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FIXED POINT RESULTS IN PARTIALLY ORDERED METRIC
SPACES USING WEAK CONTRACTIVE INEQUALITIES

Ali Abkar and Binayak S. Choudhury

Abstract. In recent times control functions have been used in several problems of
metric fixed point theory. Again, after the establishing of the weak contraction princi-
ple, weak contractive inequalities have been considered in a number of works on fixed
points in metric spaces. There has been a rapid development of fixed point theory in
partially ordered metric spaces in recent times. In this paper we establish fixed point
results for mappings of partially ordered metric spaces satisfying some weak contractive
inequalities involving more than one control functions. An illustrative example is given.

1. Introduction

The Banach contraction mapping principle is widely recognized as the source of
metric fixed point theory. Its generalizations over the years have remained heavily
investigated. Some recent works of this kind are noted in [2, 6, 9, 12]. In particular,
in [1] Alber and Guerre-Delabriere introduced the concept of the weak contraction
in Hilbert spaces. Rhoades [10] had shown that the result which Alber et al. had
proved in Hilbert spaces [9] is also valid in complete metric spaces. Weak contrac-
tion principle, its generalizations and extensions and other fixed point results for
mappings satisfying weak contractive type inequalities have been considered in a
number of recent works. Some of these works are noted in [3, 4, 5, 7, 11, 13]. Khan
et al. [8] introduced the use of a control function in fixed point problems. This
function was referred to as ‘Altering distance function’ by the authors of [8]. This
function and its extensions have been used in several problems of fixed point theory.
Particularly, in [7] more than one control functions have been used. In recent times
fixed point theory has developed rapidly in partially ordered metric spaces, that is,
in metric spaces endowed with a partial ordering.

The purpose of the paper is to establish two fixed point theorems in partially
ordered complete metric spaces for mappings satisfying certain weak contractive
inequalities each of which involves more than one control functions (as in [7]). In
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section 2 we have proved a common fixed point result for two mappings. The result
has a corollary. In section 3 we have established a fixed point theorem for a single
mapping. Finally in section 4 we have given an illustrative example.
Throughout this paper (X, d) stands for a complete metric space and ′ ¹′ is a partial
order on X.
A mapping T : X → X is said to be non-decreasing if Tx ¹ Ty whenever x ¹ y. In
this paper we shall assume that X has the following property:

If a non-decreasing sequence {xn}n>0 converges to z ∈ X, thenxn ¹ z for each n > 0.
(1.1)

2. A Common Fixed Point Result

This section is devoted to common fixed point results for two self mappings T, S
defined on a partially ordered metric space (X, d). We begin by recalling the follow-
ing theorem proved by D. Doric in [5]. Then we shall extend this result to complete
partially ordered metric spaces.

Theorem 2.1. ([5]). Let (X, d) be a complete metric space and let T, S : X → X
be two self mappings such that for all x, y ∈ X

Ψ(d(Tx, Sy)) ≤ Ψ(M(x, y))− Φ(M(x, y)),(2.1)

M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy),
1
2
[d(y, Tx) + d(x, Sy)]},(2.2)

and Ψ : [0,∞) → [0,∞) is a continuous monotone non-decreasing function with
Ψ(t) = 0 if and only if t = 0, and Φ : [0,∞) → [0,∞) is a lower semi-continuous
function with Φ(t) = 0 if and only if t = 0. Then there exists a unique point u ∈ X
such that Su = Tu = u.

The following theorem is a generalization of the above result in partially ordered
metric spaces.

Theorem 2.2. Let (X, d) be a complete partially ordered metric space with a par-
tial order ′ ¹′ and having the property described in (1.1). Let T, S : X → X be two
self mappings such that for all comparable x, y ∈ X with

Ψ1(d(Tx, Sy)) ≤ Ψ2(M(x, y))− Φ(M(x, y))(2.3)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy),
1
2
[d(y, Tx) + d(x, Sy)]},(2.4)

