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DIFFERENTIAL SUBORDINATION FOR MEROMORPHIC MULTIVALENT
QUASI-CONVEX FUNCTIONS *

Maslina Darus and Imran Faisal

Abstract. An attempt has been made to introduce certain new classes of meromorphic
multivalent quasi-convex functions and discuss its differential subordination properties
in the punctured unit disk U.

1. Introduction and preliminaries

Let &, , denotes the family of all functions F, of the form

— 1 . n—n/a —
(1.1) F@) = 5 +Z;anz aeN\{1}, p=1,2,..
which are analytic in the punctured unit disk U = {z:z € C |z < 1}.
Similarly &, , denotes the family of all functions F, of the form

(o)

_ 1 n—-nja _
1.2) F@) = 5 - Z;anz aeN\{l}, p=1,2,..
which are analytic in the punctured unit disk U.

For two functions f and g analyticin U, we say that the function f is subordinate
to g in U and write f(z) < g(z) or simply f < g if there exists a Schwarz function w
which is analytic in U with w(0) = 0 and |[w| < 1 such that f(z) = g(w(z))z € U.

Let ¢ : C° x U—C and let 1 analytic in U. Assume that p,¢ are analytic and
univalent in U and p satisfies the differential superordination

(1.3) h(z) < $(p(2), 2’ (2), 2p" (2); 2).

Then p is called a solution of the differential superordination.
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An analytic function g is called a subordinant if g < p,for all p satisfying equation
(1.3). A univalent function q such that p < g for all subordinates p of equation (1.3)
is said to be the best subordinant.

Let 8; be the class of all functions of the form

1 [ee)
fz) = > + Zanz” p=12,..
n=2

which are analytic in the punctured unit disk U.
Similarly &, be the class of all functions of the form

)

— 1 n —
f(z) = z_p_Za”Z p=12..

n=2

which are analytic in the punctured unit disk U.
A function f € §](&,) is meromorphic multivalent starlike if f(z) # 0 and

zf'(2)
f@)

Similarly, a function f is meromorphic multivalent convex if f’(z) # 0 and

zf"(2)
f@)

Moreover, a function f is called meromorphic multivalent Quasi-convex func-
tion if there is a meromorphic multivalent convex function g such that

(zf'(2))
9'(z)

— Re(

)>0, zel.

—Re(1 +

)>0, zel.

—Re( )>0 zel.

A function F € 8; a(Ep0) 18 meromorphic multivalent starlike if F(z) # 0 and

zF'(2)
F(z)

— Re( )>0, zel.

Similar, F € & (&, ,) is meromorphic multivalent convex if F'(z) # 0 and
zF"(z)
F(2)

A function f € &; (&, ,) is called meromorphic multivalent Quasi-convex func-
tion if there exist a meromorphic multivalent convex function G such that G’(z) # 0
and L

(zF'(2))
G'(2)

—Re(1 +

)>0, zelU.

— Re( )>0 zel.



Differential Subordination for Meromorphic... 3

In the present paper, we establish some sufficient conditions for the functions
belong to the classes & , and &, , to satisty

(#'F (2))

—Re( ol @

)<q(z), zeU

and g is the given univalent function in U. Moreover, we give applications for
these results in fractional calculus. In order to prove our subordination results, we
need to the following lemmas in the sequel.

Lemma 1.1. [11] Let q be convex univalent in the unit disk U and 1 and y € C with

Zq//(Z) E
7@ + 7/) > 0.

Re(1 +

If p is analytic in U and
Yp(2) +yzp'(2) < Pq(z) + yzq'(2),

then p < q and q is the best dominant.

Lemma 1.2. [10] Let q be univalent in the unit disk U and 6 be analytic in a domain D
containing q(U). If zq' (z)0(z) is starlike in U and

zp(2)0(p(2)) < 24(2)0(q(2))

then p < q and q is the best dominant.
2. Subordination Theorems

In this section, we establish some sufficient conditions for subordination of
analytic functions in the classes &; , and &, ,. Note also similar work has been seen
for different subclasses done by other authors (see for example [4-7])

Theorem 2.1. Let the function q be convex univalent in U such that q’(z) # 0 and
Zq//(z) ¢

7@ |y

(2.1) Re(1 + )>0, y=+#0.

