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A GENERALIZATION OF THE PASCAL MATRIX AND ITS PROPERTIES

Stefan Stanimirović

Abstract. In this paper we introduce a generalization of the Pascal matrix and show it
satisfies numerous properties. In particular, we firstly investigate various factorizations
of such matrix. Explicit formula for the inverse of the generalized Pascal matrix is derived.
In addition, explicit representations for the powers of the generalized Pascal matrix are
derived for integer, rational and irrational exponents. Finally, we employ the formula for
the power of the generalized Pascal matrix to find the inverse of the linear combination
of the identity matrix and the generalized Pascal matrix.
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1. Introduction

The matrices which contain the binomial coefficients as its elements has been a
mine of topics for researchers. The most famous such matrix is the Pascal matrix,
which has been playing a central role in matrix theory and combinatorics. The
Pascal matrix Pn of order n is defined as

(Pn)i, j =















(i−1
j−1

)

, i > j

0, otherwise
, 1 6 i, j 6 n.

Since then, many generalizations of the Pascal matrix has been gaining a wide
interest. The generalized Pascal matrix was defined in [2] as

(Pn[x])i, j =















xi− j(i−1
j−1

)

, i > j

0, otherwise
, 1 6 i, j 6 n.

The properties of the generalized Pascal matrix were investigated by Call and
Velleman [2] and Zhang [18]. For the sake of simplicity, in what follows we call
Pn[x] simply the Pascal matrix.
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The extended generalized Pascal matrixΦn[x, y] was investigated by Zhang and
Liu [19], and by Zhang and Wang [20], and is defined by

(Φn[x, y])i, j =















xi− jyi+ j−2(i−1
j−1

)

, i > j

0, otherwise
, 1 6 i, j 6 n.

Since then, many generalizations of the Pascal matrix have been introduced.
Zhao and Wang [22] introduced the concept of the Pascal functional matrix. This
concept was further developed in papers [13, 16, 17]. In papers [8, 9], the authors
generalized the Pascal matrix via the matrices filled with the symmetric polynomi-
als.

Authors in [3, 6, 7, 15] investigated relations between the Pascal matrix and
other special types of matrices. The Pascal matrix was also used for deriving
combinatorial identities, as it was demonstrated in papers [5, 10, 12, 21].

The problem of representing the inverse of the Pascal matrix and the inverse
of linear combinations of the identity and the Pascal matrix is well studied in the
literature. For example, motivated by a problem from statistics, in [1] it is shown
how to invert I − λPn[a]. In particular, the inverse is the matrix with its main
diagonal replaced by 1/(1 − λ) and its mth lower sub-diagonal multiplied by the
constant Li−m(λ), where Li−m(λ) is the polylogarithm function..

Moreover, the matrix (In + Pn)−1 is the Hadamard product Pn ◦ ∆n, where ∆n

is the n × n lower triangular matrix containing the Euler polynomials, and the
Hadamard product A ◦ B of two matrices A = [ai, j] and B = [bi, j] is the matrix
obtained by entry-wise multiplication of matrices A and B: (A ◦B)i, j = ai, jbi, j. These
representations might be useful in applications in control engineering, where it is
needed to calculate the determinant and adjoint polynomials of the matrix (λI−A)−1.

The above results on Pascal matrices were extended in the case of the general
Catalan matrices in paper [11].

The goal of the present paper is to introduce a generalization of the Pascal matrix
and to extend earlier results on Pascal matrix to this generalization. The results
are presented in the following section. First, we examine some factorizations
of the generalized Pascal matrix. After that, we find explicit formulae for the
inverse, as well as for the power of the generalized Pascal matrix for integer and
rational exponent. Later, we find the power of the generalized Pascal matrix for the
irrational exponent. Finally, we apply the formula for the power of the generalized
Pascal matrix to find the explicit representation of the inverse of linear combination
of the identity and generalized Pascal matrix.

2. The generalized Pascal matrix

Definition 2.1. The generalized Pascal matrix Pn[r; x] of order n, is defined by

(Pn[r; x])i, j = xi− j

(

i + r − 2

i − j

)
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for all 1 6 i, j 6 n, r ∈ Z and x ∈ R.

In the case r = 1, the generalized Pascal matrix reduces to the Pascal matrix, so
we have the relation Pn[1; x] = Pn[x].

