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SOME REMARKS OF MEDIAL GROUPOIDS *

Petar V. Protié

Abstract. Medial groupoids have been considered in quite a number of papers, especially
in [3]. In this paper we describe the natural partial order on a medial band, define some
subclasses of the class of medial groupoids, and describe medial band decompositions of
medial groupoids.

1. Introduction

A groupoid (G, -) is a medial (or entropic) groupoid if the following holds:

(Va,b,c,d € G) (ab)(cd) = (ac)(bd).

A groupoid G is a band if for all a € G holds a*> = a. Hence, a groupoid G is a
medial band if it is a medial groupoid and a band. Let Y be a band. Then a groupoid
Gis a band Y of groupoids G,, a0 € Y, if

G=|JGs  GaNGs=0, fora#p, and GuGsC Gap.
agY
A congruence p on G is called a band congruence if G/p is a band.

An associative band G is rectangular if for alla, b € G we have a = aba. The well-
known result of the semigroup theory says that an associative band is a semilattice
of rectangular bands [2].

In [4] the authors introduced the notion of an antirectangular Abel-Grassman’s
band. Here we generalize this notion.

Definition 1.1. A band G is antirectangular if for every a,b € G holds a = (ba)b.
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Remark 1.1. If G is an antirectangular medial band, a,b € G, then

a = (ba)b = (ba)(bb) = (bb)(ab) = b(ab).

Example 1.1. Let G be a groupoid given by the following table:

1234
111423
213241
314132
412314.

Then G is an antirectangular medial band. Also, G is not associative since, for example,
1=(12)3 # 1(23) = 3.

Remark 1.2. If G is an associative antirectangular band, and 4,b € G such that a = bab and
b = aba, then
a = bab = abaab = abab = bb = b.

Hence, a nontrivial associative antirectangular band does not exist.

1. About medial bands

In this section we describe a natural partial order and give some decompositions
of a medial band.

Example 1.2. Letan AG-groupoid G be given by the following table:
123456

122564
222564
223564
666425
444652
555246.

O\U'I»PQJNP—‘|

Then G is a medial band.

Theorem 1.1. Let G be a medial band, then the relation < defined on G by
e<f © e=ef=fe

is a natural partial order on S and it is compatible.

Proof. Clearly, the relation < is reflexive and symmetric.
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Ife<f, f<g thene=ef =fe, f=fg=gf. Now,
eg = (ef)g = (ef)(gg) = (eg)(fg) = (eq)f = (eg)(ff) = (ef)(gf) = ef =e¢,
ge = g(fe) = (g9)(fe) = (9f)(ge) = f(ge) = (f1)(ge) = (fg)(fe) = fe =¢,
what is equivalent to e < g. Hence, < is transitive, and so it is a partial order on G.
Lete < f and g € G. Then from e = ef = fe it follows that

eq = (ef)(gg) = (eq)(f7),
eg = (fe)(gg) = (fg)(eq)
and so eg < fg. Similarly, ge < gf. Hence, < is compatible. [

Theorem 1.2. Let G be a medial band. Then G is a medial band of antirectangular (in the
general case nontrivial) medial bands.

Proof. On a medial band G we define the relation p by
(Va,beG) apbe a=(ba)b, b= (ab)a.

Clearly, the relation p is reflexive and symmetric. Letapb, b pc, then by defini-
tion of p and using Remark 1.1 we have

a = (ba)b = (ba)((cb)c) = (b(cb))(ac) = c(ac) = (ca)c,
¢ = (bc)b = (be)((ab)a) = (b(ab))(ca) = a(ca) = (ac)a,
soapcand p is a transitive relation. Hence, p is an equivalence relation.
Letapb, cpd, then
ac = ((ba)b)((dc)d) = ((ba)(dc))(bd) = ((bd)(ac))(bd,
bd = ((ab)a)((cd)c) = ((ab)(cd))(ac) = ((ac)(bd))(ac),

whence p is a congruence relation. Since G is a medial band, we have that p is a
medial band congruence relation.

By definition of p it follows that p-classes are antirectangular bands. [

In Example 1.1 we have p = GXG, and in Example 1.2 we have G = G,UGgUG,,
where G, = {1}, Gg = {3}, G, = {2,4,5,6}. Also, if G is an associative band then, by
Remark 1.2, the congruence p is an identity relation.

2. Some band decompositions of medial groupoids

If a medial groupoid G has an idempotent, then by E(G) we denote the set of all
idempotents of G.

Let G be a medial groupoid, then we define the relation p on G with following:

(Va,beG) aub & =0
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Theorem 1.3. The relation u defined on a medial groupoid G is a congruence relation on
G. If G has idempotents then i is an idempotent-separating congruence on G.

Proof. Obviously, u is an equivalence relation. If a,b,¢c,d € Gand a u b, c 1 d, then
(ac)* = ac-ac = a® - ¢ = V*d?* = (bd)?,

and so ac u bd. Hence, 1 is a congruence relation.
If E(G) # Jande, f € E(G), then

euf © e=ef=f=f,
and so p is an idempotent separating congruence on G. [

Example 1.3. Let G be a groupoid given by the following table
abcde fgh

abghcdef
bahgdc fe
e fcdghalbd
fedchghba
ghabe fcd
hebafedc
cde fabgh
dc febahy.

