DIFFERENTIAL SUBORDINATION FOR MEROMORPHIC MULTIVALENT QUASI-CONVEX FUNCTIONS *

Maslina Darus and Imran Faisal

Abstract. An attempt has been made to introduce certain new classes of meromorphic multivalent quasi-convex functions and discuss its differential subordination properties in the punctured unit disk \mathbb{U} .

1. Introduction and preliminaries

Let $\mathcal{E}_{p,\alpha}^+$ denotes the family of all functions F, of the form

(1.1)
$$F(z) = \frac{1}{z^p} + \sum_{n=2}^{\infty} a_n z^{n-n/\alpha} \quad \alpha \in \mathbb{N} \setminus \{1\}, \ p = 1, 2, \dots$$

which are analytic in the punctured unit disk $\mathbb{U} = \{z : z \in C \mid |z| < 1\}$.

Similarly $\mathcal{E}_{p,\alpha}^-$ denotes the family of all functions F, of the form

(1.2)
$$F(z) = \frac{1}{z^p} - \sum_{n=2}^{\infty} a_n z^{n-n/\alpha} \quad \alpha \in \mathbb{N} \setminus \{1\}, \ p = 1, 2, \dots$$

which are analytic in the punctured unit disk U.

For two functions f and g analytic in \mathbb{U} , we say that the function f is subordinate to g in \mathbb{U} and write f(z) < g(z) or simply f < g if there exists a Schwarz function w which is analytic in \mathbb{U} with w(0) = 0 and |w| < 1 such that $f(z) = g(w(z)) z \in \mathbb{U}$.

Let $\phi: C^3 \times \mathbb{U} \to C$ and let h analytic in \mathbb{U} . Assume that p,ϕ are analytic and univalent in \mathbb{U} and p satisfies the differential superordination

(1.3)
$$h(z) < \phi(p(z), zp'(z), z^2p''(z); z).$$

Then p is called a solution of the differential superordination.

Received 2009.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45

^{*}The authors were supported by UKM-ST-06-FRGS0107-2009

An analytic function q is called a subordinant if q < p, for all p satisfying equation (1.3). A univalent function q such that p < q for all subordinates p of equation (1.3) is said to be the best subordinant.

Let \mathcal{E}_{p}^{+} be the class of all functions of the form

$$f(z) = \frac{1}{z^p} + \sum_{n=2}^{\infty} a_n z^n$$
 $p = 1, 2, ...$

which are analytic in the punctured unit disk U.

Similarly \mathcal{E}_p^- be the class of all functions of the form

$$f(z) = \frac{1}{z^p} - \sum_{n=2}^{\infty} a_n z^n$$
 $p = 1, 2, ...$

which are analytic in the punctured unit disk U.

A function $f \in \mathcal{E}_p^+(\mathcal{E}_p^-)$ is meromorphic multivalent starlike if $f(z) \neq 0$ and

$$-\operatorname{Re}(\frac{zf'(z)}{f(z)}) > 0, \quad z \in \mathbb{U}.$$

Similarly, a function f is meromorphic multivalent convex if $f'(z) \neq 0$ and

$$-\operatorname{Re}(1+\frac{zf''(z)}{f'(z)})>0, \quad z\in\mathbb{U}.$$

Moreover, a function f is called meromorphic multivalent Quasi-convex function if there is a meromorphic multivalent convex function g such that

$$-\operatorname{Re}(\frac{(zf'(z))'}{g'(z)}) > 0 \quad z \in \mathbb{U}.$$

A function $F \in \mathcal{E}_{p,\alpha}^+(\mathcal{E}_{p,\alpha}^-)$ is meromorphic multivalent starlike if $F(z) \neq 0$ and

$$-\operatorname{Re}(\frac{zF'(z)}{F(z)}) > 0, \quad z \in \mathbb{U}.$$

Similar, $F \in \mathcal{E}_{p,\alpha}^+(\mathcal{E}_{p,\alpha}^-)$ is meromorphic multivalent convex if $F'(z) \neq 0$ and

