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INVERSE AND SATURATION THEOREMS FOR LINEAR
COMBINATIONS OF A NEW CLASS OF POSITIVE LINEAR

OPERATORS

Bramha Dutta Pandey and B. Kunwar

Abstract. The inverse and saturation theorems for the linear combinations of a class
of positive linear operators of convolution type have been proved in this paper. This
class contains a number of well known positive linear operators as special cases. The
results make use of one of the Peetre’s K-functionals. The analogues of inverse and
saturation theorems in simultaneous approximation have also been proved.

1. Introduction

During past few decades a number of authors [1], [2], [6], [10], [11], [14] and
[15] etc. have made an extensive study of the problems related to the inverse
and saturation for different classes and sequences of the linear positive operators.
In the present paper we study the inverse and saturation problems for the linear
combinations of a new class of linear positive operators Ln. This class contains
several well- known sequences of linear positive operators as special cases [8] in
particular Gamma operators of Muller, Post-Widder and the Modified Post-Widder
operators.

Let M(R+) be the class of complex valued measurable functions on R+, Mb(R+)
the subset of M(R+) consisting of the functions essentially bounded on R+. We
define

Ln(f : x) = D(m,n, α)xmn+α−1

∫ ∞

0

u−mn−αe−n( x
u )m

f(u)du(1.1)

where

D(m,n, α) =
mnn+ α−1

m

Γ(n + α−1
m )

, m, x, n ∈ R+, α ∈ R, f ∈ M(R+).

Clearly, (1.1) defines a class of positive linear operators.
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1.1. Basic Definitions and Preliminary Results

Definition 1.1. Let Ω(> 1) be a continuous function defined on IR+. We call Ω,
a bounding function if for each compact K ⊆ IR+, there exist positive numbers nk

and Mk such that
Lnk

(Ω;x) < Mk, x ∈ K.

For our operators the bounding function is

Ω(u) = u−a + ebum

+ uc, where a, b, c > 0.

For this bounding function Ω, we define

DΩ = {f ∈ Loc(IR+)

such that

lim sup
u−→0

f(u)
Ω(u)

and lim sup
u−→∞

f(u)
Ω(u)

exist.

Definition 1.2. Let f be a continuous function on [a, b] ⊆ R+ and δ ≥ o. The p−
modulus of continuity of f is defined by

ωp(f, δ) = lim
|h| < δ

x, x + ph ∈ [a, b]

∣∣∣∣∣∣

p∑

j=0

(−1)p−j

(
p
j

)
f(x + jh)

∣∣∣∣∣∣
(1.2)

for p = 1, ωp(f, δ) is simply written as ω(f, δ). If ω(f, δ) ≤ Mδβ , (0 < β ≤ 1), where
M is a constant, we say that f ∈ Lipβ

M .

We define
Lip(β; a, b) = ∪M>0Lipβ

M ,

L∞[a, b] = {f : f is essentially bounded on [a, b]},
AC[a, b] = {f : f is absolutely continuous on [a, b]},

Lip(p, β; a, b) = {f : f (k) ∈ AC[a, b], k = 0, 1, 2, ..., (p− 1) and f (p) ∈ Lip(β; a, b)},
For 0 < β ≤ 2 and some constant M,

Liz(p, β; a, b) = {f : ω2p(f, δ) ≤ Mδβk, k = 0, 1, 2, ..., (p− 1)}

for p = 1, Liz(p, β; a, b) reduces to Lip∗(1; a, b).
We introduce some more classes of functions:

C0(R+) = {f : f is continuous on R+ and has compact support in R+},
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C(k)(R+) = {f : f is k − times continuously differentiable on R+},

C
(k)
0 (R+) = {f ∈ C(k)(R+) : f is compactly supported on R+},

C
(m)
b (R+) = {f : f ∈ C(m)(R+) and f (k), k = 0, .., m are bounded on R+}.

For any fixed set of positive constants αi, i = 0, 1, 2, ..., p following [13] we define
the linear combination Ln,p of the operators Lnby

Ln,p(f ; x) =
1
4

∣∣∣∣∣∣∣∣∣∣

Lα0n(f ; x) α−1
0 α−2

0 ... ... α−p
0

Lα1n(f ; x) α−1
1 α−2

1 ... ... α−p
1

.... ... ... ... ... ...