Q0 (S uEERSY

=9 —

We can easily verify that G is a medial groupoid, but G is not a semigroup, for example
(cb)h = c and c(bh) = g. Also, G is a quasigroup clearly. Notice that E(G) = {a, c, ¢, g} and for
all x € G holds x? € E(G).

Example 1.4. Let (G, ) be acommutative inverse semigroup and a,b € G arbitrary elements.
We define the operation * on Gby a *b = ba™'. Then

(a*b)=(c*d) = (ba™ ") = (dc™") =dc™ Y (ba™ )" =dcab™,
(axc)x(*d) = (ca ') *(db™) =db (ca™)™" =dbac™".

By the above and commutativity we conclude that (G, *) is a medial groupoid.
Now, fora € Gwe havea*a = aa~' € E(G). Hence, for each a € G holds a*> = a*a € E(G).
Also

(a*a)*a=(aa")*a=a(aa™")™" = aaa™’

-1

=a,

ax(@+a)y=ax@ ) =ara' =a'.

By the above, (G, *) is not a semigroup.

Theorem 1.4. Let G be a medial groupoid such that a* € E(G), for every a € G. Then p
is the maximal idempotent-separating congruence on S.
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Proof. By the above theorem, the relation 1 is an idempotent-separating congruence
on G. Let p be an arbitrary idempotent-separating congruence on G and leta, b € G
such that a p b. By compatibility of p we have a? p b%. Since p is idempotent-separa-
ting and a2, b? € E(G), we conclude that a®> = b?, and therefore, a ub. Hence, p C p
and so u is the maximal idempotent-separating congruence on G. [

Theorem 1.5. If G is a medial groupoid such that a> € E(G), for every a € G, then G is
a medial band Y of groupoids S., o € Y, and for each x € S, holds x? = e, where e, is the
unique idempotent of S,,.

Proof. By the above theorem we have that the relation u is a maximal idempotent-
separating congruence on G. Ifa € G, then a> = e € E(G) and (a?)* =a*-a*> =ee = ¢
and soa? wa,and hence, u is aband congruence on G. Therefore, G = |J ey Go where
Gy are u-classes of elements of G, and Y is a medial band. Classes G,, are unipotent
since 1 is a idempotent separating congruence. If a € G, and e, is an idempotent
in Gy, thenape,, soa? =e2 =¢,. O

Lemma 1.1. Let G be a medial groupoid. Then the relation p defined on G by
apb © ab="ba
is reflexive, symmetric and compatible.

Proof. The relation p is reflexive and symmetric clearly. Let apb and cpd, then
(ac)(be) = (ab)(cc) = (ba)(cc) = (be)(ac),
(ca)(cb) = (cc)(ab) = (cc)(ba) = (cb)(ca).

Hence, acpbcand capch. O

Definition 1.2. A medial groupoid G is transitive commutative if for a, b, c € G from
ab = ba and bc = cb it follows that ac = ca.

The grupoids which are given in Examples 1.1 and 1.2 are transitive commuta-
tive medial bands.

Example 1.5. Let (G, -) be an Abelian group with identity e and a,b € G arbitrary elements.
We define the operation * on G with a * b = ba™!. Then, by Example 1.4, (G, +) is a medial
groupoid. Let fora,b,c € Gholdsa*b=b+a,bxc=c+bthenba™ =ab™',cb™! = bc™! and so

asc=cat=ceat =chbat = (bcH) Hab )

= (b ) YWba Yt =bctab ™ =abb et =act = cxa.

Hence, (G, #) is a transitive commutative medial groupoid.

Theorem 1.6. Let G be a transitive commutative medial groupoid. Then G is a disjoint
union of commutative semigroups.
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Proof. Let p be the relation defined in the above lemma. If apb,bpc, then ab = ba
and bc = cb, and since G is a transitive commutative semigroup we have ac = ca,
and so a p c. By the above lemma it follows that p is a congruence on G. Hence, G is
the union of p-classes which are a commutative semigroups. [J

2

A groupoid G is locally associative if for every a € G holds a - a* = a® - a.

Remark 1.3. If G is a transitive commutative locally associative medial groupoid, then for
every a € G, by the above theorem, we have that 2 p 4> and so p is a band congruence. Hence,
a locally associative medial groupoid G is a band of commutative semigroups.

Let G be a groupoid given in Example 1.4. It is easy to verify that in G holds
a=a’-a=a-a*foreverya € G. Now, G = UueyGa, Y = E(G) = {a,c,e,g} and
Gq, =1{a, b}, Gc = {c,d}, Ge = {e, f}, G, = {g, h} are commutative semigroups.

3. Medial 3-bands

In the paper [5] the authors defined Abel-Grassmann’s 3-bands. Here we generalize
this notion.

