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DISCRETE LOCATION PROBLEM ON
ARBITRARY SURFACE IN R3∗

Predrag S. Stanimirović†and Marija Ćirić

Abstract. We consider a discrete location problem in which locations of suppliers as well
as locations of existing customers belong to arbitrary surface S in R3 and the distance
between locations is the length of the shortest arc between all arcs connecting them. The
lengths of trajectories that connect certain locations are calculated using coefficients of
the first fundamental form of the surface S. The established discrete location problem on
the surface is implemented and visualized in the programming package Mathematica.
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1. Introduction

In the general case, the task of location problem is to define positions of some
new facilities from the actual space in which some other relevant objects (points)
are already placed. New facilities are centers that provide services and called
suppliers; existing objects are the service users or clients, and called customers.
Location problems occur frequently in real life. Many systems in the public and
private sectors are characterized by facilities that provide homogeneous services
at their locations to a given set of fixed points or customers. Examples of such
facilities include warehouse location, positioning a computer and communication
units, locating hospitals, police stations, locating fire stations in a city, locating base
stations in wireless networks.

Different classifications of the location problems are known. The classification
scheme from [12] assumes five positions in the order Pos1/Pos2/Pos3/Pos4/Pos5,
where the meaning of each position is described as follows [12]:

Pos1 The number and type of new facilities to deploy.
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Pos2 Type of the location model with respect to the decision space. This informa-
tion should at least be sensible to discrete, continuous and network location
models. Continuous location models assume that the new location can be
placed anywhere in some specified feasible region which often coincides with
the complete plane; discrete models choose an optimal location from a dis-
crete set of offered points, while in the network models new facilities can be
placed either only on the nodes or on nodes and edges of the network.

Pos3 Particular information about the location model, such as information about
the feasible solutions, capacity restrictions, etc.

Pos4 Relations between new and existing facilities. These relations may be ex-
pressed by a distance function or by accompanied costs.

Pos5 Definition of the distance dependent objective function.

We pay attention to selection of the distance function in the location problem.
The distance between two points is the length of the shortest path connecting
them. The metric by which the distance between two points is measured may
be different in various instances [3]. In the calculating of distance between two
points, the most common distance metrics in a continuous space are those known
as the class of lp distance metrics, primarily rectangular (l1), Euclidean (l2) and
Chebyshev (l∞) metric. Detailed explanation of various metrics one can find in
Dictionary of distances [6]. Many factors affect on the process of metrics choosing.
The most important factor is the nature of the problem. For example, if it is
possible to move rectilinearly between two points, the distance between them is
exactly given by the Euclidean (or straight-line distance) metric. On the other
hand, in the cities where streets intersect under the right angle mainly, the distance
between two points will be the best approximated using the rectangular metric (also
known as the Manhattan, ”city block” distance, the right-angle distance metric or
taxicab distance). Choice of the metric is fundamental in the geometry construction.
Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form
of geometry in which the usual metric of Euclidean geometry is replaced by the
rectangular metric in which the distance between two points is the sum of the
absolute differences of their corresponding coordinates. Measures of distances in
chess are a characteristic example. The distance between squares on the chessboard
for rooks is measured in Manhattan distance; kings and queens use Chebyshev
distance, and bishops use the Manhattan distance.

On the other hand, the earth’s surface is approximately planar only on small
dimensions. For this reason, it is reasonable to use spherical distances to solve the
facility problems. Fundamental results regarding to the spherical distance loca-
tion problem are established in Drezner and Wesolowsky (1978) [7], Aly, Kay and
Litwhiler (1979) [1] and Drezner (1985), where the authors considered a modifica-
tion of the Weber problem which consists of locating a new facility on a sphere, so
that the weighted sum of distances to given demand points is minimized. A review
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of the spherical location problem is given in Wesolwsky (1983) [17] and Plastria
(1995) [16].

A couple of variants and extensions of continuous location problems have been
investigated in literature. Let us mention main between them. More complex
problems include the placement of multiple facilities. Problems with barriers are
the subject in [5, 11, 13, 14]. The location of undesirable (obnoxious) facilities
requires to maximize minimum distances (see, e.g., [2, 8, 9, 15]. Location models
with both desirable and undesirable facilities have been analyzed in [4].

We give an extension of the planar location problem as well as the location
problem on a sphere. Namely, instead of the plane or a sphere, arbitrary surface S
inR3 is considered as the inhabitation for customers and suppliers. The trajectories
that connect certain locations are arcs of curves on S. Instead of using the particular
metric to calculate distances, we calculate lengths of curves from S connecting
locations. In this way, we generalize results attained in the papers related with the
spherical location problem, assuming that location of a new facility and locations of
existing objects are on arbitrary surface S and that the distance between two points is
the length of the shortest curve which connects these points. Mathematica computer
program is used for calculations and as the useful teaching tool in visualization.

