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THE UNIQUENESS THEOREM FOR MEROMORPHIC FUNCTIONS
SHARING A SET∗

Ping He

Abstract. The study about the field of uniqueness of meromorphic function is important
and interesting for the researchers. In this paper, we prove the uniqueness theorem
of nonconstant meromorphic functions which share a common set and obtain some
uniqueness results.

1. Introduction

Let f (z) and 1(z) are nonconstant meromorphic functions in the complex C.
We shall use the standard notations in Nevanlinna’s value distribution theory of
meromorphic functions such as T(r, f ), N(r, f ) and m(r, f ) and so on, see [1-3]. In
particular, B( f ) denotes the family of all meromorphic functions a(z) such that
T(r, a(z)) = S(r, f ), where r −→ ∞ outside of a possible exceptional set of finite
logarithmic measure. So we define

E f (B) =
⋃

a∈B

{ f (z) − a = 0, countin1 −multiplicities},

E f (B) =
⋃

a∈B

{ f (z) − a = 0, i1norin1 −multiplicities}.

The f and 1 share a set B CM, resp. IM, provided that E f (B) = E1(B), resp.

E f (B) = E1(B)

P. Li and C. C. Yang [4] proved the following theorem,

Theorem A [4]. Let f be a non-constant entire function and a1, a2 be two
distinct complex numbers. If f and f ′ share the set {a1, a2} CM, then f takes one of
the following conclusions:
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(i) f = f ′.

(ii) f + f ′ = a1 + a2.

(iii) f = c1ecz+ c2e−cz,with a1+a2 = 0, where c, c1, c2 are non-zero constants which
satisfy c2

, 1 and c1c2 =
1
4 a2

1
(1 − 1

c1
).

J. Heittokangas and R. Korhonen [5] obtained the following,

Theorem B [5]. Let f be a transcendental meromorphic function of finite order,
let c ∈ C\{0}, and let a1, a2, a3 ∈ B( f )

⋃

{∞} be three distinct periodic functions with
period c. If f (z) and f (z + c) share a1, a2 CM, and a3 IM, then f (z) ≡ f (z + c).

Kai Liu[6] got the result as following,

Theorem C [6]. Let f (z) be a transcendental entire function of finite order,
c ∈ C\{0},and let a(z) ∈ B( f ) be a non-vanishing periodic entire function with
period c. If f (z) and f (z + c) share the set {a(z),−a(z)} CM, then f (z) must take one
of the following conclusions:

(i) f (z) ≡ f (z + c).

(ii) f (z) + f (z + c) = 0.

(iii) f (z) = 1
2 (h1(z) + h2(z)), where

h1(z+c)
h1(z) = −eγ,

h2(z+c)
h2(z) = eγ, h1(z)h2(z) = a(z)2(1 −

e−2γ) and γ is a polynomial.

It is natural to ask what will be happen when f is a transcendental meromorphic
function in theorem C. In this paper, we obtain the following results.

Theorem 1. Let f (z) be a transcendental meromorphic function of finite order,
c ∈ C\{0}, and let a(z) ∈ B( f ) be a non-vanishing periodic meromorphic function

with period c. If f (z) and f (z+c) share the set {a(z),−a(z)}CM, and N(r, f 2(z+c)−a2) =

N(r, f 2(c) − a2) = S(r, f ), then f (z) must take one of the following conclusions:

(i) f (z) ≡ f (z + c).

(ii) f (z) + f (z + c) = 0.

(iii) f (z) = 1
2 (ψ1+ψ2), where

ψ1(z+c)

ψ1(z) = −ϕ(z),
ψ2(z+c)

ψ2(z) = ϕ(z),ψ1ψ2 = a(z)2(1−ϕ(z)−2)

and ϕ(z) is a meromorphic function.

Theorem 2. Let f (z) be a transcendental meromorphic function of finite order,
c ∈ C\{0}, and let a(z) ∈ B( f ) be a non-vanishing periodic meromorphic function

with period c. If f (z) and f (z + c) share the sets {a(z),−a(z)}, {0} CM, and N(r, f 2(z +

c) − a2) = N(r, f 2(z) − a2) = S(r, f ), then f (z) = ± f (z + c).

Theorem 3. Let f be a transcendental meromorphic function of finite order, and
let a be a non-zero finite constant. If f (z) and ∆c f = f (z + c) − f (z) share the set

{a,−a} CM, and N(r, (∆c f )2 − a2) = N(r, f 2 − a2) = S(r, f ), then f (z + c) = 2 f (z).

Theorem 4. There exists a set B with two elements such that if f is a tran-
scendental meromorphic function of finite order with at most finitely many zeros

and E f (z)(B) = E f (z+c)(B), and N(r, f 2(z + c) − a2) = N(r, f 2(z) − a2) = S(r, f ), then
f (z + c) = ± f (z).
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2. Several lemmas

In this section, we give several lemmas to prove the above theorems.

