SOME REMARKS OF MEDIAL GROUPOIDS *

Petar V. Protić

Abstract

Medial groupoids have been considered in quite a number of papers, especially in [3]. In this paper we describe the natural partial order on a medial band, define some subclasses of the class of medial groupoids, and describe medial band decompositions of medial groupoids.

1. Introduction

A groupoid (G, \cdot) is a medial (or entropic) groupoid if the following holds:

$$
(\forall a, b, c, d \in G)(a b)(c d)=(a c)(b d) .
$$

A groupoid G is a band if for all $a \in G$ holds $a^{2}=a$. Hence, a groupoid G is a medial band if it is a medial groupoid and a band. Let Y be a band. Then a groupoid G is a band Y of groupoids $G_{\alpha}, \alpha \in Y$, if

$$
G=\bigcup_{\alpha \in Y} G_{\alpha}, \quad G_{\alpha} \cap G_{\beta}=\varnothing, \text { for } \alpha \neq \beta, \quad \text { and } \quad G_{\alpha} G_{\beta} \subseteq G_{\alpha \beta}
$$

A congruence ρ on G is called a band congruence if G / ρ is a band.
An associative band G is rectangular if for all $a, b \in G$ we have $a=a b a$. The wellknown result of the semigroup theory says that an associative band is a semilattice of rectangular bands [2].

In [4] the authors introduced the notion of an antirectangular Abel-Grassman's band. Here we generalize this notion.

Definition 1.1. A band G is antirectangular if for every $a, b \in G$ holds $a=(b a) b$.

[^0]2010 Mathematics Subject Classification. Primary 20N02
*Supported by Grant ON 174026 of Ministry of Education and Science, Republic of Serbia, through Mathematical Institute of the Serbian Academy of Sciences and Arts.

Remark 1.1. If G is an antirectangular medial band, $a, b \in G$, then

$$
a=(b a) b=(b a)(b b)=(b b)(a b)=b(a b) .
$$

Example 1.1. Let G be a groupoid given by the following table:

| | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 4 | 2 | 3 |
| 2 | 3 | 2 | 4 | 1 |
| 3 | 4 | 1 | 3 | 2 |
| 4 | 2 | 3 | 1 | 4. |

Then G is an antirectangular medial band. Also, G is not associative since, for example, $1=(12) 3 \neq 1(23)=3$.

Remark 1.2. If G is an associative antirectangular band, and $a, b \in G$ such that $a=b a b$ and $b=a b a$, then

$$
a=b a b=a b a a b=a b a b=b b=b .
$$

Hence, a nontrivial associative antirectangular band does not exist.

1. About medial bands

In this section we describe a natural partial order and give some decompositions of a medial band.

Example 1.2. Let an $A G$-groupoid G be given by the following table:

	1	2	3	4	5	6
1	1	2	2	5	6	4
2	2	2	2	5	6	4
3	2	2	3	5	6	4
4	6	6	6	4	2	5
5	4	4	4	6	5	2
6	5	5	5	2	4	6.

Then G is a medial band.

Theorem 1.1. Let G be a medial band, then the relation \leqslant defined on G by

$$
e \leqslant f \Leftrightarrow e=e f=f e
$$

is a natural partial order on S and it is compatible.
Proof. Clearly, the relation \leqslant is reflexive and symmetric.

If $e \leqslant f, f \leqslant g$, then $e=e f=f e, f=f g=g f$. Now,

$$
\begin{aligned}
e g & =(e f) g=(e f)(g g)=(e g)(f g)=(e g) f=(e g)(f f)=(e f)(g f)=e f=e \\
g e & =g(f e)=(g g)(f e)=(g f)(g e)=f(g e)=(f f)(g e)=(f g)(f e)=f e=e
\end{aligned}
$$

what is equivalent to $e \leqslant g$. Hence, \leqslant is transitive, and so it is a partial order on G.
Let $e \leqslant f$ and $g \in G$. Then from $e=e f=f e$ it follows that

$$
\begin{gathered}
e g=(e f)(g g)=(e g)(f g), \\
e g=(f e)(g g)=(f g)(e g)
\end{gathered}
$$

and so $e g \leqslant f g$. Similarly, $g e \leqslant g f$. Hence,\leqslant is compatible.
Theorem 1.2. Let G be a medial band. Then G is a medial band of antirectangular (in the general case nontrivial) medial bands.