2. Solution and visualization of discrete location problem on the surface

We consider the discrete facility problem where the points, instead of being on a
plane or on a sphere [7], are on arbitrary surface S in R3. Assume that A1, . . . ,Am

are points on the surface S where some customers are located and let B1, . . . ,Br are
potential locations on which is possible to place a new desired object (supplier).
Suppose that the points Ai and Bk are connected by regular curves CAiBk

which lie
on the surface S. The sum of weighted distances from the potential location of the
supplier Bk to the customers is equal to the sum

Wk =

m
∑

i=1

wi · lik,

where wi is the weight associated with Ai and lik = lAiBk
denotes the length of the

arc CAiBk
= Cik connecting Ai and Bk.

Let us restate some known facts (see, for example [10]). Assume that the surface
S is given by the parametric equation

S : r = r(u, v).

Then the equation of an arbitrary curve C on the surface S is

C : r(t) = r(u(t), v(t)).

The first fundamental form of the surface S is given by

ds2 = Edu2 + 2Fdudv + Gdv2
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where

E = ru · ru, F = ru · rv, G = rv · rv

are the coefficients of the first fundamental form, ru and rv are the partial derivatives
of the function r(u, v) and the dot sign denotes the scalar product. The length of arc
of the curve C on the surface S for t ∈ (α, β) is

s =

∫ β

α

||ṙ(u)|| du =

∫ β

α

√
Eu̇2 + 2Fu̇v̇ + Gv̇2 dt.

Therefore, it is necessary to solve the discrete location problem on the surface S
with given coordinates of customers Ai, i = 1, . . . ,m and suppliers Bk, k = 1, . . . , r,
weighted coefficients wi, i = 1, . . . ,m and parametric equations of the arcs given by

Cik : rik = r(uik(t), vik(t)), t ∈ (aik, bik), i = 1, . . . ,m, k = 1, . . . , r.

The solution is obtained by the procedure which consists in several steps, as in the
following.

Step 1. For each arc Cik find αik and βik by solving the equations

rik(αik) = Ai, rik(βik) = Bk,

where [αik, βik] ⊆ (aik, bik).

Step 2. Find lengths of arcs Cik

lik =

∫ βik

αik

||ṙik(t)|| dt.

It is useful to benefit the next command in Mathematica for calculating these lengths:

arclengthprime[r_][t_] := Sqrt[Simplify[D[r[tt], tt].D[r[tt], tt]]] /. tt->t

leng[a_, b_][r_] := Abs[NIntegrate[arclengthprime[r][u], {u, a, b}]]

Step 3. Choose the weights wi, i = 1, . . . , r and compute sums of weighted distances

(2.1) Wk =

m
∑

i=1

wi · lik, k = 1, . . . , r.

Step 4. Find the minimal sum of weighted distances

(2.2) Wk∗ = min{Wk| 1 ≤ k ≤ r}.

Then the solution is the point Bk∗ .

Corresponding implementation is given by the next Mathematica function.
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discreteSurface[r_, lp_, lm_, lt_] :=

Module[{d, n, i, j, s, p, a={}, b={}, pom1, pom2, ind=1, ras, ras2, sumdist={}},

d = Length[lm]; n = Length[lp];

For[i = 1, i <= n, i++,

pom1 = {};

For[j = 1, j <= d, j++,

AppendTo[pom1, NSolve[lp[[i, 1]] == r[[i, j, 1]], t]]

];

AppendTo[a, pom1];

];

For[i = 1, i <= n, i++,

pom2 = {};

For[j = 1, j <= d, j++,

AppendTo[pom2, NSolve[lm[[j, 1]] == r[[i, j, 1]], t]]

];

AppendTo[b, pom2];

];

For[i = 1, i <= d, i++,

AppendTo[sumdist,

Sum[lt[[k]]*leng[a[[k, i]], b[[k, i]]][r[[k, i]]], {k, 1, n}]];

];

ras = sumdist[[1]];

For[j = 2, j <= d, j++,

ras2 = sumdist[[j]];

If[ras > ras2, ind = j; ras = ras2];

];

Return[lm[[ind]]];

];

Example 2.1. Let be given the locations of two points

A1(
√

2/2,
√

2/2, 1/2), A2(1, e, e)

on the surface S : r(u, v) = (u, v, uv). Two locations are possible for new object (supplier):

B1(0, 1, 0), B2(1, 1, 1).

The weighted coefficients corresponding to A1 and A2 are equal to w1 = 3 and w2 = 1, respectively.
Suppose that the arcs between two points Ai and Bk are given by the following equations:

C11 : r(t) = (cos t, sin t, cos t sin t),

C12 : r(t) = (cos t, cos t, cos2 t),

C21 : r(t) = (t, 1 + (e − 1)t, t + (e − 1)t2),

C22 : r(t) = (1, et, et).