Suppose that —% is analytic in U. If F € &, , satisfies the subordination

(ZPF'(2)) 2(zPF'(2))”  zG"(z) ,
- G’(Z) (#} + 7/( (ZVF/(Z))/ - G’(Z) )) < ¢q(z) +7zq (Z),
then PP
Z zZ
Cw <q(2),

and q is the best dominant.
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Proof. Let the function p be defined by

__EFFE)Y
p(z) - G/ (Z) 7 € U
It can easily observed that
@PQRY . 2PPR)Y 266

Yp(z) +yzp'(2) = G'(2) @ +( (zPF'(2)) G'(2) )

<Yq(2) +yzq' ().
Then using the assumption the theorem the assertion of the theorem follows by an
application of Lemma 1.1. [J

Corollary 2.1. Assume that eq. (2.1) holds. Let the function q be univalent in U. Let
n =1, if q satisfies the subordination

(zF'(2)) 2(zF' (2))"  zG"(2) /
NEE) W+ GF'(z)y  G(2) ) <¥q(z) +yzq'(2),
then .
_(ZG’g;) <q(2),

and q is the best dominant.

Theorem 2.2. Let the function q be univalent in U such that q # 0,z € U and Zgé?, is
starlike univalent in U. If F € &, , satisfies the subordination

z(zPF'(z))” 3 zG"(z) zq'(z)

PRy TR i@

then
(zPF'(2))

G'(2)

<4q(2),
and q is the best dominant.

Proof. Let the function i be defined by
__@FRY
Y(z) = o zelU
By setting
Ow)=a/w, w#0
it can be easily observed that 0 is analytic in C — {0}. Then by simple computation

we have
zy’(z)  z2(zPF'(z))" _2G"(2)

=a
¥(2) @ZF@) G
<Yq(z) +yzq' ).
Then using the assumption the theorem the assertion of the theorem follows by an
application of Lemma 1.2. O
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Corollary 2.2. Assume that q is convex univalent in U. Letp = 1,if F € &, , and

2(zF ()" 2G"(2), _ zq'(2)

Ry 0@ @

then
_EF @)
G'(2)

<4(2),

and q is the best dominant.
3. Applications of Fractional Integral Operator

In this section we introduce some applications of section (2) containing fractional
integral operators. Assume that f(z) = Y.’ ¢»z" and let us begin with the following
definition. Note also similar work has been seen for different subclasses done by
other authors (see for example [1, 2, 3, 8, 9]).

Definition 3.1. The fractional integral of order « is defined for a function f by,

I f(z) = ﬁfozﬂz)(z—@“—ld@ 0<a<l

where, the function f(z) is analytic in simply-connected region of the complex z-
plane containing the origin and the multiplicity of (z—()*"! is removed by requiring
log(z — () to be real when (z — C) > 0. Note that I f(z) = f(z) x z*1/T(a) forz > 0
and 0. Let

f(Z) — i (Pnzn—n/ﬁﬂ—a’
0

this implies that

I°f(z) = f(z) x 2" /T(a) = 2" /T(a) Z GpZ M forz > 0
0

= Z a, 2" ", where a, = ¢n/T(a),
0

thus
1/2F £ I£f(z) € 8;0((8;,&)

Theorem 3.1. Let the function q be convex univalent in U such that q' # 0 and

2q"(z) ¢

7@ |y

(3.1) Re(1 + )>0, y=+#0.
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(ZP(1/2P +I¢ f(2)))

Suppose that -7 Ty analytic in U. If F € & , satisfies the subordination
(2F(1/2" + I2f(2))') z(ZP(1/2F + I3 f(2)))" z(1/2F + I3 g(2))” ,
Wiy e Efeyy (e Eg@y ) VI @

fer @/ + EfE))
Z zF +I£f(2))
T Egy 1@

and q is the best dominant.

Proof. Let the function p be defined by

@1/ +Ef(2)))
(/2 +1I29(2))

p(z) = — zeU

It can easily observed that

PP+ EFQYY AP+ EFQYY 212 + Eg()
W7 ) @7 EfQ)) A7+ Eg@) )
<1q(z) + yzq' (2).

Then using the assumption the theorem the assertion of the theorem follows by an
application of lemma 1.1. [

Yp(2)+yzp'(z) = W+y(

Theorem 3.2. Let the assumptions of theorem 2.2. hold, then

@/ - @)
(1/27 ~ 9@

where F(z) = (1/2F = I£ f(z), G(z) = (1/2F — I£g(z) and q is the best dominant.

<q(z), zel
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