≥ 1 introduces significant qualitative and
quantitative changes in the functions which characterize the noise induced coherence
SNR1 and SNR2, for SISR type neurons even for weaker coupling (c=0.05) then for
the SC type where similar changes are not observed until strong coupling c = 0.1.
In general the curves acquire several local maxima and minima that depend on τ .
When τ = 1 two cases can be distinguished: a) the noise intensity in the SISR
neuron is fixed to the coherence maximum of the isolated neuron or b) the noise
intensity in the SC neuron is fixed to the coherence maximum of the isolated neuron
and in both cases the adjustable neuron is either SISR or SC respectively. In the
case b) the firing coherence of both neurons is measured by SNR1(log10 D1,2) and
SNR2(log10 D1,2) and is significantly smaller for any D1,2 for τ = 1 then for τ < 1.
In the case a) SNR1(log10 D1,2) and SNR2(log10 D1,2) for τ = 1 and small D are
larger then for τ < 1. In either of the considered cases the large local maxima in
SNR1(log10 D1,2) and SNR2(log10 D1,2) that appear for τ > 1 must be considered
as a consequence of very small variance over long time of the values of the inter-
spike intervals and not of large values of these intervals. Let us stress once again
that the two deterministic FHN neurons in the considered range of the parameters
with delayed coupling do not display any oscillatory dynamics for any value of the
time-lag.

4. Summary

We have studied a pair of FitzHugh-Nagumo neurons with noise coupled by
time-delayed diffusive coupling. The bifurcation parameters of each of the neurons
and the coupling strength were such that the only attractor of the system without
the noise terms is the stable stationary state for any value of the time-lag. Thus,
the deterministic system is excitable with no oscillatory dynamics for any value of
the time-lag. Addition of white noise in two different ways produces spiking that
appears periodic for particular values of the noise strength. We have studied the
influence of coupling strength and time-delay in the coupling on the coherent spiking
induced by noise in the slow variable, called stochastic coherence (SC), and on that
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induced by the noise in the fast variable which is called self-induced stochastic
resonance (SISR). This research is complementary to the analyzes of the effects of
noise on the properties of oscillations and synchrony introduced by sufficient time-
lag in the delayed coupling. Noise induced coherent spiking is studied using the
signal to noise ratio. As pointed before, the isolated neurons without noise were
always in the excitable regime and the coupling strength was always positive, which
guaranties that the train of spikes can only be introduced by noise, and not by time-
delay. Then we numerically studied changes in the signal to noise ratio introduced
by small time-delay for each of the neurons in the pairs like SC-SC, SISR-SISR
varying the coupling strength from weak (c = 0.01) to strong (c = 0.1). Our main
results can be summarized as follows: Weak coupling with any time-lag does not
introduce any qualitative change of the signal to noise ratio. Transition toward
strong coupling is quite uniform, with remark that pair of SISR neurons are more
sensitive to the intensity of the coupling strength, than SC pair of neurons. Even
strong coupling with the time-lag τ < 1 induces only small changes of the signal
to noise ratio. However, time-lag τ ≥ 1 and sufficiently strong coupling drastically
change signal to noise ratio in the quantitative and qualitative manner. New local
minima and maxima of the signal to noise ratio as a function of the noise intensity
are created by the time-lag τ > 1, and the coherence of spiking measured by (3.1)
can be greatly enhanced.

In this paper we have used the ”homogeneous pair” of FitzHugh-Nagumo neu-
rons (SC-SC and SISR-SISR) as the typical example of an excitable type II system,
and the diffusive coupling as the model of an electrical synapse. We expect that
noise can induce coherent spiking of excitable neurons of ”heterogenous pair” SC-
SISR, and it will be interesting to see the influence of coupling strength and coupling
delay in those cases (it might be different), which deserves to be studied. Obviously
it would be interesting to perform the analysis of the influence of internal time-
delay introduced in both neurons on noise induced coherence in all the cases we
have previously mentioned.
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FIGURE CAPTIONS

Figure 4.1.

Figure 4.1: Illustrates coherence in the (a,b,c,d) SC-SC case, and (e,f,g,h) in the
SISR-SISR case, for c = 0.01 (weak) coupled pair of neurons. SNR1(circles) and
SNR2 (triangles) full for τ = 0 and hollow for τ = 0.4 (a,e), τ = 0.7 (b,f), τ = 1
(c,g) and τ = 1.3 (d,h). Calculated values of SNR1,2 are indicated by symbols and
the lines (dotted fot τ = 0, and full for τ = 0.4 − 1.3) serve only to connect the
values corresponding to the same τ and different log10 D1,2.
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Figure 4.2.

Figure 4.2: Illustrates coherence in the (a,b,c,d) SC-SC case, and (e,f,g,h) in the
SISR-SISR case, for c = 0.03 coupled pair of neurons. SNR1(circles) and SNR2

(triangles) full for τ = 0 and hollow for τ = 0.4 (a,e), τ = 0.7 (b,f), τ = 1 (c,g)
and τ = 1.3 (d,h). Calculated values of SNR1,2 are indicated by symbols and the
lines (dotted fot τ = 0, and full for τ = 0.4− 1.3) serve only to connect the values
corresponding to the same τ and different log10 D1,2.
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Figure 4.3.

Figure 4.3: Illustrates coherence in the (a,b,c,d) SC-SC case, and (e,f,g,h) in the
SISR-SISR case, for c = 0.05 coupled pair of neurons. SNR1(circles) and SNR2

(triangles) full for τ = 0 and hollow for τ = 0.4 (a,e), τ = 0.7 (b,f), τ = 1 (c,g)
and τ = 1.3 (d,h). Calculated values of SNR1,2 are indicated by symbols and the
lines (dotted fot τ = 0, and full for τ = 0.4− 1.3) serve only to connect the values
corresponding to the same τ and different log10 D1,2.
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Figure 4.4.

Figure 4.4: Illustrates coherence in the (a,b,c,d) SC-SC case, and (e,f,g,h) in the
SISR-SISR case, for c = 0.07 coupled pair of neurons. SNR1(circles) and SNR2

(triangles) full for τ = 0 and hollow for τ = 0.4 (a,e), τ = 0.7 (b,f), τ = 1 (c,g)
and τ = 1.3 (d,h). Calculated values of SNR1,2 are indicated by symbols and the
lines (dotted fot τ = 0, and full for τ = 0.4− 1.3) serve only to connect the values
corresponding to the same τ and different log10 D1,2.
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Figure 4.5.

Figure 4.5: Illustrates coherence in the (a,b,c,d) SC-SC case, and (e,f,g,h) in the
SISR-SISR case, for c = 0.1 (strong) coupled pair of neurons. SNR1(circles) and
SNR2 (triangles) full for τ = 0 and hollow for τ = 0.4 (a,e), τ = 0.7 (b,f), τ = 1
(c,g) and τ = 1.3 (d,h). Calculated values of SNR1,2 are indicated by symbols and
the lines (dotted fot τ = 0, and full for τ = 0.4 − 1.3) serve only to connect the
values corresponding to the same τ and different log10 D1,2.
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