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SOME REMARKS OF MEDIAL GROUPOIDS ∗

Petar V. Protić

Abstract. Medial groupoids have been considered in quite a number of papers, especially
in [3]. In this paper we describe the natural partial order on a medial band, define some
subclasses of the class of medial groupoids, and describe medial band decompositions of
medial groupoids.

1. Introduction

A groupoid (G, ·) is a medial (or entropic) groupoid if the following holds:

(∀a, b, c, d ∈ G) (ab)(cd) = (ac)(bd).

A groupoid G is a band if for all a ∈ G holds a2 = a. Hence, a groupoid G is a
medial band if it is a medial groupoid and a band. Let Y be a band. Then a groupoid
G is a band Y of groupoids Gα, α ∈ Y, if

G =
⋃

α∈Y

Gα, Gα ∩ Gβ = Ø, for α , β, and GαGβ ⊆ Gαβ.

A congruence ρ on G is called a band congruence if G/ρ is a band.

An associative band G is rectangular if for all a, b ∈ G we have a = aba. The well-
known result of the semigroup theory says that an associative band is a semilattice
of rectangular bands [2].

In [4] the authors introduced the notion of an antirectangular Abel-Grassman’s
band. Here we generalize this notion.

Definition 1.1. A band G is antirectangular if for every a, b ∈ G holds a = (ba)b.
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Remark 1.1. If G is an antirectangular medial band, a, b ∈ G, then

a = (ba)b = (ba)(bb) = (bb)(ab) = b(ab).

Example 1.1. Let G be a groupoid given by the following table:

1 2 3 4

1 1 4 2 3

2 3 2 4 1

3 4 1 3 2

4 2 3 1 4 .

Then G is an antirectangular medial band. Also, G is not associative since, for example,
1 = (12)3 , 1(23) = 3.

Remark 1.2. If G is an associative antirectangular band, and a, b ∈ G such that a = bab and
b = aba, then

a = bab = abaab = abab = bb = b.

Hence, a nontrivial associative antirectangular band does not exist.

1. About medial bands

In this section we describe a natural partial order and give some decompositions
of a medial band.

Example 1.2. Let an AG-groupoid G be given by the following table:

1 2 3 4 5 6

1 1 2 2 5 6 4

2 2 2 2 5 6 4

3 2 2 3 5 6 4

4 6 6 6 4 2 5

5 4 4 4 6 5 2

6 5 5 5 2 4 6 .

Then G is a medial band.

Theorem 1.1. Let G be a medial band, then the relation 6 defined on G by

e 6 f ⇔ e = e f = f e

is a natural partial order on S and it is compatible.

Proof. Clearly, the relation 6 is reflexive and symmetric.



Some remarks of medial groupoids 67

If e 6 f , f 6 1, then e = e f = f e, f = f1 = 1 f . Now,

e1 = (e f )1 = (e f )(11) = (e1)( f1) = (e1) f = (e1)( f f ) = (e f )(1 f ) = e f = e,

1e = 1( f e) = (11)( f e) = (1 f )(1e) = f (1e) = ( f f )(1e) = ( f1)( f e) = f e = e,

what is equivalent to e 6 1. Hence, 6 is transitive, and so it is a partial order on G.

Let e 6 f and 1 ∈ G. Then from e = e f = f e it follows that

e1 = (e f )(11) = (e1)( f1),

e1 = ( f e)(11) = ( f1)(e1)

and so e1 6 f1. Similarly, 1e 6 1 f . Hence, 6 is compatible.

Theorem 1.2. Let G be a medial band. Then G is a medial band of antirectangular (in the
general case nontrivial) medial bands.

Proof. On a medial band G we define the relation ρ by

(∀a, b ∈ G) a ρ b⇐⇒ a = (ba)b, b = (ab)a.

Clearly, the relation ρ is reflexive and symmetric. Let a ρ b, bρ c, then by defini-
tion of ρ and using Remark 1.1 we have

a = (ba)b = (ba)((cb)c) = (b(cb))(ac) = c(ac) = (ca)c,

c = (bc)b = (bc)((ab)a) = (b(ab))(ca) = a(ca) = (ac)a,

so a ρ c and ρ is a transitive relation. Hence, ρ is an equivalence relation.