$$-\operatorname{Re}(1+\frac{zF''(z)}{F'(z)})>0, \quad z\in\mathbb{U}.$$

A function $f \in \mathcal{E}^+_{p,\alpha}(\mathcal{E}^-_{p,\alpha})$ is called meromorphic multivalent Quasi-convex function if there exist a meromorphic multivalent convex function G such that $G'(z) \neq 0$ and

$$-\operatorname{Re}(\frac{(zF'(z))'}{G'(z)}) > 0 \quad z \in \mathbb{U}.$$

In the present paper, we establish some sufficient conditions for the functions belong to the classes $\mathcal{E}_{p,\alpha}^+$ and $\mathcal{E}_{p,\alpha}^-$ to satisfy

$$-\operatorname{Re}(\frac{(z^p F'(z))'}{G'(z)}) < q(z), \quad z \in \mathbb{U}$$

and q is the given univalent function in \mathbb{U} . Moreover, we give applications for these results in fractional calculus. In order to prove our subordination results, we need to the following lemmas in the sequel.

Lemma 1.1. [11] Let q be convex univalent in the unit disk \mathbb{U} and ψ and $\gamma \in \mathbb{C}$ with

$$\operatorname{Re}(1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}) > 0.$$

If p is analytic in **U** *and*

$$\psi p(z) + \gamma z p'(z) < \psi q(z) + \gamma z q'(z),$$

then p < q and q is the best dominant.

Lemma 1.2. [10] Let q be univalent in the unit disk \mathbb{U} and θ be analytic in a domain D containing q(U). If $zq'(z)\theta(z)$ is starlike in \mathbb{U} and

$$zp'(z)\theta(p(z)) < zq(z)\theta(q(z))$$

then p < q and q is the best dominant.

2. Subordination Theorems

In this section, we establish some sufficient conditions for subordination of analytic functions in the classes $\mathcal{E}_{p,\alpha}^+$ and $\mathcal{E}_{p,\alpha}^-$. Note also similar work has been seen for different subclasses done by other authors (see for example [4-7])

Theorem 2.1. Let the function q be convex univalent in \mathbb{U} such that $q'(z) \neq 0$ and

(2.1)
$$\operatorname{Re}(1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}) > 0, \quad \gamma \neq 0.$$

Suppose that $-\frac{(z^pF'(z))'}{G'(z)}$ is analytic in \mathbb{U} . If $F \in \mathcal{E}_{p,\alpha}^+$ satisfies the subordination

$$-\frac{(z^p F'(z))'}{G'(z)}(\psi + \gamma (\frac{z(z^p F'(z))''}{(z^p F'(z))'} - \frac{zG''(z)}{G'(z)})) < \psi q(z) + \gamma z q'(z),$$

then

$$-\frac{(z^pF'(z))'}{G'(z)} < q(z),$$

and q is the best dominant.

Proof. Let the function *p* be defined by

$$p(z) = -\frac{(z^p F'(z))'}{G'(z)}, \quad z \in \mathbb{U}$$

It can easily observed that

$$\psi p(z) + \gamma z p'(z) = -\frac{(z^p F'(z))'}{G'(z)} (\psi + \gamma (\frac{z(z^p F'(z))''}{(z^p F'(z))'} - \frac{zG''(z)}{G'(z)}))$$

$$< \psi q(z) + \gamma z q'(z).$$

Then using the assumption the theorem the assertion of the theorem follows by an application of Lemma 1.1. $\ \square$

Corollary 2.1. Assume that eq. (2.1) holds. Let the function q be univalent in \mathbb{U} . Let n = 1, if q satisfies the subordination

$$-\frac{(zF'(z))'}{G'(z)}(\psi+\gamma(\frac{z(zF'(z))''}{(zF'(z))'}-\frac{zG''(z)}{G'(z)}))<\psi q(z)+\gamma zq'(z),$$

then

$$-\frac{(zF'(z))'}{G'(z)} < q(z),$$

and q is the best dominant.