Example 2.1. The generalized Pascal matrix Pn[r; x] of order 5 is equal to

P5[r; x] =



































1 0 0 0 0
(r

1

)

x 1 0 0 0
(r+1

2

)

x2
(r+1

1

)

x 1 0 0
(r+2

3

)

x3
(r+2

2

)

x2
(r+2

1

)

x 1 0
(r+3

4

)

x4
(r+3

3

)

x3
(r+3

2

)

x2
(r+3

1

)

x 1



































Let us define matrices

P
(k)
n [r; x] = Ik ⊕ Pn−k[r; x] =

[

Ik 0
0 Pn−k[r; x]

]

,

for each 0 6 k < n. Recall that A ⊕ B denotes the direct sum of matrices A and B.
Next, define matrix Sn[r; x] element-wise as

(Sn[r; x])i, j =























xi− j(i+r−2
i− j

)

, j = 1

xi− j, i > j

0, otherwise

and let S
(k)
n [r; x] = Ik ⊕ Sn−k[r; x], for each 0 6 k < n. Then we have the following

results.

Lemma 2.1. For natural n, integer r and real x we have

(2.1) Pn[r; x] = Sn[r; x]P
(1)
n [r; x].

Proof. The proof goes straightforward.

After recursively applying (2.1), we obtain the factorization of the generalized
Pascal matrix.

Theorem 2.1. We have the following factorization of the generalized Pascal matrix
Pn[r; x]

(2.2) Pn[r; x] = S(0)
n [r; x]S(1)

n [r; x] · · ·S(n−1)
n [r; x].

Example 2.2. Setting n = 5 in Lemma 2.1 and Theorem 2.1, we get

P5[r; x] =



































1 0 0 0 0
(r

1

)

x 1 0 0 0
(r+1

2

)

x2
(r+1

1

)

x 1 0 0
(r+2

3

)

x3
(r+2

2

)

x2
(r+2

1

)

x 1 0
(r+3

4

)

x4
(r+3

3

)

x3
(r+3

2

)

x2
(r+3

1

)

x 1



































=



































1 0 0 0 0
(r

1

)

x 1 0 0 0
(r+1

2

)

x2 x 1 0 0
(r+2

3

)

x3 x2 x 1 0
(r+3

4

)

x4 x3 x2 x 1





































































1 0 0 0 0
0 1 0 0 0
0

(r
1

)

x 1 0 0

0
(r+1

2

)

x2
(r+1

1

)

x 1 0

0
(r+2

3

)

x3
(r+2

2

)

x2
(r+2

1

)

x 1
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and

P5[r; x] =



































1 0 0 0 0
(r

1

)

x 1 0 0 0
(r+1

2

)

x2 x 1 0 0
(r+2

3

)

x3 x2 x 1 0
(r+3

4

)

x4 x3 x2 x 1





































































1 0 0 0 0
0 1 0 0 0
0

(r
1

)

x 1 0 0

0
(r+1

2

)

x2 x 1 0

0
(r+2

3

)

x3 x2 x 1



































×

×



































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0

(r
1

)

x 1 0

0 0
(r+1

2

)

x2 x 1





































































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0

(r
1

)

x 1





































































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



































= S
(0)
5 [r; x]S(1)

5 [r; x]S(2)
5 [r; x]S(3)

5 [r; x]S(4)
5 [r; x].

By setting r = 1 in Theorem 2.1, we regain the well-known factorization of the
Pascal matrix (for details consult [18]):

Example 2.3.

P5[x] =



































1 0 0 0 0
x 1 0 0 0
x2 2x 1 0 0
x3 3x2 3x 1 0
x4 4x3 6x2 4x 1



































=



































1 0 0 0 0
x 1 0 0 0
x2 x 1 0 0
x3 x2 x 1 0
x4 x3 x2 x 1





































































1 0 0 0 0
0 1 0 0 0
0 x 1 0 0
0 x2 x 1 0
0 x3 x2 x 1



































×

×



































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 x 1 0
0 0 x2 x 1





































































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 x 1





































































1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



































.

Now we investigate the properties of the power of the Pascal matrix.

Theorem 2.2. The inverse of the generalized Pascal matrix is given by

(2.3) Pn[r; x]−1
= Pn[r;−x].

for n ∈N, r ∈ Z and x ∈ R.