Let a ρ b, c ρ d, then

ac = ((ba)b)((dc)d) = ((ba)(dc))(bd) = ((bd)(ac))(bd,

bd = ((ab)a)((cd)c) = ((ab)(cd))(ac) = ((ac)(bd))(ac),

whence ρ is a congruence relation. Since G is a medial band, we have that ρ is a
medial band congruence relation.

By definition of ρ it follows that ρ-classes are antirectangular bands.

In Example 1.1 we have ρ = G×G, and in Example 1.2 we have G = Gα∪Gβ∪Gγ,
where Gα = {1}, Gβ = {3}, Gγ = {2, 4, 5, 6}. Also, if G is an associative band then, by
Remark 1.2, the congruence ρ is an identity relation.

2. Some band decompositions of medial groupoids

If a medial groupoid G has an idempotent, then by E(G) we denote the set of all
idempotents of G.

Let G be a medial groupoid, then we define the relation µ on G with following:

(∀a, b ∈ G) aµ b ⇔ a2
= b2
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Theorem 1.3. The relation µ defined on a medial groupoid G is a congruence relation on
G. If G has idempotents then µ is an idempotent-separating congruence on G.

Proof. Obviously, µ is an equivalence relation. If a, b, c, d ∈ G and aµ b, cµ d, then

(ac)2
= ac · ac = a2 · c2

= b2d2
= (bd)2,

and so acµ bd. Hence, µ is a congruence relation.

If E(G) , Ø and e, f ∈ E(G), then

eµ f ⇔ e = e2
= f 2

= f ,

and so µ is an idempotent separating congruence on G.

Example 1.3. Let G be a groupoid given by the following table

a b c d e f 1 h

a a b 1 h c d e f

b b a h 1 d c f e

c e f c d 1 h a b

d f e d c h 1 b a

e 1 h a b e f c d

f h e b a f e d c

1 c d e f a b 1 h

h d c f e b a h 1 .

We can easily verify that G is a medial groupoid, but G is not a semigroup, for example
(cb)h = c and c(bh) = 1. Also, G is a quasigroup clearly. Notice that E(G) = {a, c, e, 1} and for
all x ∈ G holds x2 ∈ E(G).

Example 1.4. Let (G, ·) be a commutative inverse semigroup and a, b ∈ G arbitrary elements.
We define the operation ∗ on G by a ∗ b = ba−1. Then

(a ∗ b) ∗ (c ∗ d) = (ba−1) ∗ (dc−1) = dc−1(ba−1)−1 = dc−1ab−1,

(a ∗ c) ∗ (b ∗ d) = (ca−1) ∗ (db−1) = db−1(ca−1)−1 = db−1ac−1.

By the above and commutativity we conclude that (G, ∗) is a medial groupoid.

Now, for a ∈ G we have a ∗ a = aa−1 ∈ E(G). Hence, for each a ∈ G holds a2 = a ∗ a ∈ E(G).
Also

(a ∗ a) ∗ a = (aa−1) ∗ a = a(aa−1)−1 = aaa−1 = a,

a ∗ (a ∗ a) = a ∗ (aa−1) = aa−1a−1 = a−1.

By the above, (G, ∗) is not a semigroup.

Theorem 1.4. Let G be a medial groupoid such that a2 ∈ E(G), for every a ∈ G. Then µ
is the maximal idempotent-separating congruence on S.
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Proof. By the above theorem, the relationµ is an idempotent-separating congruence
on G. Let ρ be an arbitrary idempotent-separating congruence on G and let a, b ∈ G
such that a ρ b. By compatibility of ρwe have a2 ρ b2. Since ρ is idempotent-separa-
ting and a2, b2 ∈ E(G), we conclude that a2 = b2, and therefore, aµ b. Hence, ρ ⊆ µ
and so µ is the maximal idempotent-separating congruence on G.

Theorem 1.5. If G is a medial groupoid such that a2 ∈ E(G), for every a ∈ G, then G is
a medial band Y of groupoids Sα, α ∈ Y, and for each x ∈ Sα holds x2 = eα where eα is the
unique idempotent of Sα.