.... ... ... ... ... ...
Lαpn(f ; x) α−1

p α−2
p ... ... α−p

p

∣∣∣∣∣∣∣∣∣∣

(1.3)

where 4 is the determinant obtained by replacing the operator column by the
entries ′1′. Clearly

Ln,p =
p∑

j=0

C(j, p)Lαjn,(1.4)

for constants C(j, p), j = 0, 1, 2, ..., p which satisfy

p∑

j=1

C(j, p) = 1.

Ln,p is called a linear combination of order p. Ln,0 denotes the operator Ln itself.

Let [a′, b′] ⊂ (a, b) with ζ = {g : g ∈ C
(2p+2)
0 , supp g ⊂ [a′, b′]}, for f ∈ C0(R+)

with supp f ⊂ [a′, b′] we define

K(ξ, f) = inf
g∈ζ
{‖f − g‖+ ξ(‖g‖+

∥∥∥g(2p+2)
∥∥∥)}

where 0 < ξ ≤ 1 and the norms are the Chebyshev norms on [a′, b′].
A function f ∈ C0(R+) with supp f ⊂ [a′, b′] is said to belong to the intermediate

space C0(β, p + 1; a′, b′), (0 < β ≤ 2) if

‖f‖β = sup
0<ξ<1

{ξ− β
2 K(ξ, f)} < ∞.

For a detailed account of Peetre’s K− functional and the intermediate spaces, we
refer [5].

We state the following results on the spaces C0(β, p + 1; a′, b′) and Liz(β, p +
1; a′, b′) by employing K(ξ, f) in the proofs of inverse and saturation theorems.

Lemma 1.1. Let 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If f ∈ C0(R+) with supp
f ⊂ [a′′, b′′], then f ∈ C0(β, p + 1; a′, b′) iff f ∈ Liz(β, p + 1; a, b).
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Lemma 1.2. Let 0 < β < 2 and 0 < a < b < ∞. The following statements are
equivalent:

(i) f ∈ Liz(β, p + 1; a, b)

(ii) (a) if m < β(p + 1) < m + 1,m = 0, 1, ...., (2p + 1), f (m) exists and belongs to
Lip(β(p + 1)−m; a, b) and

(b) if m + 1 = β(p + 1), (m = 0, 1, 2, ..., 2p) f (m) exists and belongs to
Lip∗(1; a, b)

Lemma 1.3. If for ξ, η ∈ (0, 1) and a constant M there holds

K(ξ, f) ≤ M

∣∣∣∣η
β
2 + (

ξ

η
)K(η, f)

∣∣∣∣ ,(1.5)

where 0 < β < 2, then there exists a constant M ′ such that

K(ξ, f) ≤ M ′ξ
β
2 .

Throughout the paper {λn : n ∈ N} denotes an increasing sequence of positive
numbers such that

(1) ns →∞ as s →∞, and

(2) for some constant C > 0, ns+1
ns

≤ C, s ∈ N.

2. Inverse theorems (ordinary approximation)

Let K(ξ; f) denotes the Peetre’s K−functionals. We first prove:

Lemma 2.1. Let 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If f ∈ Mb(R+) with supp
f ⊂ [a′′, b′′] and

sup
x∈[a,b]

|Lns,p(f ; x)− f(x)| = o(n
−β(p+1)

2
s ), (s →∞)(2.1)

where 0 < β < 2 and p is a non negative integer, then f ∈ C0(R+) and n ≥ 1, there
holds

K(ξ; f) ≤ M
∣∣∣n− β(p+1)

2 + np+1ξK(n−(p+1); f)
∣∣∣ ,(2.2)

where M is a constant.
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Proof. Due to the condition ns+1
ns

≤ C it is sufficient to prove (2.2) with n re-
placed by ns where s is sufficiently large. Since G(u) = ume−um

is infinitely differen-
tiable. Therefore for some δ > 0, G(u) is (2p + 2)−times continuously differentiable
on (1−2δ, 1+2δ). Here δ can be chosen so small that 0 < 2δ < min{1− a′

a” , b′
b” −1}.