Proof. On a medial band G we define the relation ρ by

$$
(\forall a, b \in G) \quad a \rho b \Longleftrightarrow a=(b a) b, b=(a b) a .
$$

Clearly, the relation ρ is reflexive and symmetric. Let $a \rho b, b \rho c$, then by definition of ρ and using Remark 1.1 we have

$$
\begin{aligned}
& a=(b a) b=(b a)((c b) c)=(b(c b))(a c)=c(a c)=(c a) c \\
& c=(b c) b=(b c)((a b) a)=(b(a b))(c a)=a(c a)=(a c) a
\end{aligned}
$$

so $a \rho c$ and ρ is a transitive relation. Hence, ρ is an equivalence relation.
Let $a \rho b, c \rho d$, then

$$
\begin{aligned}
& a c=((b a) b)((d c) d)=((b a)(d c))(b d)=((b d)(a c))(b d \\
& b d=((a b) a)((c d) c)=((a b)(c d))(a c)=((a c)(b d))(a c)
\end{aligned}
$$

whence ρ is a congruence relation. Since G is a medial band, we have that ρ is a medial band congruence relation.

By definition of ρ it follows that ρ-classes are antirectangular bands.
In Example 1.1 we have $\rho=G \times G$, and in Example 1.2 we have $G=G_{\alpha} \cup G_{\beta} \cup G_{\gamma}$, where $G_{\alpha}=\{1\}, G_{\beta}=\{3\}, G_{\gamma}=\{2,4,5,6\}$. Also, if G is an associative band then, by Remark 1.2, the congruence ρ is an identity relation.

2. Some band decompositions of medial groupoids

If a medial groupoid G has an idempotent, then by $E(G)$ we denote the set of all idempotents of G.

Let G be a medial groupoid, then we define the relation μ on G with following:

$$
(\forall a, b \in G) \quad a \mu b \Leftrightarrow a^{2}=b^{2}
$$

Theorem 1.3. The relation μ defined on a medial groupoid G is a congruence relation on G. If G has idempotents then μ is an idempotent-separating congruence on G.

Proof. Obviously, μ is an equivalence relation. If $a, b, c, d \in G$ and $a \mu b, c \mu d$, then

$$
(a c)^{2}=a c \cdot a c=a^{2} \cdot c^{2}=b^{2} d^{2}=(b d)^{2}
$$

and so $a c \mu b d$. Hence, μ is a congruence relation.
If $E(G) \neq \varnothing$ and $e, f \in E(G)$, then

$$
e \mu f \Leftrightarrow e=e^{2}=f^{2}=f
$$

and so μ is an idempotent separating congruence on G.
Example 1.3. Let G be a groupoid given by the following table

	a	b	c	d	e	f	g	h
a	a	b	g	h	c	d	e	f
b	b	a	h	g	d	c	f	e
c	e	f	c	d	g	h	a	b
d	f	e	d	c	h	g	b	a
e	g	h	a	b	e	f	c	d
f	h	e	b	a	f	e	d	c
g	c	d	e	f	a	b	g	h
h	d	c	f	e	b	a	h	g.

We can easily verify that G is a medial groupoid, but G is not a semigroup, for example $(c b) h=c$ and $c(b h)=g$. Also, G is a quasigroup clearly. Notice that $E(G)=\{a, c, e, g\}$ and for all $x \in G$ holds $x^{2} \in E(G)$.

Example 1.4. Let (G, \cdot) be a commutative inverse semigroup and $a, b \in G$ arbitrary elements. We define the operation $*$ on G by $a * b=b a^{-1}$. Then

$$
\begin{aligned}
& (a * b) *(c * d)=\left(b a^{-1}\right) *\left(d c^{-1}\right)=d c^{-1}\left(b a^{-1}\right)^{-1}=d c^{-1} a b^{-1} \\
& (a * c) *(b * d)=\left(c a^{-1}\right) *\left(d b^{-1}\right)=d b^{-1}\left(c a^{-1}\right)^{-1}=d b^{-1} a c^{-1} .
\end{aligned}
$$

By the above and commutativity we conclude that $(G, *)$ is a medial groupoid.
Now, for $a \in G$ we have $a * a=a a^{-1} \in E(G)$. Hence, for each $a \in G$ holds $a^{2}=a * a \in E(G)$. Also

$$
\begin{gathered}
(a * a) * a=\left(a a^{-1}\right) * a=a\left(a a^{-1}\right)^{-1}=a a a^{-1}=a, \\
a *(a * a)=a *\left(a a^{-1}\right)=a a^{-1} a^{-1}=a^{-1} .
\end{gathered}
$$

By the above, $(G, *)$ is not a semigroup.
Theorem 1.4. Let G be a medial groupoid such that $a^{2} \in E(G)$, for every $a \in G$. Then μ is the maximal idempotent-separating congruence on S.