Ψ1,Ψ2 : [0,∞) → [0,∞) are continuous monotone non-decreasing functions, and
Φ : [0,∞) → [0,∞) is a lower semi-continuous function which satisfies Ψ1(t) −
Ψ2(t) + Φ(t) > 0. If X has the property (1.1) and if there exists a point x0 ∈ X
satisfying x0 ¹ Sx0 ¹ TSx0 ¹ S(TS)x0 ¹ (TS)2x0 ¹ · · · . Then there exists a
point u ∈ X such that Su = Tu = u.
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Proof. We consider the following sequence:

x1 = Sx0, x2 = Tx1, x3 = Sx2, x4 = Tx3, · · · ,(2.5)

and in general, for all n ≥ 0, x2n+1 = Sx2n and x2n+2 = Tx2n+1.
Then, from a condition of the theorem, it follows that

x0 ¹ x1 ¹ x2 ¹ x3 ¹ · · ·xn ¹ xn+1 ¹ · · · .(2.6)

We now prove that
(i) limn→∞ d(xn, xn+1) = 0;
(ii) The sequence {xn} is Cauchy, so that xn → z for some z ∈ X;
(iii) Sz = Tz = z;
(iv) The common fixed point z is unique.
Let n = 2k + 1 be an odd number. Then, from (2.5), xn = Sxn−1, xn+1 = Txn.
We now have

M(xn, xn−1) = max{d(xn, xn−1), d(xn+1, xn),
1
2
(d(xn−1, xn+1) + d(xn, xn))}.

If d(xn, xn+1) > d(xn, xn−1), then M(xn, xn−1) = d(xn, xn+1).
Then, putting x = xn, and y = xn−1 in (2.3), in view of (2.6), we obtain

Ψ1(d(xn+1, xn)) ≤ Ψ2(d(xn+1, xn))− Φ(d(xn+1, xn))(2.7)

which is a contradiction with d(xn, xn+1) > d(xn, xn−1) ≥ 0. Therefore

d(xn, xn+1) 6 d(xn−1, xn).(2.8)

Similar argument shows that (2.8) is valid for even natural numbers. Hence the
sequence {d(xn, xn+1)} is decreasing, and the limit r = limn→∞ d(xn, xn+1) > 0
exists. If r > 0, by putting x = xn, y = xn+1 in (2.3) and taking limit as n → ∞,
it follows that Ψ1(r) 6 Ψ2(r)−Φ(r) which is a contradiction with our assumption.
Hence r = 0, that is,

lim
n→∞

d(xn, xn+1) = 0.(2.9)

In view of (2.9), to show that {xn} is a Cauchy sequence, it suffices to verify that
{x2n} is Cauchy. If not, then there is an ε > 0 for which we can find subsequences
{x2m(k)} and {x2n(k)} such that n(k) is the smallest integer corresponding to m(k),
for which n(k) > m(k) > k and

d(x2m(k), x2n(k)) > ε(2.10)

Hence, for all k > 0,
d(x2m(k), x2n(k)+2) < ε.(2.11)

Then, for all k ≥ 0,

ε ≤ d(x2m(k), x2n(k))
≤ d(x2n(k), x2n(k)−1) + d(x2n(k)−1, x2m(k)+1) + d(x2m(k)+1, x2m(k))
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and

d(x2n(k)−1, x2m(k)+1) ≤ d(x2n(k)−1, x2n(k))+d(x2n(k), x2m(k))+d(x2m(k), x2m(k)+1).

Taking k →∞ in the above inequality, and using (2.9), we have

lim
k→∞

M(x2n(k)−1, x2m(k)+1) = ε.(2.12)

Similarly, we deduce the following limits.

lim
k→∞

d(x2m(k)+1, x2n(k)) = ε.(2.13)

lim
k→∞

d(x2n(k)−1, x2m(k)) = ε.(2.14)

lim
k→∞

d(x2n(k), x2m(k)) = ε.(2.15)

Again, by virtue of (2.6), putting x = x2n(k)−1 and y = x2m(k) in (2.3), and then
letting k → ∞, using (2.9),(2.12),(2.13), (2.14) and (2.15), we obtain Ψ1(ε) 6
Ψ2(ε) − Φ(ε), which is a contradiction. Therefore, such an ε > 0 can not exist.
Hence the sequence {xn} is Cauchy. Let xn → z ∈ X. By our assumption (1.1),
xn ¹ z for each n. Then following the same steps as in the proof of step 3 of
Theorem 2.1 in [10] we conclude that

Ψ1(d(Tz, z)) 6 Ψ2(d(Tz, z))− Φ(d(Tz, z)),

which is a contradiction unless d(Tz, z) = 0 or Tz = z. We now have

Ψ1(d(Sz, z)) = Ψ1(d(Sz, Tz)) 6 Ψ2(M(z, z))−Φ(M(z, z)) = Ψ2(d(z, Sz))−Φ(d(z, Sz)),

which leads to a contradiction, unless Sz = z. Thus we have, Tz = Sz = z. This
completes the proof of the theorem.