It is obvious that we can find a function G∗ ∈ C2p+2
0 (R+) s.t.

G∗(u) =
{

G(u), |u− 1| ≤ δ

0, u ≤ a′
a′′ or u ≥ b′

b′′

}
(2.3)

Then, if L∗n denotes the operator in (1.1) obtained by introducing (2.3), in view
of (2.1) we also have

sup
x∈[a,b]

∣∣L∗ns,p(f ;x)− f(x)
∣∣ ≤ M ′n−

β(p+1)
2

s , (s →∞)(2.4)

where M ′ is some positive constant and L∗ns,p are the linear combinations corre-

sponding to the operator L∗n. Here we notice that L∗n(f ; x) ∈ C
(2p+2)
0 (R+) with

supp L∗n(f ; x) ⊂ [a′, b′] for all n ∈ R+. In view of (2.4) it is clear that f ∈ C0(R+)
and

K(ξ; f) ≤ Mn
− β(p+1)

2
s + ξ{

∥∥L∗ns,p(f ; x)
∥∥

C[a′,b′]
+

∥∥∥L∗(2p+2)
ns,p (f ; x)

∥∥∥
C[a′,b′]

}.(2.5)

Next, we assert that for each g ∈ ζ = {g : g ∈ C
(2p+2)
0 (R+), supp g ⊂ [a′, b′]}

there holds the inequality
∥∥∥L∗(2p+2)

n (g;x)
∥∥∥

C[a′,b′]
≤ A1n

p+1 ‖g‖C[a′,b′](2.6)

where A1 is a constant. We have

∣∣∣L∗(2p+2)
n (g; x)

∣∣∣ ≤ C1 ‖g‖∞
2p+2∑

j=0

[p+1− j
2 ]∑

ν=0

nν+j D∗∗(m,n, α)
D∗(m,n, α)

L∗∗n (|u− 1|j ; 1),(2.7)

where C1 is a constant, L∗∗n is the operator defined by (1), with G(u) = ume−um

re-
placed by G∗(u) and α by α+j and D∗∗(m,n, α) [3] is the corresponding D(m,n, α).

Now, in view of (2.7) and the fact that supp g ⊂ [a′, b′], (2.6) is clear. Also, for
every g ∈ ζ, it is clear that

∥∥∥L∗(2p+2)
n (g; x)

∥∥∥
C[a′,b′]

≤ A2

∥∥∥g(2p+2)
∥∥∥

C[a′,b′]
,(2.8)

where A2 is a constant. Using (2.7) and (2.8) for every g ∈ ζ we have
∥∥L∗ns,p(f ; x)

∥∥
C[a′,b′]

+
∥∥∥L∗(2p+2)

ns,p (f ; x)
∥∥∥

C[a′,b′]
≤(2.9)

≤ n(p+1)
s M”[‖f − g‖C[a′,b′] + n−(p+1)

s {‖g‖C[a′,b′] +
∥∥∥g(2p+2)

∥∥∥
C[a′,b′]

}],
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where M” is a constant . Hence, by (2.5) and (2.9)with M = max{M ′,M”} and
for every g ∈ ζ, we have

K(ξ; f) ≤ M [n−
β(p+1)

2
s +n−(p+1)

s ξ ‖f − g‖C[a′,b′]+n−(p+1)
s {‖g‖C[a′,b′]+

∥∥∥g(2p+2)
∥∥∥

C[a′,b′]
}].

(2.10)
Taking the infimum on the right hand side of (2.10) we get (2.2). This completes
the proof of the lemma.

Now we are in position to prove the main result of this section.

Theorem 2.1. Let f ∈ DΩ. If 0 < r < 2p + 2, p ∈ N0 (set of non-negative
integers) and 0 < a1 < a2 < a3 < b3 < b2 < b1 < ∞, then in the following
statements the implication (i) ⇒ (ii) ⇒ (iii).