Proof. By the above theorem, the relation μ is an idempotent-separating congruence on G. Let ρ be an arbitrary idempotent-separating congruence on G and let $a, b \in G$ such that $a \rho b$. By compatibility of ρ we have $a^{2} \rho b^{2}$. Since ρ is idempotent-separating and $a^{2}, b^{2} \in E(G)$, we conclude that $a^{2}=b^{2}$, and therefore, $a \mu b$. Hence, $\rho \subseteq \mu$ and so μ is the maximal idempotent-separating congruence on G.

Theorem 1.5. If G is a medial groupoid such that $a^{2} \in E(G)$, for every $a \in G$, then G is a medial band Y of groupoids $S_{\alpha}, \alpha \in Y$, and for each $x \in S_{\alpha}$ holds $x^{2}=e_{\alpha}$ where e_{α} is the unique idempotent of S_{α}.

Proof. By the above theorem we have that the relation μ is a maximal idempotentseparating congruence on G. If $a \in G$, then $a^{2}=e \in E(G)$ and $\left(a^{2}\right)^{2}=a^{2} \cdot a^{2}=e e=e$ and so $a^{2} \mu a$, and hence, μ is a band congruence on G. Therefore, $G=\bigcup_{\alpha \in Y} G_{\alpha}$ where G_{α} are μ-classes of elements of G, and Y is a medial band. Classes G_{α} are unipotent since μ is a idempotent separating congruence. If $a \in G_{\alpha}$ and e_{α} is an idempotent in G_{α}, then $a \mu e_{\alpha}$, so $a^{2}=e_{\alpha}^{2}=e_{\alpha}$.

Lemma 1.1. Let G be a medial groupoid. Then the relation ρ defined on G by

$$
a \rho b \Leftrightarrow a b=b a
$$

is reflexive, symmetric and compatible.
Proof. The relation ρ is reflexive and symmetric clearly. Let $a \rho b$ and $c \rho d$, then

$$
\begin{aligned}
& (a c)(b c)=(a b)(c c)=(b a)(c c)=(b c)(a c) \\
& (c a)(c b)=(c c)(a b)=(c c)(b a)=(c b)(c a) .
\end{aligned}
$$

Hence, $a c \rho b c$ and $c a \rho c b$.
Definition 1.2. A medial groupoid G is transitive commutative if for $a, b, c \in G$ from $a b=b a$ and $b c=c b$ it follows that $a c=c a$.

The grupoids which are given in Examples 1.1 and 1.2 are transitive commutative medial bands.

Example 1.5. Let ($G, \cdot \cdot$) be an Abelian group with identity e and $a, b \in G$ arbitrary elements. We define the operation $*$ on G with $a * b=b a^{-1}$. Then, by Example 1.4, $(G, *)$ is a medial groupoid. Let for $a, b, c \in G$ holds $a * b=b * a, b * c=c * b$ then $b a^{-1}=a b^{-1}, c b^{-1}=b c^{-1}$ and so

$$
\begin{aligned}
a * c & =c a^{-1}=c e a^{-1}=c b^{-1} b a^{-1}=\left(b c^{-1}\right)^{-1}\left(a b^{-1}\right)^{-1} \\
& =\left(c b^{-1}\right)^{-1}\left(b a^{-1}\right)^{-1}=b c^{-1} a b^{-1}=a b b^{-1} c^{-1}=a c^{-1}=c * a .
\end{aligned}
$$

Hence, $(G, *)$ is a transitive commutative medial groupoid.
Theorem 1.6. Let G be a transitive commutative medial groupoid. Then G is a disjoint union of commutative semigroups.

Proof. Let ρ be the relation defined in the above lemma. If $a \rho b, b \rho c$, then $a b=b a$ and $b c=c b$, and since G is a transitive commutative semigroup we have $a c=c a$, and so $a \rho c$. By the above lemma it follows that ρ is a congruence on G. Hence, G is the union of ρ-classes which are a commutative semigroups.