Theorem 2.2. Let the function q be univalent in \mathbb{U} such that $q \neq 0, z \in \mathbb{U}$ and $\frac{zq'(z)}{q(z)}$, is starlike univalent in \mathbb{U} . If $F \in \mathcal{E}_{p,\alpha}^-$ satisfies the subordination

$$a(\frac{z(z^pF'(z))^{\prime\prime}}{(z^pF'(z))^{\prime}}-\frac{zG^{\prime\prime}(z)}{G^{\prime}(z)})< a\frac{zq^{\prime}(z)}{q(z)},$$

then

$$-\frac{(z^pF'(z))'}{G'(z)} < q(z),$$

and q is the best dominant.

Proof. Let the function ψ be defined by

$$\psi(z) = -\frac{(z^p F'(z))'}{G'(z)}, \quad z \in \mathbb{U}$$

By setting

$$\theta(\omega) = a/\omega, \ \omega \neq 0$$

it can be easily observed that θ is analytic in C – {0}. Then by simple computation we have

$$a\frac{z\psi'(z)}{\psi(z)} = a(\frac{z(z^pF'(z))''}{(z^pF'(z))'} - \frac{zG''(z)}{G'(z)})$$
$$< \psi q(z) + \gamma z q'(z).$$

Then using the assumption the theorem the assertion of the theorem follows by an application of Lemma 1.2. $\ \ \Box$

Corollary 2.2. Assume that q is convex univalent in \mathbb{U} . Let p = 1, if $F \in \mathcal{E}_{p,\alpha}^-$ and

$$a(\frac{z(zF'(z))^{\prime\prime}}{(zF'(z))^{\prime}}-\frac{zG^{\prime\prime}(z)}{G^{\prime}(z)})< a\frac{zq^{\prime}(z)}{q(z)},$$

then

$$-\frac{(zF'(z))'}{G'(z)} < q(z),$$

and q is the best dominant.

3. Applications of Fractional Integral Operator

In this section we introduce some applications of section (2) containing fractional integral operators. Assume that $f(z) = \sum_{0}^{\infty} \phi_{n} z^{n}$ and let us begin with the following definition. Note also similar work has been seen for different subclasses done by other authors (see for example [1, 2, 3, 8, 9]).

Definition 3.1. The fractional integral of order α is defined for a function f by,

$$I_z^{\alpha} f(z) = \frac{1}{\Gamma(\alpha)} \int_0^z f(z) (z - \zeta)^{\alpha - 1} d\zeta, \quad 0 \le \alpha < 1$$

where, the function f(z) is analytic in simply-connected region of the complex z-plane containing the origin and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $log(z-\zeta)$ to be real when $(z-\zeta)>0$. Note that $I_z^\alpha f(z)=f(z)\times z^{\alpha-1}/\Gamma(\alpha)$ for z>0 and 0. Let

$$f(z) = \sum_{n=0}^{\infty} \phi_n z^{n-n/\beta+1-\alpha},$$

this implies that

$$I_{z}^{\alpha}f(z) = f(z) \times z^{\alpha-1}/\Gamma(\alpha) = z^{\alpha-1}/\Gamma(\alpha) \sum_{n=0}^{\infty} \phi_{n}z^{n-n/\beta+1-\alpha} \quad for z > 0$$

$$= \sum_{n=0}^{\infty} a_{n}z^{n-n/\beta}, \quad where \quad a_{n} = \phi_{n}/\Gamma(\alpha),$$

thus

$$1/z^p \pm I_z^{\alpha} f(z) \in \mathcal{E}_{p,\alpha}^+(\mathcal{E}_{p,\alpha}^-)$$

Theorem 3.1. Let the function q be convex univalent in \mathbb{U} such that $q' \neq 0$ and

(3.1)
$$\operatorname{Re}(1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}) > 0, \quad \gamma \neq 0.$$