(i) supx∈[a1,b1] |Lns, p(f ; x)− f(x)| = o(n−
r
2

s ) (ns →∞);

(ii) if r 6= [r], f ([r]) exists and belongs to Lip(r − [r]; a2, b2) and if r = [r], f (r−1)

exists and belongs to Lip∗(1; a2, b2);

(iii) supx∈[a3,b3] |Ln, p(f ;x)− f(x)| = O(n−
r
2 ) (n →∞).

Proof. Since 0 < r < 2p + 2, we write r = β(p + 1) for some β ∈ (0, 2). We
first prove that (ii) ⇒ (iii). Assuming (ii) and using Lemma2 a2 < a∗2 = a′ < a′2 <
a2” < a3 < b3 < b2” < b′2 < b′ = b∗2 < b2 and g0 ∈ C∞0 (R+) be such that g0(u) = 1
for u ∈ [a2”, b2”] and supp g0 ⊂ [a′2, b

′
2]. Then, since f ∈ Liz(β, (p + 1); a2, b2) also

f∗ = fg0 ∈ Liz(β, p + 1; a2, b2) and supp f∗ ⊂ [a′2, b
′
2]. Hence by Lemma 1.1

|Ln,p(f ;x)− f(x)| ≤ |Ln,p(f − f∗; x)|+ |Ln,p(f∗; x)− f∗(x)| ≤(2.11)
≤ |Ln,p(f∗; x)− f∗(x)|+ B1n

− r
2 ,

where B1 is a constant independent of n and x. Now for any g ∈ ζ and x ∈ [a∗2, b
∗
2],

we have

|Ln,p(f∗;x)− f(x)| ≤ |Ln,p(f∗ − g; x)|+ |Ln,p(g; x)− g(x)|+ |g(x)− f∗(x)|
≤ B2 ‖f∗ − g‖C[a∗2 ,b∗2 ] + |Ln,p(g; x)− g(x)|

where B2 is a constant.
By a mean value theorem,

g(u)− g(x) =
2p+1∑

j=1

g(j)(x)
j!

(u− x)j +
(u− x)2p+2

(2p + 2)!
g(2p+2)(ξu)

for all u ∈ R+, where ξu ∈ (u, x). Hence,

Ln,p(g(u); x)− g(x) =
2p+1∑

j=1

g(j)(x)
j!

Ln,p((u− x)j ; x) + Ln,p(
(u− x)2p+2

(2p + 2)!
g(2p+2)(ξu); x)

=
∑
1

+
∑
2

(say).
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By the definition of Ln,p,
∣∣∣∣∣
∑
1

∣∣∣∣∣ ≤ B3n
−(p+1)

2p+1∑

j=1

∥∥∥g(j)
∥∥∥

C[a∗2 ,b∗2 ]
, for large n and x ∈ [a∗2, b

∗
2].(2.12)

Also,
∣∣∣∣∣
∑
2

∣∣∣∣∣ ≤
∥∥g(2p+2)

∥∥
C[a∗2 ,b∗2 ]

(2p + 2)!

p∑

j=0

|C(j, p)|Lαjn((u− x)2p+2;x)(2.13)

≤ B4n
−(p+1)

∥∥∥g(2p+2)
∥∥∥

C[a∗2 ,b∗2 ]
,

where B3, B4 are constants. Hence if B5 = max(B3, B4), we have

|Ln,p(g; x)− g(x)| ≤ B5n
−(p+1)

2p+1∑

j=1

∥∥∥g(j)
∥∥∥

C[a∗2 ,b∗2 ]
.(2.14)

Since there exist a constant B6 such that

2p+2∑

j=1

∥∥∥g(j)
∥∥∥

C[a∗2 ,b∗2 ]
≤ B6{‖g‖C[a∗2 ,b∗2 ] +

∥∥∥g(2p+2)
∥∥∥

C[a∗2 ,b∗2 ]
}.