Lemma 1 [1]. Let f be a transcendental meromorphic function, Pk( f ) denote a
polynomial in f of degree k, and ai, i = 1, 2, ..., n, denote finite distinct constants in
C. Let

1 =
Pk( f ) f ′

( f − a1)...( f − an)
.

If k < n, then m(r, 1) = S(r, f ).

Lemma 2 [7]. Let f be a non-constant meromorphic function, c ∈ C, δ < 1, and
ε > 0. Then

m(r,
f (z + c)

f (z)
) = o(

T(r + |c|, f )1+ε

rδ
)

for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 3 [8]. Let f be a non-constant meromorphic function of finite order,
c ∈ C, δ < 1. Then

m(r,
f (z + c)

f (z)
) = o(

T(r, f )

rδ
) = S(r, f ).

where S(r, f ) = o(T(r, f )) for all r outside of a possible exceptional set E with finite
logarithmic measure.

Lemma 4 [8]. Let f be a non-constant meromorphic function of finite order, and
let c ∈ C, n ∈N. Then for any small periodic function a(z) ∈ B( f ) with period c,

m(r,
∆n

c f

f (z) − a(z)
) = S(r, f ).

Lemma 5. Let f be a non-constant meromorphic function of finite order, and let

a(z) ∈ B( f ). If f and∆c f share the set {a,−a}CM, and N(r, (∆c f )2−a2) = N(r, f 2−a2) =
S(r, f ), then

(∆c f − a)(∆c f + a) = ( f − a)( f + a)ϕ2(z),(2.1)

where ϕ2(z) is a meromorphic function such that T(r, ϕ2(z)) = S(r, f ).

Proof. Let 1 = ∆c f . Since f and 1 are meromorphic functions and share the set
{a,−a} CM, there exists an meromorphic function ϕ2(z) such that

(1 − a)(1 + a) = ( f − a)( f + a)ϕ2(z).(2.2)

So we get

ϕ2(z) =
12 − a2

f 2 − a2
.(2.3)

By the second fundamental theorem, we have
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T(r, f ) ≤ N(r,
1

f − a
) +N(r,

1

f + a
) +N(r, f ) + S(r, f )

≤ N(r,
1

1 − a
) +N(r,

1

1 + a
) +N(r, 1) + S(r, f )

≤ 3T(r, 1) + S(r, f )

On the other hand, the fact that f is an meromorphic function of finite order,
we have T(r, 1) ≤ 3T(r, f ) + S(r, f ). Therefore, S(r, f ) = S(r, 1).

From (2.3) and by the second fundamental theorem, we obtain

T(r, ϕ2(z)) ≤ N(r, ϕ2(z)) +N(r,
1

ϕ2(z)
) +N(r,

1

ϕ2(z) − 1
) + S(r, ϕ2(z))

≤ 2N(r, 12 − a2) + 2N(r, f 2 − a2) + S(r, ϕ2(z))

≤ S(r, f ).

Hence T(r, ϕ2(z)) = S(r, f ).

3. Proof of the Theorems

3.1. Proof of Theorem 1

Proof. Recall that the idea of the proof is similar to the proof of [6]. Since f (z)
be a transcendental meromorphic function of finite order and f and 1 share the set
{a,−a} CM, there exists an meromorphic function ϕ2(z) such that

( f (z + c) − a(z))( f (z + c) + a(z)) = ( f (z) − a(z))( f (z)+ a(z))ϕ2(z),(3.1)

Since T(r, ϕ2(z)) = S(r, f ).

Case 1. If ϕ2(z) = 1, from (3.1), we get f (z) = f (z + c) or f (z) + f (z + c) ≡ 0.

Case 2. If ϕ2(z) , 1, let ψ1 := f (z)−ϕ−1(z) f (z+ c) and ψ2 := f (z)+ϕ−1(z) f (z+ c).
Then

f (z) =
1

2
(ψ1 + ψ2), f (z + c) =

1

2
ϕ(z)(ψ2 − ψ1).(3.2)

From (3.1), we have

ψ1ψ2 = a(z)2(1 − ϕ(z)−2),(3.3)
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which means that

N(r,
1

ψi
) = S(r, f ),N(r, ψi) = S(r, f ), i = 1, 2.(3.4)

From the expressions of ψ1 and ψ2, we get T(r, ψi) ≤ 2T(r, f ) + S(r, f ), so that
S(r, ψi) = o(T(r, f )), i = 1, 2.