Suppose that $-\frac{(z^p(1/z^p+I_x^nf(z))')'}{(1/z^p+I_x^ng(z))'}$ is analytic in \mathbb{U} . If $F\in\mathcal{E}_{p,\alpha}^+$ satisfies the subordination

$$-\frac{(z^p(1/z^p+I_z^\alpha f(z))')'}{(1/z^p+I_z^\alpha g(z))'}(\psi+\gamma(\frac{z(z^p(1/z^p+I_z^\alpha f(z))')''}{(z^p(1/z^p+I_z^\alpha f(z))')'}-\frac{z(1/z^p+I_z^\alpha g(z))''}{(1/z^p+I_z^\alpha g(z))'}))<\psi q(z)+\gamma zq'(z),$$

then

$$-\frac{(z^{p}(1/z^{p}+I_{z}^{\alpha}f(z))')'}{(1/z^{p}+I_{z}^{\alpha}g(z))'} < q(z),$$

and q is the best dominant.

Proof. Let the function *p* be defined by

$$p(z) = -\frac{(z^{p}(1/z^{p} + I_{z}^{\alpha}f(z))')'}{(1/z^{p} + I_{z}^{\alpha}g(z))'}, \quad z \in \mathbb{U}$$

It can easily observed that

$$\psi p(z) + \gamma z p'(z) = -\frac{(z^{p}(1/z^{p} + I_{z}^{\alpha}f(z))')'}{(1/z^{p} + I_{z}^{\alpha}g(z))'}(\psi + \gamma (\frac{z(z^{p}(1/z^{p} + I_{z}^{\alpha}f(z))')''}{(z^{p}(1/z^{p} + I_{z}^{\alpha}f(z))')'} - \frac{z(1/z^{p} + I_{z}^{\alpha}g(z))''}{(1/z^{p} + I_{z}^{\alpha}g(z))'}))$$

$$< \psi q(z) + \gamma z q'(z).$$

Then using the assumption the theorem the assertion of the theorem follows by an application of lemma 1.1. \square

Theorem 3.2. *Let the assumptions of theorem 2.2. hold, then*

$$-\frac{(z^{p}(1/z^{p}-I_{z}^{\alpha}f(z))')'}{(1/z^{p}-I_{z}^{\alpha}g(z))'} < q(z), \quad z \in U$$

where $F(z)=(1/z^p-I_z^\alpha f(z)$, $G(z)=(1/z^p-I_z^\alpha g(z))$ and q is the best dominant.

REFERENCES

- H. M. S and S. O: Univalent Functions, Fractional Calculus and Their Applications. Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1989).
- H. M. S and S. O: Current Topic in Analytic Function Theorey. World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong (1992).
- 3. K. . M and B. R : *An Introduction to The Fractional Calculus and Fractional Differential Equations*. 1st Edn. John Wiley and Sons (1993).
- 4. M. D and R. W. I : Coefficient inequalities for a new class of univalent functions. Lobachevskii J. Math. 29(4) (2008), 221–229.

- 5. M. D and R. W. I : Sufficient Conditions for Subordination of Meromorphic Functions. Journal of Mathematics and Statistics 5(3) (2009), 141–145.
- 6. R. W. I and M. D : On subordination theorems for new classes of normalize analytic functions. Applied Math. Sci. 2 (2008), 2785–2794.
- 7. R. W. I and M. D : Differential subordination results for new classes of the family $\varepsilon(\phi,\psi)$. J. Ineq. Pure Applied Math. **10** (2009), 9–19.
- 8. R. K. R : On certain class of analytic functions and applications to fractional calculas operator. Integral Transf and Special Function 5 (1997), 247–260.
- 9. R. K. R and H. M. S : A certain subclass of analytic functions associated with operators of fractional calculas. Comput. Math. Appl. 32 (1996), 13–19.
- 10. S. S. M and P. T. M : *Differential Subordinantions: Theory and Applications*. Pure and Applied Mathematics Dekker, New York (2000).
- 11. T. N. S , V. R and S. S : Differential sandwich theorems for some subclasses of analytic functions. Austral. J. Math. Anal. Applied 3 (2006), 1–11.

Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor
D. Ehsan, Malaysia
maslina@ukm.my

Imran Faisal
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor
D. Ehsan, Malaysia
faisalmath@gmail.com

(corresponding author: maslina@ukm.my)