By putting S = T in the above theorem, we have the following result.

Theorem 2.3. Let (X, d) be a complete metric space with a partial order ′ ¹′ and
having the property described in (1.1). Let T : X → X be a self mapping which is
non-decreasing and satisfies the following inequality:

Ψ1(d(Tx, Ty)) ≤ Ψ2(N(x, y))− Φ(N(x, y))(2.16)

for all comparable x, y ∈ X, where, N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2 (d(y, Tx)+

d(x, Ty))}, and Ψ1, Ψ2,Φ : [0,∞) → [0,∞) are such that Ψ1 and Ψ2 are continuous,
Φ is lower semi-continuous, and Ψ1(t) − Ψ2(t) + Φ(t) > 0 for all t > 0. If X has
the property described in (1.1) and if there exists x0 ∈ X such that x0 ¹ Tx0, then
T has a fixed point.
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3. Fixed Point of a Single Mapping

Theorem 3.1. Let (X, d) be a complete metric space with a partial order ′ ¹′ and
T : X → X be a self mapping which is non-decreasing and satisfies the following
inequality:

Ψ1(d(Tx, Ty)) ≤ Ψ2(N(x, y))− h(Q(x, y))(3.1)

for x, y ∈ X, where x and y are comparable, x 6= y,

N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1
2
(d(y, Tx) + d(x, Ty))},(3.2)

Q(x, y) = min{d(x, y), d(x, Tx), d(y, Ty),
1
2
(d(y, Tx) + d(x, Ty))},(3.3)

Ψ1,Ψ2, h : [0,∞) → [0,∞) are such that Ψ1 and Ψ2 are continuous, h :
[0,∞) → [0,∞) is monotone decreasing in (0,∞), lower semi-continuous in (0,∞)
with h(t) > 0 for all t > 0 and

Ψ1(s)−Ψ2(s) + h(s) > 0, s > 0.(3.4)

Further, for all x ∈ X, we assume

d(x, T 2x) ≥ 2d(Tx, T 2x)(3.5)

If X has the property described in (1.1) and if there exists x0 ∈ X such that x0 ¹
Tx0, then T has a fixed point.

Proof. Starting with x0 ∈ X, we construct the sequence {xn} as

xn = Txn−1, n ≥ 1(3.6)

Then
x0 ¹ x1 ¹ x2 ¹ x3 ¹ .... ¹ xn....(3.7)

Also when xn = xn+1,T has a fixed point. So we assume

xn 6= xn+1 for all n ≥ 0(3.8)

By virtue of (3.7) and (3.8), putting x = xn and y = xn+1 in (3.1), (3.2) and (3.3),
for all n ≥ 0, we obtain

Ψ1(d(xn+1, xn+2)) ≤ Ψ2(N(xn, xn+1))− h(Q(xn, xn+1))(3.9)

where

N(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2),
1
2
(d(xn+1, xn+1) + d(xn, xn+2))}(3.10)
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and

Q(xn, xn+1) = min{d(xn, xn+1), d(xn+1, xn+2),
1
2
(d(xn+1, xn+1) + d(xn, xn+2))}.(3.11)

Let, if possible, for some n, d(xn, xn+1) < d(xn+1, xn+2).
Then, by the triangle inequality, 0 < d(xn+1, xn+2)− d(xn, xn+1) ≤ d(xn, xn+2).
By the above two inequalities, from (3.10) and (3.11), for all n ≥ 0, we have

M(xn, xn+1) = d(xn+1, xn+2)(3.12)

and
0 < Q(xn, xn+1) ≤ d(xn, xn+1) < d(xn+1, xn+2).(3.13)

Then, from (3.9), (3.12) and (3.13) and by the monotone decreasing property of the
h-function, we have

Ψ1(d(xn+1, xn+2)) ≤ Ψ2(d(xn+1, xn+2))− h(d(xn+1, xn+2)).