It follows from (2.10)-(2.13) that for all sufficiently large n

sup
x∈[a3,b3]

|Ln,p(f ; x)− f(x)| ≤(2.15)

≤ M ′
∣∣∣∣‖f∗ − g‖C[a∗2 ,b∗2 ] + n−(p+1){‖g‖C[a∗2 ,b∗2 ] +

∥∥∥g(2p+2)
∥∥∥

C[a∗2 ,b∗2 ]
}+ n−β(p+1)

∣∣∣∣

where M ′ is some constant. Taking infimum over g ∈ ζ in (2.15) for sufficiently
large n we have

sup
x∈[a3,b3]

|Ln,p(f ; x)− f(x)| ≤ M
∣∣∣n−β

(p+1)
2 + K(n−(p+1); f∗)

∣∣∣(2.16)

since f∗ ∈ C0(β, p + 1; a∗2, b
∗
2) and a∗2 = a′, b∗2 = b′, we have

K(n−(p+1); f∗) ≤ Ḿ”n−β(p+1)(2.17)

where M” is a constant. Also, as r = β(p + 1), it follows from (2.16)-(2.17) that

sup
x∈[a3,b3]

|Ln,p(f ; x)− f(x)| = O(n−
r
2 ).

This completes the proof of (ii) ⇒ (iii).
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To prove (i) ⇒ (ii). Let us assume (i). If supp f ⊂ (a1, b1) with a = a1, b = b1,
we can choose a′, b′, a”, b” such that 0 < a1 = a < a′ < a” < b” < b′ < b = b1 < ∞

and supp f ⊂ [a”, b”]. By Lemma 2.1 we obtain

K(ξ; f) ≤ Mn−β
(p+1)

2 + np+1ξK(n−(p+1); f), (n ≥ 1)

Hence by Lemma 1.3 we have (ii). When supp f ⊂ [a1, b1] we proceed as follows:

If a∗1, b
∗
1 are such that a1 < a∗1 < a2 < b2 < b∗1 < b1 and f∗ = f on [a1, b1] and

vanishes outside it then also

sup
x∈[a∗1 ,b∗1 ]

|Lns,p(f∗; x)− f∗(x)| = o(n−
r
2

s ).(2.18)

Let us first consider the case when 0 < r < 1. Let g ∈ C∞0 (R+) with supp
g ⊂ [a”, b”] and g(u) = 1 for u ∈ [a2, b2] where a1 < a∗1 < a′ < a” < b2 < b” < b′ <
b∗1 < b1. Then,

sup
x∈[a′,b′]

|Lns,p(f∗g;x)− f∗(x)g(x)|

≤ sup
x∈[a′,b′]

|g(x)Lns,p(f∗(u)− f∗(x); x)|+ sup
x∈[a′,b′]

|Lns,p(f∗(u)(g(u)− g(x)); x)|

= I1 + I2 (say).

By (2.18)

I1 = o(n−
r
2

s ),

and by a simple computation

I2 = o(n−
r
2

s ).

Hence with F = f∗g, we have

sup
x∈[a′,b′]

|Lns,p(F ; x)− F (x)| = o(n−
r
2

s )(2.19)

from which since supp F ⊂ [a′, b′] it follows that F ∈ Liz(β, p + 1; a1, b1) as before
and f ∈ Liz(β, p + 1; a2, b2). Thus by Lamma 1.3 (ii) holds.

Next, we assume that assertion (i) ⇒ (ii) holds when 0 < r < q − δ, where
0 < δ < 1

2 is arbitrary and q takes one of the values of 1, 2, ...., 2p+1. Since for q = 1
the result has already been proved. If we can establish it for q− δ ≤ r < q + 1− 2δ
the proof will be over. Hence let q − δ ≤ r < q + 1 − 2δ. Then by the assumption
that f (p−1) exists and belongs to Lip∗(1− δ; a∗2, b

∗
2), where [a∗2, b

∗
2] ⊂ (a1, b1) is any

fixed interval. Let a∗2 < a∗1 < a∗∗1 < a′ < a” < a2 < b2 < b” < b′ < b∗∗1 < b∗1 < b∗2.
We choose g as before and write F = f∗g after defining f∗ = f on [a∗2, b

∗
2] and zero

otherwise.
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Then,

sup
x∈[a′,b′]

|Lns,p(F ;x)− F (x)| ≤ sup
x∈[a′,b′]

|g(x)Lns,p(f∗(u)− f∗(x); x)|+

+ sup
x∈[a′,b′]

|Lns,p(f∗(u)− f∗(x)(g(u)− g(x)); x)|+ sup
x∈[a′,b′]

|f∗(x)Lns,p(g(u)− g(x); x)|

= J1 + J2 + J3, say.