Proof. By the above theorem we have that the relation µ is a maximal idempotent-
separating congruence on G. If a ∈ G, then a2 = e ∈ E(G) and (a2)2 = a2 · a2 = ee = e
and so a2 µ a, and hence,µ is a band congruence on G. Therefore, G =

⋃
α∈Y Gαwhere

Gα are µ-classes of elements of G, and Y is a medial band. Classes Gα are unipotent
since µ is a idempotent separating congruence. If a ∈ Gα and eα is an idempotent
in Gα, then aµ eα, so a2 = e2

α = eα.

Lemma 1.1. Let G be a medial groupoid. Then the relation ρ defined on G by

a ρ b ⇔ ab = ba

is reflexive, symmetric and compatible.

Proof. The relation ρ is reflexive and symmetric clearly. Let aρb and cρd, then

(ac)(bc) = (ab)(cc) = (ba)(cc) = (bc)(ac),

(ca)(cb) = (cc)(ab) = (cc)(ba) = (cb)(ca).

Hence, ac ρ bc and ca ρ cb.

Definition 1.2. A medial groupoid G is transitive commutative if for a, b, c ∈ G from
ab = ba and bc = cb it follows that ac = ca.

The grupoids which are given in Examples 1.1 and 1.2 are transitive commuta-
tive medial bands.

Example 1.5. Let (G, ·) be an Abelian group with identity e and a, b ∈ G arbitrary elements.
We define the operation ∗ on G with a ∗ b = ba−1. Then, by Example 1.4, (G, ∗) is a medial
groupoid. Let for a, b, c ∈ G holds a ∗ b = b ∗ a, b ∗ c = c ∗ b then ba−1 = ab−1, cb−1 = bc−1 and so

a ∗ c = ca−1
= cea−1

= cb−1ba−1
= (bc−1)−1(ab−1)−1

= (cb−1)−1(ba−1)−1
= bc−1ab−1

= abb−1c−1
= ac−1

= c ∗ a.

Hence, (G, ∗) is a transitive commutative medial groupoid.

Theorem 1.6. Let G be a transitive commutative medial groupoid. Then G is a disjoint
union of commutative semigroups.
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Proof. Let ρ be the relation defined in the above lemma. If a ρ b, bρ c, then ab = ba
and bc = cb, and since G is a transitive commutative semigroup we have ac = ca,
and so a ρ c. By the above lemma it follows that ρ is a congruence on G. Hence, G is
the union of ρ-classes which are a commutative semigroups.

A groupoid G is locally associative if for every a ∈ G holds a · a2 = a2 · a.

Remark 1.3. If G is a transitive commutative locally associative medial groupoid, then for
every a ∈ G, by the above theorem, we have that aρ a2 and so ρ is a band congruence. Hence,
a locally associative medial groupoid G is a band of commutative semigroups.

Let G be a groupoid given in Example 1.4. It is easy to verify that in G holds
a = a2 · a = a · a2 for every a ∈ G. Now, G =

⋃
α∈Y Gα, Y = E(G) = {a, c, e, 1} and

Ga = {a, b}, Gc = {c, d}, Ge = {e, f }, G1 = {1, h} are commutative semigroups.

3. Medial 3-bands

In the paper [5] the authors defined Abel-Grassmann’s 3-bands. Here we generalize
this notion.

Definition 1.3. Let G be a groupoid. An element a ∈ G is left 3-potent if a2 · a = a,
right 3-potent if a · a2 = a, and 3-potent if it is both left and right 3-potent.

For a groupoid G by T(G) we denote the set of all 3-potents of G.

Lemma 1.2. If G is a medial groupoid and T(G) , Ø, then T(G) is a subgroupoid of G.

Proof. Let a, b ∈ T(G). Then

(ab)3
= (ab · ab)ab = (a2 · b2)ab = (a2 · a)(b2 · b) = a3 · b3

= ab,

and so ab ∈ T(G).

Definition 1.4. A groupoid G is a 3-band (left 3-band, right 3-band) if every ele-
ment in G is 3-potent (left 3-potent, right 3-potent).

The groupoid (G, ∗) given in Example 3 is a left 3-band, and the groupoids given
in Examples 1 and 2 are 3-bands.

If a medial groupoid G is a 3-band, then we call it a medial 3-band.