The above inequality implies that d(xn+1, xn+2) = 0 which contradicts (3.8).
Hence

d(xn+1, xn+2) ≤ d(xn, xn+1).(3.14)

In view of (3.14), for all n ≥ 0, we obtain

M(xn, xn+1) = d(xn, xn+1)(3.15)

and in view of (3.5) and (3.14), we have

0 < Q(xn, xn+1) =
1
2
(d(xn, xn+2))

≤ 1
2
(d(xn, xn+1) + d(xn+1, xn+2)) ≤ d(xn, xn+1)(3.16)

Using the above relations in (3.9), and by the monotone decreasing property of h,
for all n ≥ 0, we have

Ψ1(d(xn+1, xn+2)) < Ψ2(d(xn, xn+1))− h(d(xn, xn+1)).(3.17)

Again, (3.14) implies that the sequence {d(xn, xn+1)} is a monotone decreasing
sequence of non-negative real numbers. Hence there exists r ≥ 0 such that

limn→∞d(xn, xn+1) = r.

Let, if possible, r 6= 0. Taking n → ∞ in (3.17) and using the above relation, by
continuity of Ψ1 and Ψ2 and by lower semi-continuity of the h, we have Ψ1(r) ≤
Ψ2(r)− h(r) which contradicts (3.4). Hence,

limn→∞d(xn, xn+1) = 0.(3.18)
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Next we prove that {xn} is a Cauchy sequence. If otherwise, we can have some
ε > 0 and corresponding subsequences {xm(k)} and {xn(k)} of {xn} such that for
every natural number k, we have n(k) > m(k) > k ,

d(xm(k), xn(k)) ≥ ε(3.19)

and
d(xm(k), xn(k)−1) < ε.(3.20)

Then, for each k > 0, by (3.19) and (3.20), we have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) < ε + d(xn(k)−1, xn(k)).

Taking k →∞, by (3.18), we have

limk→∞d(xm(k), xn(k)) = ε,(3.21)

Similarly we have the following limits.

limk→∞d(xm(k)−1, xn(k)−1) = ε,(3.22)

limk→∞d(xm(k)−1, xn(k)) = ε,(3.23)

and
limk→∞d(xn(k)−1, xm(k)) = ε.(3.24)

From (3.19), for all k ≥ 1, d(Txm(k)−1, Txn(k)−1) 6= 0, which implies that xm(k)−1 6=
xn(k)−1.
Also, by (3.7), xm(k)−1 and xn(k)−1 are comparable.
Hence, putting x = xm(k)−1 and y = xn(k)−1 in (3.1), (3.2) and (3.3), we get

Ψ1(d(xm(k), xn(k))) ≤ Ψ2(N(xm(k)−1, xn(k)−1))− h(Q(xm(k)−1, xn(k)−1))(3.25)

N(xm(k)−1, xn(k)−1) = max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k)),
1
2
(d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k)))},(3.26)

and

Q(xm(k)−1, xn(k)−1) = min{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k))),
1
2
(d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k)))}.(3.27)

Taking k → ∞ in (3.26) and (3.27) and using (3.18), (3.22), (3.23) and (3.24), we
obtain

limk→∞N(xm(k)−1, xn(k)−1) = ε(3.28)

and
limk→∞Q(xm(k)−1, xn(k)−1) = 0.(3.29)
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Then, by the properties of h,

lim infk→∞h(Q(xm(k)−1, xn(k)−1)) = c > 0.(3.30)

Further, taking liminf as k →∞ in (3.25), using (3.21), (3.28) and (3.30), and the
continuities of Ψ1 and Ψ2 we obtain

Ψ1(ε) ≤ Ψ2(ε)− c.(3.31)

Next we note that the constructions of (3.19) and (3.20) are valid whenever ε is
replaced by a smaller value. This is because of the fact that for any p ∈ X,
{x : d(p, x) < ε

′} ⊆ {x : d(p, x) < ε} whenever ε
′
< ε. Hence (3.30) is also valid if ε

is replaced by a smaller value.
Then taking ε → 0 in (3.30) we obtain that c ≤ 0, which is a contradiction. This
proves that {xn} is a Cauchy sequence and therefore is convergent in the complete
metric space X. Let xn → z as n → ∞ Again, by (3.7), {xn} is a monotone
increasing sequence. Hence by the property (1.1) we have xn ¹ z for all n ≥ 0. Let,
if possible, d(z, Tz) 6= 0. By (3.8), there exists a subsequences {xn(j)} of {xn} such
that z 6= xn(j) for all j ≥ 1. Substituting x = xn(j) and y = z in (3.1), (3.2) and
(3.3), we obtain

Ψ1(d(xn(j)+1, T z)) ≤ Ψ2(M(xn(j), z))− h(Q(xn(j), z))(3.32)

where

M(xn(j), z) = max{d(xn(j), z), d(xn(j), xn(j)+1), d(z, Tz),
1
2
(d(xn(j), T z)+d(z, xn(j)+1)},

and

Q(xn(j), z) = min{d(xn(j), z), d(xn(j), xn(j)+1), d(z, Tz),
1
2
(d(xn(j), T z)+d(z, xn(j)+1)}.