Obviously,

J1 = o(n−
r
2

s ), J2 = o(n−
r
2

s ) and J3 = o(n−
r
2

s ).

Combining these estimates we have

sup
x∈[a′,b′]

|Lns,p(F ; x)− F (x)| = o(n−
r
2

s ).

Again. since supp F ⊂ [a”, b”], as before F ∈ Liz(β, p+1; a∗1, b
∗
1) and (ii) follows.

This completes the proof of the theorem.

3. Saturation theorems (ordinary approximation)

If f ∈ DΩ, the following assymptotic relation for Ln,p holds:

Ln,p(f ; x)− f(x) = n−(p+1)

2p+2∑

i=1

f (i)(x)
i!

xiγi,p+1
(−1)p

α0α1...αp
+ o(n−(p+1))(3.1)

at any x ∈ R+ where f (2p+2) exists. Moreover, if f (2p+2) exists and is continuous on
an open interval containing [a, b], (3.1) holds uniformly in x ∈ [a, b]. This asymptotic
formula indicates a saturation behaviour of the linear combinations Ln,p. A more
precise result is as follows:

Theorem 3.1. Let p ∈ N0,f ∈ DΩ. If 0 < a1 < a2 < a3 < b3 < b2 < b1 < ∞ in

the following statements, the implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒ (vi)
hold.

(i) supx∈[a1,b1] |Lns,p(f ;x)− f(x)| = o(n−(p+1)
s ), (s →∞)

(ii) f (2p+1) ∈ AC[a2, b2] and f (2p+2) ∈ L∞[a2, b2]

(iii) supx∈[a3,b3] |Ln,p(f ; x)− f(x)| = (n−(p+1)), (n →∞)

(iv) supx∈[a1,b1] |Lns,p(f ; x)− f(x)| = o(n−(p+1)
s ), (s →∞)

(v) f ∈ C2p+2[a2, b2] and
∑2p+2

i=1
f(i)(x)

i! xiγi,p+1 = 0, x ∈ [a2, b2]
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(vi) supx∈[a3,b3] |Ln,p(f ;x)− f(x)| = (n−(p+1)), (n →∞).

Proof. Assume (i). Let L∗n denote the operator as defined before . It is clear
from Theorem1 that f (2p+1) exists and is continuous on each closed subinterval of
[a1, b1]. Then let f∗ ∈ C0(R+) be such that f∗ = f on [a∗1, b

∗
1] where a1 < a∗1 < a2

and b1 < b∗1 < b2. Then we have

sup
x∈[a∗2 ,b∗2 ]

|Lns,p(f∗;x)− f∗(x)| = o(n−(p+1)
s ), (s →∞),

where a∗1 < a∗2 < a2 and b∗1 < b∗2 < b1. Also, we have

sup
x∈[a∗3 ,b∗3 ]

n(p+1)
s |Lns,p(L∗n(f∗;u); x)− Ln(f ;x)|

= sup
x∈[a∗2 ,b∗2 ]

n(p+1)
s |L∗n(Lns,p(f∗; u)− f∗(u); x)| = o(1)

where a∗2 < a∗3 < a2 and b2 < b∗3 < b∗2. Hence by the uniformity assertion regarding
(6) we have ∥∥∥∥∥

2p+2∑

i=1

xi

i!
γi,p+1L

∗
n(f∗;x)

∥∥∥∥∥
C[a∗3 ,b∗3 ]

≤ M,

where M is a constant. Hence for all n sufficiently large,
∥∥∥γ2p+2,p+1L

∗(2p+2)
n (f∗; x)

∥∥∥
C[a∗3 ,b∗3 ]

≤ M1

where M1 is a constant. But γ2p+2,p+1 6= 0. Hence there exists a constant M2 such
that for all n sufficiently large, there holds

∥∥∥L∗(2p+2)
n (f∗;x)

∥∥∥
C[a∗3 ,b∗3 ]

< M2.