A groupoid G is locally associative if for every $a \in G$ holds $a \cdot a^{2}=a^{2} \cdot a$.
Remark 1.3. If G is a transitive commutative locally associative medial groupoid, then for every $a \in G$, by the above theorem, we have that $a \rho a^{2}$ and so ρ is a band congruence. Hence, a locally associative medial groupoid G is a band of commutative semigroups.

Let G be a groupoid given in Example 1.4. It is easy to verify that in G holds $a=a^{2} \cdot a=a \cdot a^{2}$ for every $a \in G$. Now, $G=\bigcup_{a \in Y} G_{\alpha}, Y=E(G)=\{a, c, e, g\}$ and $G_{a}=\{a, b\}, G_{c}=\{c, d\}, G_{e}=\{e, f\}, G_{g}=\{g, h\}$ are commutative semigroups.

3. Medial 3-bands

In the paper [5] the authors defined Abel-Grassmann's 3-bands. Here we generalize this notion.

Definition 1.3. Let G be a groupoid. An element $a \in G$ is left 3-potent if $a^{2} \cdot a=a$, right 3 -potent if $a \cdot a^{2}=a$, and 3 -potent if it is both left and right 3-potent.

For a groupoid G by $T(G)$ we denote the set of all 3-potents of G.
Lemma 1.2. If G is a medial groupoid and $T(G) \neq \varnothing$, then $T(G)$ is a subgroupoid of G.
Proof. Let $a, b \in T(G)$. Then

$$
(a b)^{3}=(a b \cdot a b) a b=\left(a^{2} \cdot b^{2}\right) a b=\left(a^{2} \cdot a\right)\left(b^{2} \cdot b\right)=a^{3} \cdot b^{3}=a b,
$$

and so $a b \in T(G)$.
Definition 1.4. A groupoid G is a 3-band (left 3-band, right 3-band) if every element in G is 3-potent (left 3-potent, right 3-potent).

The groupoid ($G, *$) given in Example 3 is a left 3-band, and the groupoids given in Examples 1 and 2 are 3-bands.

If a medial groupoid G is a 3-band, then we call it a medial 3-band.
Lemma 1.3. Let G be a medial groupoid and $T(G) \neq \varnothing$. Then $T(G)$ is a 3 -band and the set $B=\left\{b \in G \mid\left(\exists a \in T(G) b=a^{2}\right\}\right.$ is a subgroupoid of G.

Proof. By above lemma, $T(G)$ is a 3-band .
For $x, y \in B$ there exist $a, b \in T(G)$ such that $x=a^{2}, y=b^{2}$, so $x y=a^{2} \cdot b^{2}=(a b)^{2}$. Since $a b \in T(G)$, we have that $x y \in B$.

Definition 1.5. A groupoid G is an antirectangular groupoid if for all $a, b \in G$ holds $a=(b a) b=b(a b)$

Theorem 1.7. Let G be a medial 3-band. Then G is a medial band of antirectangular 3-bands.

Proof. Let G be a medial 3-band. On G we define a relation η by

$$
a \eta b \Leftrightarrow a=(b a) b=b(a b), b=(a b) a=a(b a)
$$

We will prove that η is a band congruence on G.
Clearly, η is reflexive and symmetric. If $a, b, c \in G$ such that $a \eta b$ and $b \eta c$, then

$$
\begin{aligned}
& a=(b a) b=b(a b), b=(a b) a=a(b a) \\
& b=(c a) c=c(a c), c=(b c) b=b(c b)
\end{aligned}
$$

so

$$
\begin{aligned}
& a=b(a b)=(c(b c))(a b)=(c a)((b c) b)=(c a) c, \\
& a=(b a) b=(b a)((c b) c)=(b(c b))(a c)=c(a c), \\
& c=b(c b)=(a(b a))(c b)=(a c)((b a) b)=(a c) a, \\
& c=(b c) b=(b c)((a b) a)=(b(a b))(c a)=a(c a),
\end{aligned}
$$

and hence, $a \eta c$. Thus, η is a transitive relation, i.e., it is an equivalence relation.
Now, If $a, b, c, d \in G$ such that $a \eta b$ and $c \eta d$, then

$$
\begin{aligned}
a & =(b a) b=b(a b), b=(a b) a=a(b a) \\
c & =(d c) d=d(c d), d=(c d) c=c(d c)
\end{aligned}
$$