Proof. We show that Pn[r; x]Pn[r;−x] = In, where In is the identity matrix
of order n. It is clear that (Pn[r; x]Pn[r;−x])i,i = 1, for all 1 6 i 6 n, as well as
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(Pn[r; x]Pn[r;−x])i, j = 0 for i < j. Thus, suppose that i > j. Later it follows that

(Pn[r; x]Pn[r;−x])i, j =

i
∑

k= j

xi−k

(

i + r − 2

i − k

)

(−x)k− j

(

k + r − 2

k − j

)

= xi− j

i− j
∑

k=0

(−1)k

(

i + r − 2

i − j − k

)(

k + j + r − 2

k

)

.

By employing the properties for the Pochhammer function (a)k = a(a+1) · · · (a+k−1),
we obtain

(Pn[r; x]Pn[r;−x])i, j = xi− j

i− j
∑

k=0

(−1)k
(r + j + k − 1)i− j−k

(i − j − k)!

( j + r − 1)k

k!

= xi− j

i− j
∑

k=0

(−1)k
( j + r − 1)i− j

(i − j − k)! k!
.

After multiplying each summand by factor 1 = (i− j)!/(i− j)!, we get the following

(Pn[r; x]Pn[r;−x])i, j = xi− j
( j + r − 1)i− j

(i − j)!

i− j
∑

k=0

(−1)k (i − j)!

(i − j − k)! k!

= xi− j

(

i + r − 2

i − j

) i− j
∑

k=0

(−1)k

(

i − j

k

)

.

Finally, after applying the binomial theorem, we finish this part of the proof, since

(Pn[r; x]Pn[r;−x])i, j = xi− j

(

i + r − 2

i − j

)

(1 − 1)i− j
= 0.

Similarly, one can obtain Pn[r;−x]Pn[r; x] = In, and the proof is therefore fin-
ished.

Setting r = 1 in Eq. (2.3), we regain the well-known formula for the inverse of
the Pascal matrix (see [2, 18]).

Corollary 2.1. For natural n and real x,

Pn[x]−1
= Pn[−x].

Theorem 2.3. For arbitrary dimension n, integers r and k, and real x, the following
relation between powers of the generalized Pascal matrices is valid

(2.4) Pn[r; x]k
= Pn[r; kx].
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Proof. At first, let k > 0. We employ the principle of the mathematical induction.
The basic case Pn[r; x]0 = Pn[r; 0] = In goes trivially. After applying the inductive
hypothesis

Pn[r; x]k+1
= Pn[r; x]Pn[r; kx]

we get

(

Pn[r; x]k+1
)

i, j
= xi− j

i− j
∑

l=0

kl

(

i + r − 2

i − j − l

)(

l + j + r − 2

l

)

= xi− j

i− j
∑

l=0

kl
(r + j + l − 1)i− j−l

(i − j − l)!

( j + r − 1)l

l!

(i − j)!

(i − j)!

= xi− j

(

i + r − 2

i − j

) i− j
∑

l=0

(

i − j

l

)

kl.

Again, by applying the binomial theorem, we prove the inductive step

(

Pn[r; x]k+1
)

i, j
= xi− j

(

i + r − 2

i − j

)

(k + 1)i− j.

Since Pn[r; x]−1
= Pn[r;−x], a similar induction shows that Eq. (2.4) holds in the

case k < 0. This completes the proof.

By putting r = 1 in Eq. (2.4), we regain the well-known formula for the power
of the Pascal matrix (see [2, 15]).

Corollary 2.2. For natural n, integer k and real x,

Pn[x]k
= Pn[kx].

Theorem 2.3 is easily expanded to rational exponents. But, if k is irrational, then
does Pn[r; kx] still represent a matrix which deserves to be regarded as Pn[r; x]k?
If we recall how irrational exponents for real numbers work, we will see that for
a > 0 the expression ax is defined to be exl, where l = ln a. By analogy, if Pn[r; kx]
is to be regarded as Pn[r; x]k, we might expect that there exist matrix L such that
Pn[r; x] = exL. It will be in our attention to find such matrix.

Matrix exponentials are defined by simply plugging matrices into the usual
Maclaurin series for the exponential function. In other words, for any square
matrix A, the exponential of A is defined to be the matrix

eA
= I + A +

A2

2
+

A3

3!
+ . . . +

Ak

k!
+ . . .

(consult [14] for details).

The following well-known theorem will be very useful for the rest of the work.

Theorem 2.4. [2, 14] Let A be any square matrix. Then
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• For any numbers s and t, e(s+t)A
= esAetA.

• eA is invertible, and (eA)−1 = e−A.

• d
dt etA = AetA = etAA, where d

dt e
tA is the matrix resulting from taking the derivative

with respect to t of each entry of etA.