Thus for all n sufficiently large,L∗(2p+2)
n (f∗; x) are uniformly bounded and hence

belong to L∞[a∗3, b
∗
3]. As L∞[a∗3, b

∗
3] is the dual ofL1[a∗3, b

∗
3].By weak-compactness

there is an h ∈ L∞[a∗3, b
∗
3] and subset {ni}of {n} such that L

∗(2p+2)
ni (f∗; x) converges

to h in weak topology. In particular, for any g ∈ C∞0 (R+) with supp g ⊂ (a∗3, b
∗
3)

we have
∫ b∗3

a∗3

L∗(2p+2)
ni

(f∗; x)g(x)dx →
∫ b∗3

a∗3

h(x)g(x)dx (ni →∞).

But by integration by parts,
∫ b∗3

a∗3

L∗(2p+2)
ni

(f∗; x)g(x)dx =
∫ b∗3

a∗3

L∗ni
(f∗; x)g(2p+2)(x)dx

Hence,
∫ b∗3

a∗3

h(x)g(x)dx = lim
i→∞

∫ b∗3

a∗3

L∗ni
(f ;x)g(2p+2)(x)dx =

∫ b∗3

a∗3

f∗(x)g(2p+2)(x)dx
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for every g as above. Hence D2p+2f∗(t) = h(t) is a generalized function. Thus
Df∗(2p+2)(t) = h(t) ∈ L∞[a∗3, b

∗
3], implying that f∗(2p+1) ∈ AC[a2, b2] and f∗(2p+2) ∈

L∞[a1, b1]. But f = f∗ on [a2, b2] and (ii) follows.

(ii) ⇒ (iii) is obvious.

Now, let (iv) hold. Then, proceeding as in the proof of (i) ⇒ (ii) we have for
all sufficiently large n

2p+2∑

i=1

xi

i!
γi,p+1L

∗(i)
n (f∗; x) = 0, x ∈ [a∗3, b

∗
3].

Thus, if P (D) denotes the differential operator
∑2p+2

i=1
xi

i! γi,p+1D
i and P ∗(D) its

adjoint, for any g ∈ C∞0 (R+) with supp g ⊂ [a∗3, b
∗
3] we have for all n sufficiently

large

0 =
∫ b∗3

a∗3

P (D)L∗n(f∗;x)g(x)dx =
∫ b∗3

a∗3

L∗n(f ;x)P ∗(D)g(x)dx

Taking limit as n →∞, we obtain

∫ b∗3

a∗3

f∗(x)P ∗(D)g(x)dx = 0.

Hence, D2p+2f∗ ∈ C[a∗3, b
∗
3] and P (D)f∗(x) = 0, x ∈ [a∗3, b

∗
3], and (v) follows since

f = f∗ on [a2, b2]. Thus (iv) ⇒ (v).

Lastly, (v) ⇒ (vi) follows from the uniformity assertion for (6). This completes
the proof of the theorem.

4. Inverse and saturation theorems (simultaneous approximation)

The inverse and saturation theorems for the class of continuously differentiable
functions are as follows:

Theorem 4.1. Let m ∈ N and f ∈ DΩ . If 0 < q < 2p + 2, p ∈ N0 and 0 <
a1 < a2 < a3 < b3 < b2 < b1 < ∞, then in the following statements the following
implications (i) ⇒ (ii) ⇒ (iii) hold.

(i) f (m) exists on [a1, b1] and

sup
x∈[a1,b1]

∣∣∣L(m)
ns,p(f ;x)− f (m)(x)

∣∣∣ = o(n−
q
2

s ), (s →∞),

(ii) If q 6= [q] (the greatest integer not greater than q), f ([q]+m) exists and belongs
to Lip(q − [q]; a2, b2) and
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(iii) If q = [q], f (m+q−1) exists and belongs to Lip∗(1; a2, b2), and

sup
x∈[a3,b3]

∣∣∣L(m)
n,p (f ; x)− f (m)(x)

∣∣∣ = o(n−
q
2 ), (n →∞).