Lemma 1.3. Let G be a medial groupoid and T(G) , Ø. Then T(G) is a 3-band and the
set B = {b ∈ G | (∃a ∈ T(G) b = a2} is a subgroupoid of G.

Proof. By above lemma, T(G) is a 3-band .

For x, y ∈ B there exist a, b ∈ T(G) such that x = a2, y = b2, so xy = a2 · b2 = (ab)2.
Since ab ∈ T(G), we have that xy ∈ B.
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Definition 1.5. A groupoid G is an antirectangular groupoid if for all a, b ∈ G holds
a = (ba)b = b(ab)

Theorem 1.7. Let G be a medial 3-band. Then G is a medial band of antirectangular
3-bands.

Proof. Let G be a medial 3-band. On G we define a relation η by

a η b ⇔ a = (ba)b = b(ab), b = (ab)a = a(ba).

We will prove that η is a band congruence on G.

Clearly, η is reflexive and symmetric. If a, b, c ∈ G such that a η b and b η c, then

a = (ba)b = b(ab), b = (ab)a = a(ba),

b = (ca)c = c(ac), c = (bc)b = b(cb),

so

a = b(ab) = (c(bc))(ab) = (ca)((bc)b) = (ca)c,

a = (ba)b = (ba)((cb)c) = (b(cb))(ac) = c(ac),

c = b(cb) = (a(ba))(cb) = (ac)((ba)b) = (ac)a,

c = (bc)b = (bc)((ab)a) = (b(ab))(ca) = a(ca),

and hence, a η c. Thus, η is a transitive relation, i.e., it is an equivalence relation.

Now, If a, b, c, d ∈ G such that a η b and c η d, then

a = (ba)b = b(ab), b = (ab)a = a(ba),

c = (dc)d = d(cd), d = (cd)c = c(dc),

whence

ac = ((ba)b)((dc)d) = ((ba)(dc))(bd) = ((bd)(ac))(bd),

ac = (b(ab))(d(cd)) = (bd)((ab)(cd)) = (bd)((ac)(bd)),

bd = ((ab)a)((cd)c) = ((ab)(cd))(ac) = ((ac)(bd))(ac),

bd = (a(ba))(c(dc)) = (ac)((ba)(dc)) = (ac)((bd)(ac)),

and therefore, ac η bd. Hence, η is a congruence relation.

Since G is a 3-band we have

a = (a2 · a)a2
= a2(a · a2), a2

= (a · a2)a = a(a2 · a),

whence a η a2 and so η is a band congruence on G.

Hence, G is a band of antirectangular 3-bands.

According to Definition 1.5, a semigroup G is antirectangular if for all a, b ∈ G
holds a = bab, b = aba.
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Theorem 1.8. Let G be a 3-potent medial semigroup. Then G is a medial band of unipotent
antirectangular 3-bands.

Proof. Define a relation η on G by

a η b ⇔ a = bab, b = aba.

The η is reflexive and symmetric. Let a, b, c ∈ G such that a η b and b η c, i.e.,

a = bab, b = aba, b = cbc, c = bcb.

Then
a = bab = bacbc = bcbac = cac, c = bcb = bcaba = babca = aca,

so a η c. Hence, η is a transitive relation, so it is an equivalence relation.

Let a, b, c, d ∈ G such that a η b, c η d. Then

ac = babdcd = bdacbd, bd = abacdc = acbdac,

whence ac η bd, so η is a congruence relation.

Moreover, for an arbitrary a ∈ G by

a = a2aa2, a2
= a2aa2

it follows that a η a2, so η is a band congruence.

Let a, b ∈ G. Then a2, b2 ∈ E(G), and if a η b, then a2 η b, i.e., a2 = ba2b, b = a2ba2,
so

a2
= ba2b = ba2a2ba2

= ba2ba2
= bb = b2.

Hence, G is a band of unipotent antirectangular 3-bands.

Example 1.6. Let a groupoid G be given by the following table.

1 2 3 4

1 2 1 1 2

2 1 2 2 1

3 4 3 3 4

4 3 4 4 3 .

Then G is a medial 3-potent semigroup. Since 1 = 212, 2 = 121, 3 = 434, 4 = 343, we have that
1 η 2, 3 η 4. Hence {1, 2} and {3, 4} are unipotent antirectangular 3-bands.
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University of Niš
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