Definition 2.2. The matrix Ln[r] of order n, is element-wise equal to

(Ln[r])i, j =















j + r − 1, i = j + 1

0, otherwise
,

for all 1 6 i, j 6 n and r ∈ Z.

Our attention is to prove that Pn[r, x] = exLn[r]. To that effort, we prove the
following auxiliary result.

Lemma 2.2. For every nonnegative integer k, the entries of the matrix Ln[r]k are given by

(Ln[r]k)i, j =















( j + r − 1)k, i = j + k

0, otherwise
.

Proof. We employ the principle of the mathematical induction. The basic case
follows straightforward. Let us assume the inductive hypothesis on Ln[r]k+1 =

Ln[r]Ln[r]k. It is not hard to conclude that (Ln[r]k+1)i, j = 0 for i , j + k + 1, while in
the case i = j + k + 1 we have

(Ln[r]k+1)i, j = (i + r − 2)( j + r − 1)k = ( j + k + r − 1)( j + r − 1)k = ( j + r − 1)k+1,

and the proof is therefore finished.

Theorem 2.5. For n ∈N, r ∈ Z and x ∈ R, we have

Pn[r; x] = exLn[r].

Proof. Suppose there is a matrix L′n[r] such that Pn[r; x] = exL′n[r]. Then

d

dx
Pn[r; x] = L′n[r]exL′n[r]

= L′n[r]Pn[x],

so
d

dx
Pn[r; x] |x=0 = L′n[r]Pn[r; 0] = L′n[r]In = L′n[r].

Thus, there is at most one matrix L′n[r] such that Pn[r; x] = exL′n[r]. By calculating
d
dxPn[r; x] |x=0 , it is not hard to conclude that L′n[r] = Ln[r], where Ln[r] is the matrix
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from Definition 2.2. By employing the result from Lemma 2.2, we conclude that
Ln[r]k = 0 for k > n, so we have

exLn[r]
=

n−1
∑

k=0

xk

k!
Ln[r]k.

We see that (exLn[r])i, j = 0 for i < j, as well that (exLn[r])i,i = 1. Now, suppose that i > j
and let k = i − j. In this case we can employ the result from Lemma 2.2, and obtain

(exLn[r])i, j =
xk

k!
(Ln[r]k)i, j = xk ( j + r − 1)k

k!
= xk

(

i + r − 2

k

)

= (Pn[r; x])i, j.

In this way, the proof is completed.

Example 2.4. d
dx
P5[r; x] is the matrix resulting from taking the derivative with respect to x

of each entry of P5[r; x]

d

dx
P5[r; x] =



































0 0 0 0 0
(r

1

)

0 0 0 0

(r + 1)
(r

1

)

x
(r+1

1

)

0 0 0

(r + 2)
(r+1

2

)

x2 (r + 2)
(r+1

1

)

x
(r+2

1

)

0 0
(r + 3)

(r+2
3

)

x3 (r + 3)
(r+2

2

)

x2 (r + 3)
(r+2

1

)

x
(r+3

1

)

0



































Thus we have

L5[r] =
d

dx
P5[r; x] |x=0 =



































0 0 0 0 0
r 0 0 0 0
0 r + 1 0 0 0
0 0 r + 2 0 0
0 0 0 r + 3 0



































and

L5[r]2
=



































0 0 0 0 0
0 0 0 0 0

r(r + 1) 0 0 0 0
0 (r + 1)(r + 2) 0 0 0
0 0 (r + 2)(r + 3) 0 0



































,

L5[r]3
=



































0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

r(r + 1)(r + 2) 0 0 0 0
0 (r + 1)(r + 2)(r + 3) 0 0 0



































,

L5[r]4
=



































0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

r(r + 1)(r + 2)(r + 3) 0 0 0 0



































.



A generalization of the Pascal matrix and its properties 25

Corollary 2.3. For natural n and real x and y, the following relation holds

(2.5) Pn[r; x + y] = Pn[r; x]Pn[r; y].

Proof. By applying Theorem 2.5, we get Pn[r; x + y] = ex+yLn[r] = exLn[r]eyLn[r]

= Pn[r; x]Pn[r; y]. This completes the proof.

Setting r = 1 in Eq. (2.5), we regain the well-known identity for the Pascal
matrix [2, 18].

Pn[x + y] = Pn[x]Pn[y].

At the end of this section, we make use of the formula (2.4) to find the explicit
inverse of the matrix In − λPn[r; x].