Proof. Assume (i) and consider the function G∗(u) defined in (8) implies that
f (m)(x) is continuous on each open interval of [a1, b1] and moreover that

sup
x∈[a∗1 ,b∗1 ]

∣∣∣L∗(m)
ns,p (f ;x)− f (m)(x)

∣∣∣ = o(n−
q
2

s ), (s →∞).(4.1)

Next, if f∗ ∈ Cm
0 (R+) and coincides with f on [a∗2, b

∗
2] ⊂ (a∗1, b

∗
1), it follows that

sup
x∈[a∗3 ,b∗3 ]

∣∣∣L∗(m)
ns,p (f∗; x)− f∗(m)(x)

∣∣∣ = o(n−
q
2

s ), (s →∞)(4.2)

where a∗2 < a∗3 < a2 < b2 < b∗3 < b∗2. But here (4.2) is equivalent to

sup
x∈[a∗3 ,b∗3 ]

∣∣∣L∗ns,p(u
mf∗(m)(u); x)− xmf∗(m)(x)

∣∣∣ = (n−
q
2

s ), (s →∞).(4.3)

Thus, by Theorem 2.1, since f∗ = f on [a2, b2], we have (ii). Next, assume that
f∗ ∈ Cm

0 (R+) which coincides to f on [a∗2, b
∗
2] ⊂ (a∗1, b

∗
1) then (umf∗(m))([q]) ∈

Lip(q− [q]; a∗2, b
∗
2) if q 6= [q] and (umf∗(m))(q−1) ∈ Lip(1; a∗2, b

∗
2) if q = [q]. Hence by

Theorem 2.1, if a′2 < a′3 < a3 < b3 < b′3 < b′2

sup
x∈[a′3,b′3]

∣∣∣Ln,p(umf∗(m)(u); x)− xmf∗(m)(x)
∣∣∣ = o(n−

q
2 ), (n →∞).

But, this is equivalent to

sup
x∈[a′3,b′3]

∣∣∣L(m)
ns,p(f

∗(u); x)− f∗(m)(x)
∣∣∣ = o(n−

q
2 ), (n →∞).(4.4)

Again by the coincidence of f∗ and g on [a′2, b
′
2] and (4.4) we have (iii). This

completes the proof of the Theorem.
Finally, we obtain an analogue of Theorem 1.2 in simultaneous approximation,

this states

Theorem 4.2. Let m ∈ N, p ∈ N0and f ∈ DΩ. If 0 < a1 < a2 < a3 < b3 <

b2 < b1 < ∞ in the following statements the implications (i) ⇒ (ii) ⇒ (iii) and
(iv) ⇒ (v) ⇒ (vi) hold.

(i) f (m) exists on [a1, b1] and

sup
x∈[a1,b1]

∣∣∣L(m)
ns,p(f ; x)− f (m)(x)

∣∣∣ = o(n−(p+1)
s ), (s →∞)
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(ii) f (2p+m+1) ∈ AC[a2, b2] and f (2p+m+2) ∈ L∞[a2, b2],

(iii) supx∈[a3,b3]

∣∣∣L(m)
n,p (f ; x)− f (m)(x)

∣∣∣ = o(n−(p+1)), (n →∞)

(iv) f (m) exists on [a1, b1] and

sup
x∈[a1,b1]

∣∣∣L(m)
ns,p(f ;x)− f (m)(x)

∣∣∣ = o(n−(p+1)
s ), (s →∞)

(v) f ∈ C2p+m+2[a2, b2] and
∑2p+2

i=1 ( f(i)(x)xi

i! )(m)γi,p+1 = 0, x ∈ [a2, b2]

(vi) supx∈[a3,b3]

∣∣∣L(m)
n,p (f ; x)− f (m)(x)

∣∣∣ = o(n−(p+1)), (n →∞)

Proof. The proof of this theorem follows along the similar lines, with some
essential modifications as in the case of Theorems 3.1 and 4.1.
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