Let α :=
ψ1(z+c)

ψ1(z) , β :=
ψ2(z+c)

ψ2(z) . From (3.4) and by Lemma 3, we have

T(r, α) = m(r, α) +N(r, 1
ψ1

) +N(r, ψ1)(3.5)

= S(r, f ),T(r, β)(3.6)

= m(r, β) +N(r, 1
ψ2

) +N(r, ψ2)(3.7)

= S(r, f ).(3.8)

From (3.2), we get

ϕ(z)ψ2(z) − ϕ(z)ψ1(z) = ψ1(z + c) + ψ2(z + c).(3.9)

From the definition of α and β, we conclude that

(ϕ(z) + α)ψ1 = (ϕ(z) − β)ψ2.(3.10)

From (3.3) and (3.10), it follows that

(ϕ(z)+ α)ψ2
1 − (ϕ(z) − β)a(z)2(1 − ϕ(z)−2) = 0.(3.11)

By (3.8), (3.11) and Lemma 5 we get α = −ϕ(z) and β = ϕ(z). Otherwise, we
get T(r, ψ1) = S(r, f ). Combining (3.2) and (3.3), we conclude that T(r, f ) = S(r, f ),
which is impossible. Thus, we have completed the proof of Theorem 1.

3.2. Proof of Theorem 2

Proof. It suffices to consider the case (iii) in Theorem 1. We assume that
f (z0) = 0. Since f (z) and f (z + c) share 0 CM, then ψ1(z0) + ψ2(z0) = 0 and ψ1(z0 +

c) + ψ2(z0 + c) = 0. Hence

ψ1(z0 + c)

ψ1(z0)
·
ψ2(z0)

ψ2(z0 + c)
= 1.(3.12)

From
ψ1(z+c)

ψ1(z) = −ϕ(z),
ψ2(z+c)

ψ2(z) = ϕ(z), we obtain

ψ1(z0 + c)

ψ1(z0)
·
ψ2(z0)

ψ2(z0 + c)
= −1(3.13)
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a contradiction. Hence 0 must be the Picard exceptional value of f (z) and f (z + c),
which implies that ψ1(z)+ψ2(z) , 0. Combining this with ψ1ψ2 = a(z)2(1−ϕ(z)−2),
we get the following equation

ψ1(z) + ψ2(z) =
a(z)2(1 − ϕ(z)−2) + ψ2

1

ψ1
= 2 f (z),(3.14)

From (3.3), (3.14) and by Lemma 5, we have

N(r, ψ2
1) = S(r, f ),N(r,

1

ψ2
1

) = S(r, f ),N(r,
1

a(z)2(1 − ϕ(z)−2) + ψ2
1

) = S(r, f ).

Applying the second main theorem for three small target functions, we get

T(r, f ) + S(r, f ) = T(r, ψ2
1
) ≤ N(r, ψ2

1
) +N(r, 1

ψ2
1

)

+N(r, 1
a(z)2(1−ϕ(z)−2)+ψ2

1

) + S(r, ψ1)

= S(r, f ),

which is a contradiction. So we can remove the case (iii) to get f (z) = ± f (z + c).

3.3. Proof of Theorem 3

Proof. From Lemma 5, we must have T(r, ϕ2(z)) = S(r, f ). If ϕ2(z) = 1, thus
f (z + c) = 2 f (z). If ϕ2(z) , 1, using a method similar to the proof of Theorem 1,

we easily get
ψ1(z+c)

ψ1(z) = 1 − ϕ(z),
ψ2(z+c)

ψ2(z) = 1 + ϕ(z), and ψ1(z)ψ2(z) = a(z)2(1 − ϕ(z)−2).

Then we obtain

ψ1(z + c)ψ2(z + c) = ψ1(z)ψ2(z)(1− ϕ(z))(1+ ϕ(z)) = a(z)2(1 − ϕ(z + c)−2).

Thus, by computing, we can get

ϕ2(z) + ϕ−2(z) − ϕ−2(z + c) = 1.

From the above equation and [3, Theorem 1.56], we get ϕ2(z) = 1, which is a
contradiction to our assumption. That implies f (z + c) = 2 f (z). Thus, we have
completed the proof of Theorem 3.

3.4. Proof of Theorem 4

Proof. Assume that B = {a,−a}, a ∈ C\{0}. From (3.3) and Lemma 5, we have
N(r, ψ1) + N(r, 1

ψ1
) = S(r, f ). since 2 f (z) = ψ1 + ψ2 and ψ1ψ2 = a(z)2(1 − ϕ(z)−2), we

get
a(z)2(1 − ϕ(z)−2) + ψ2

1

ψ1
= 2 f (z).
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Since f has finitely many zeros, then N(r, 1
a(z)2(1−ϕ(z)−2)+ψ2

1

) = S(r, ψ1).By the second

main theorem for three small target functions, we obtain

T(r, ψ1) ≤ N(r, ψ1) +N(r,
1

ψ1
) +N(r,

1

a(z)2(1 − ϕ(z)−2) + ψ2
1

) + S(r, ψ1) ≤ S(r, ψ1)

a contradiction. So we can remove the case (iii) of Theorem 1. Thus, we have
completed the proof of Theorem 4.
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