Theorem 2.6. The inverse Qn[r; x] of the matrix In − λPn[r; x] is defined for all numbers
|λ| < 1. The entries of Qn[r; x] are

(Qn[r; x])i,i =
1

1 − λ

on the main diagonal and

(Qn[r; x])i, j = (Pn[r; x])i, j Li j−i(λ)

for i > j, where Lin(z) is the polylogarithm function

Lin(z) =

∞
∑

k=1

zk

kn
.

Proof. It is known that if ‖ · ‖ is a matrix norm and if ‖A‖ < 1, A ∈ Rn×n, then
I −A is invertible and (I −A)−1

=
∑∞

k=0 Ak (see, for example [4]). For any |λ| < 1, we
can express the inverse of the matrix In − λPn[r; x] as the following infinite matrix
sum

(In − λPn[r; x])−1
=

∞
∑

k=0

λkPn[r; x]k.

In view of (2.4), we obtain

(Qn[r; x])i, j =

∞
∑

k=0

λk(Pn[r; kx])i, j =

(

i + r − 2

i − j

)

xi− j
∞
∑

k=0

λkki− j.

Finally, we get

(Qn[r; x])i, j = (Pn[r; x])i, j















∞
∑

k=0

λkki− j















and the proof is finished after separate analysis of cases i = j and i > j.
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Example 2.5. Setting n = 5 in Theorem 2.6, we obtain

Q5[r; x] =














































1
1−λ

0 0 0 0
(r

1

) xλ
(λ−1)2

1
1−λ

0 0 0
(r+1

2

) −x2λ(λ+1)

(λ−1)3

(r+1
1

) xλ
(λ−1)2

1
1−λ

0 0
(r+2

3

) x3λ(λ2+4λ+1)
(λ−1)4

(r+2
2

) −x2λ(λ+1)

(λ−1)3

(r+2
1

) xλ
(λ−1)2

1
1−λ 0

(r+3
4

) −x4λ(λ3+11λ2+11λ+1)
(λ−1)5

(r+3
3

) x3λ(λ2+4λ+1)
(λ−1)4

(r+3
2

) −x2λ(λ+1)

(λ−1)3

(r+3
1

) xλ
(λ−1)2

1
1−λ















































.

Setting r = 1 in Theorem 2.6, we obtain the well-known result for the inverse of
the matrix In − λPn[x] (see [1]).

Now we find the matrix ∆n[λ] satisfying (In − λPn[x])−1 = Pn[x] ◦ ∆n[λ].

Theorem 2.7. For the parameter λ satisfying |λ| < 1, the inverse (In − λPn[x])−1 can be
expressed as

(In − λPn[x])−1
= Pn[x] ◦ ∆n[λ],

where

(∆n)i, j[λ] =















Li j−i(λ), i > j

0, i < j

and Lin(z) is the polylogarithm function.

Proof. The proof goes directly from Theorem 2.6.

Setting r = 1 in Theorem 2.7, we anticipate the result from [15] for the Pascal
matrix.

R E F E R E N C E S

1. R. Aggarwala and M.P. Lamoureux, Inverting the Pascal matrix plus one, Amer. Math.
Montly 109 (2002), 371–377.

2. G.S. Call, D.J. Vellman, Pascal matrices, Amer. Math. Monthly 100 (1993) 372–376.

3. G. S. Cheon, J. S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001)
49–59.

4. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
New York, New Rochelle, Melbourne, Sydney, 1986.

5. G. Y. Lee, J. S. Kim, S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete
Appl. Math. 130 (2003) 527–534.

6. M. E. Mikkawy, On a connection between the Pascal, Vandermonde and Stirling matrices - I,
Appl. Math. Comput. 145 (2003) 23–32.

7. M. E. Mikkawy, On a connection between the Pascal, Vandermonde and Stirling matrices - II,
Appl. Math. Comput. 146 (2003) 759–769.

8. M. E. Mikkawy, B. Desouky, On a connection between symmetric polynomials, generalized
Stirling numbers and the Newton general divided difference interpolation polynomial, Appl.
Math. Comput. 138 (2003) 375-385.



A generalization of the Pascal matrix and its properties 27

9. M. Spivey, A. Zimmer, Symmetric polynomials, Pascal matrices and Stirling matrices, Linear
Algebra Appl. 428 (2008) 1127–1134.
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Višegradska 33

18000 Niš, Serbia
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