Taking j →∞ in the above two expressions we obtain

limj→∞M(xn(j), z) = d(z, Tz)(3.33)

and
limj→∞Q(xn(j), z) =

1
2
d(z, Tz).(3.34)

Letting j → ∞ in (3.32), using (3.33), (3.34), the continuities of Ψ1 and Ψ2 and
the lower semi continuity of h, we obtain

Ψ1(d(z, Tz)) ≤ Ψ2(d(z, Tz))− h(
1
2
d(z, Tz)).

Since h is decreasing, the above inequality implies that

Ψ1(d(z, Tz)) ≤ Ψ2(d(z, Tz))− h(d(z, Tz))

which, by (3.4), contradicts an assumption that d(z, Tz) 6= 0. Hence z = Tz, that
is, z is a fixed point of T. This completes the proof of the theorem.
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4. An Example

Example 4.1. Let X = {0, 1, 2, 3, 4, .....} and

d(x, y) =

{
x + y, if x 6= y;
0, if x = y.

Then X is a complete metric space. Let a partial order be defined as x ¹ y whenever
y ≥ x. Let T : X → X be defined as

Tx =

{
x− 1, if x 6= 0;
0, if x = 0.

Let Ψ1, Ψ2, Φ : [0,∞) → [0,∞) be defined as Ψ1(t)= t for all t ≥ 0,

Ψ2(t) =

{
2t, if 0 ≤ t ≤ 1;
t + 1

t
, if t > 1.

and

Φ(t) =

{
1, if t > 0;
0, if t = 0.

We next verify that the function T satisfies the inequality (2.15). Without loss of gener-
ality we assume that x > y. Then we have the following cases:

Case-I. x ∈ {0, 1}. Then on the left hand side of (2.15) we have zero, and (2.15) is
automatically satisfied in this case.

Case-II. x = 2, y = 1.
Then Ψ1(d(Tx, Ty)) = Ψ1(d(1, 0)) = 1.
N(x,y)=3. Therefore, Ψ2(N(x, y)) − Φ(N(x, y)) = 3 + 1

3
− 1 = 7

3
. Thus (2.1) is satisfied

in this case.

Case-III. x = 2, y = 0. Ψ1(d(Tx, Ty)) = Ψ1(d(1, 0)) = 1. N(x, y) = 3
2
. Therefore,

Ψ2(N(x, y))− Φ(N(x, y)) = 3
2

+ 2
3
− 1 = 7

6
. Thus (2.15) is satisfied in this case.

Case-IV. x ≥ 3,y > 0. N(x, y) = 2x− 1 ≥ x + y.
Then

Ψ2(N(x, y))− Φ(N(x, y)) = 2x− 1 +
1

2x− 1
− 1( since x > y)

≥ x + y − 2 = Ψ1(d(Tx, Ty))

Thus (2.15) is satisfied in this case.

Case-V. x ≥ 3,y > 0.
Then

Ψ2(N(x, y))− Φ(N(x, y)) = 2x− 1 +
1

2x− 1
− 1 ≥ (x− 1) = Ψ1(d(Tx, Ty)).

Thus (2.15) is satisfied in this case also. Considering all the above cases we see that (2.15)
is satisfied for all x, y ∈ X. By an application of corollary 2.2, T has a unique fixed point.
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Here ’0’ is the unique fixed point of T. If we take h(t) = Φ(t) in the above example, then
we see that the inequality (3.1) is satisfied in this case. The differences with the above
cases arise only when y=0. It is seen that in these cases also satisfy (3.1). Further, T
satisfies (3.5). Also, h satisfies all the requirements of Theorem 3.1. Then Theorem 3.1 is
applicable to this example.

Remark 4.1. If we assume Q(x, y) = min{d(x, y), d(x, Tx), d(y, Ty)} then also the result
of Theorem 3.1 is valid. Then (3.5) is no longer a required condition.
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