whence

$$
\begin{aligned}
& a c=((b a) b)((d c) d)=((b a)(d c))(b d)=((b d)(a c))(b d), \\
& a c=(b(a b))(d(c d))=(b d)((a b)(c d))=(b d)((a c)(b d)), \\
& b d=((a b) a)((c d) c)=((a b)(c d))(a c)=((a c)(b d))(a c), \\
& b d=(a(b a))(c(d c))=(a c)((b a)(d c))=(a c)((b d)(a c)),
\end{aligned}
$$

and therefore, $a c \eta b d$. Hence, η is a congruence relation.
Since G is a 3 -band we have

$$
a=\left(a^{2} \cdot a\right) a^{2}=a^{2}\left(a \cdot a^{2}\right), a^{2}=\left(a \cdot a^{2}\right) a=a\left(a^{2} \cdot a\right)
$$

whence $a \eta a^{2}$ and so η is a band congruence on G.
Hence, G is a band of antirectangular 3-bands.
According to Definition 1.5, a semigroup G is antirectangular if for all $a, b \in G$ holds $a=b a b, b=a b a$.

Theorem 1.8. Let G be a 3-potent medial semigroup. Then G is a medial band of unipotent antirectangular 3-bands.

Proof. Define a relation η on G by

$$
a \eta b \Leftrightarrow a=b a b, b=a b a .
$$

The η is reflexive and symmetric. Let $a, b, c \in G$ such that $a \eta b$ and $b \eta c$, i.e.,

$$
a=b a b, b=a b a, b=c b c, c=b c b
$$

Then

$$
a=b a b=b a c b c=b c b a c=c a c, c=b c b=b c a b a=b a b c a=a c a,
$$

so $a \eta c$. Hence, η is a transitive relation, so it is an equivalence relation.
Let $a, b, c, d \in G$ such that $a \eta b, c \eta d$. Then

$$
a c=b a b d c d=b d a c b d, b d=a b a c d c=a c b d a c
$$

whence $a c \eta b d$, so η is a congruence relation.
Moreover, for an arbitrary $a \in G$ by

$$
a=a^{2} a a^{2}, a^{2}=a^{2} a a^{2}
$$

it follows that $a \eta a^{2}$, so η is a band congruence.
Let $a, b \in G$. Then $a^{2}, b^{2} \in E(G)$, and if $a \eta b$, then $a^{2} \eta b$, i.e., $a^{2}=b a^{2} b, b=a^{2} b a^{2}$, so

$$
a^{2}=b a^{2} b=b a^{2} a^{2} b a^{2}=b a^{2} b a^{2}=b b=b^{2}
$$

Hence, G is a band of unipotent antirectangular 3-bands.
Example 1.6. Let a groupoid G be given by the following table.

| | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 2 | 1 |
| 3 | 4 | 3 | 3 | 4 |
| 4 | 3 | 4 | 4 | 3 |.

Then G is a medial 3-potent semigroup. Since $1=212,2=121,3=434,4=343$, we have that $1 \eta 2,3 \eta 4$. Hence $\{1,2\}$ and $\{3,4\}$ are unipotent antirectangular 3-bands.

REFERENCES

1. J. Deneš and A. D. Keedwell: Latin squares and their applications, Akadémia Kiadó, Budapest, 1974.
2. J. M. Howie: An introduction to semigroup theory, Academic Press, 1976.
3. J. Ježek and T. Кepka: Medial groupoids, Rospravay Ceskoslovenske Akad. (1983).
4. P. V. Protić and N. Stevanović: Abel-Grassmann's bands, Quasigroups and Related Systems 11 (2004), 95 - 101.
5. N. Stevanović and P. V. Protić: Composition of Abel-Grassmann's 3-bands, Novi Sad J. of Math. 34 (2) (2004), 175-183.
6. N. Stevanović and P. Protić: Roots of AG-bands, In : W. Gautschi, G. Mastroianni, Th. M. Rasias (eds.), Approximation and Computation - In Honor of Gradimir V. Milovanović, Springer Optimization and Its Applications, Springer Verlag, Berlin - Heielberg - New York, 2010, pp. 439-445.
P. V. Protić

University of Niš
Faculty of Civil Engineering
Aleksandra Medvedeva 14
18000 Niš, Serbia
pvprotic@yahoo.com

[^0]: Received June 27, 2011.