Definition 1.3. Let G be a groupoid. An element a € G is left 3-potent if a> -a = a,
right 3-potent if a - a> = a, and 3-potent if it is both left and right 3-potent.

For a groupoid G by T(G) we denote the set of all 3-potents of G.
Lemma 1.2. If G is a medial groupoid and T(G) # &, then T(G) is a subgroupoid of G.
Proof. Leta,b € T(G). Then
(ab)® = (ab - ab)ab = (a® - V?)ab = (a® - a)(b* - b) = a® - b° = ab,
andsoab € T(G). O

Definition 1.4. A groupoid G is a 3-band (left 3-band, right 3-band) if every ele-
ment in G is 3-potent (left 3-potent, right 3-potent).

The groupoid (G, *) given in Example 3 is a left 3-band, and the groupoids given
in Examples 1 and 2 are 3-bands.

If a medial groupoid G is a 3-band, then we call it a medial 3-band.

Lemma 1.3. Let G be a medial groupoid and T(G) # &. Then T(G) is a 3-band and the
set B={be G|(Ja e T(G) b = a?} is a subgroupoid of G.

Proof. By above lemma, T(G) is a 3-band .
For x,y € B there exist a,b € T(G) such that x = a%, y = b?, so xy = a* - b* = (ab)*.
Since ab € T(G), we have that xy € B. [
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Definition 1.5. A groupoid G is an antirectangular groupoid if for all a,b € G holds
a = (ba)b = b(ab)

Theorem 1.7. Let G be a medial 3-band. Then G is a medial band of antirectangular
3-bands.

Proof. Let G be a medial 3-band. On G we define a relation 1 by
anb & a=(ba)b=>bab), b= (ab)a = a(ba).

We will prove that 1) is a band congruence on G.
Clearly, n is reflexive and symmetric. If a,b, ¢ € G such thatanb and bnc, then

a = (ba)b = b(ab), b = (ab)a = a(ba),
b = (ca)c = c(ac), c = (bc)b = b(cbh),

SO

a = b(ab) = (c(be))(ab) = (ca)((be)b) = (ca)c,
a = (ba)b = (ba)((cb)c) = (b(cb))(ac) = c(ac),
¢ = b(cb) = (a(ba))(cb) = (ac)((ba)b) = (ac)a,
¢ = (bc)b = (be)((ab)a) = (b(ab))(ca) = a(ca),

and hence, anc. Thus, n is a transitive relation, i.e., it is an equivalence relation.
Now, Ifa,b,c,d € G such thatan b and cnd, then

a = (ba)b = b(ab), b = (ab)a = a(ba),
¢ = (dc)d = d(cd),d = (cd)c = c(dc),

whence

ac = ((ba)b)((dc)d) = ((ba)(dc))(bd) = ((bd)(ac))(bd),
ac = (b(ab))(d(cd)) = (bd)((ab)(cd)) = (bd)((ac)(bd)),
bd = ((ab)a)((cd)c) = ((ab)(cd))(ac) = ((ac)(bd))(ac),
bd = (a(ba))(c(dc)) = (ac)((ba)(dc)) = (ac)((bd)(ac)),

and therefore, ac nbd. Hence, 17 is a congruence relation.
Since G is a 3-band we have

2 2

a= @ a)a*=a*a-a®),a* = (a-a*)a =a(@@® - a),

whence a14* and so 7 is a band congruence on G.
Hence, G is a band of antirectangular 3-bands. [

According to Definition 1.5, a semigroup G is antirectangular if for alla,b € G
holds a = bab, b = aba.
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Theorem 1.8. Let G be a 3-potent medial semigroup. Then G is a medial band of unipotent
antirectangular 3-bands.

Proof. Define a relation 1 on G by
anb & a=bab, b=aba.
The 7 is reflexive and symmetric. Leta, b, c € G such thatanband b, ie,,
a=bab, b=aba, b = cbc, c = bch.

Then
a = bab = bacbc = bcbac = cac, ¢ = beb = beaba = babea = aca,
so anc. Hence, i is a transitive relation, so it is an equivalence relation.
Leta,b,c,d € Gsuchthatanb, cnd. Then
ac = babdcd = bdacbd, bd = abacdc = acbdac,
whence acn bd, so 1 is a congruence relation.
Moreover, for an arbitrary a € G by

a= azaaz, €l2 = azaaz

it follows that ana?, so 1 is a band congruence.

Leta,b € G. Then a?,b? € E(G), and if anb, then a®nb, i.e., a*> = ba*b, b = a*ba?,
SO
a® = ba*b = ba*a*ba® = ba*ba® = bb = V.

Hence, G is a band of unipotent antirectangular 3-bands. [

Example 1.6. Leta groupoid G be given by the following table.

1234
112112
211221
314334
413443.

Then G is a medial 3-potent semigroup. Since 1 = 212,2 = 121, 3 = 434, 4 = 343, we have that
112,3n4. Hence (1,2} and {3, 4} are unipotent antirectangular 3-bands.
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