Determine the coordinates of the new object which minimizes (2.1) and corresponds to the minimal
sum of weighted distances (2.2). The next program in Mathematica gives us graphical presentation of
the surface S with observing paths.

p = Plot3D[u*v, {u, -1, 2}, {v, -2, 4},

MeshStyle-> GrayLevel[.4], Shading->False, PlotPoints->20,

DisplayFunction->Identity

];

c11[u_] := {Cos[u], Sin[u], Cos[u]*Sin[u]}

q = ParametricPlot3D[

Append[c11[u], {RGBColor[1,0,0], AbsoluteThickness[2]}]//Evaluate,
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{u, Pi/4, Pi/2},

DisplayFunction -> Identity

];

c12[u_] := {Cos[u], Cos[u], Cos[u]ˆ2}

r = ParametricPlot3D[ Append[c12[u], {RGBColor[0,1,0], AbsoluteThickness[2]}]//Evaluate,

{u, 0, Pi/4},

DisplayFunction -> Identity

];

e := 2.61

c21[t_] := {t, 1 + (e - 1)*t, t + (e - 1)*tˆ2}

s =ParametricPlot3D[ Append[c21[u], {RGBColor[0,0,1], AbsoluteThickness[2]}]//Evaluate,

{u, 0, 1},

DisplayFunction -> Identity

];

c22[t_] := {1, eˆt, eˆt}

f = ParametricPlot3D[ Append[c22[u], {RGBColor[0,1,1], AbsoluteThickness[2]}]//Evaluate,

{u, 0, 1},

DisplayFunction -> Identity

];

Show[ p, q, r, s, f,

ViewPoint->{3,-1,4}, BoxRatios->{1,1,1},

Boxed->False, Ticks->None, Axes->False, DisplayFunction->$DisplayFunction

]

Graphical illustration made using Mathematica is presented on Figure 1.

Figure 1. Distance as the length of curve

Let calculate the coefficients of the first fundamental form of the surface S:

ru = (1, 0, v), rv = (0, 1,u), E = 1 + v2 , F = u v, G = 1 + u2.

Look at the each curve C particulary and compute its length l:
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C11 :

{

u(t) = cos t, u̇(t) = − sin t
v(t) = sin t, v̇(t) = cos t,

l11 =

∫ π/2

π/4

√
Eu̇2 + 2Fu̇v̇ + Gv̇2dt ≈ 0.96

C12 :

{

u(t) = cos t, u̇(t) = − sin t
v(t) = cos t, v̇(t) = − sin t,

l12 =

∫ π/4

0

√
Eu̇2 + 2Fu̇v̇ + Gv̇2dt ≈ 0.65

C21 :

{

u(t) = t, u̇(t) = 1
v(t) = 1 + (e − 1)t, v̇(t) = e − 1,

l21 =

∫ 1

0

√
Eu̇2 + 2Fu̇v̇ + Gv̇2dt ≈ 3.42

C22 :

{

u(t) = 1, u̇(t) = 0
v(t) = et, v̇(t) = et,

l22 =

∫ 1

0

√
Eu̇2 + 2Fu̇v̇ + Gv̇2dt ≈ 2.43.

Now we can calculate the sum of the weighted distances from the potential locations of the supplier to
the customers.

W1 = w1 · l11 + w2 · l21 = 3 · 0.96 + 1 · 3.42 = 6.3

W2 = w1 · l12 + w2 · l22 = 3 · 0.65 + 1 · 2.43 = 4.38.

Therefore, the new object will be built on the location B2, i.e. on the location whose coordinates are
(1, 1, 1). The sum of the weighted distances adjoint to this point is 4.38.

This model could be solved by the next Mathematica expression

e = Exp[1] // N;

discreteSurface[{{{Cos[t], Sin[t], Cos[t]*Sin[t]}, {Cos[t], Cos[t], Cos[t]ˆ2}},

{{t, 1+(e-1)*t, t+(e-1)*tˆ2}, {1, eˆt, eˆt}}},

{{1.41/2, 1.41/2, 0.5}, {1, e, e}}, {{0, 1, 0}, {1, 1, 1}}, {3, 1}]

Example 2.2. Let A1(0, 0, 0) and A2(π, 0, 0) be the locations of two points on the surface defined as

S : z = sin(x + sin y).

There are two possible locations for the new object: B1(0, π, 0) and B2(π, π, 0). The weighted coefficients
corresponding to A1 and A2 are w1 = 3 and w2 = 1, respectively. The arcs between the points Ai and Bk

are parts of curves given by the next equations:

C11 : r(t) = (0, t, sin(sin t)),

C12 : r(t) = (t, t, sin(t + sin t)),

C21 : r(t) = (t + π,−t, sin(t + π + sin(−t))),

C22 : r(t) = (π, t, sin(π + sin t)).

Determine the coordinates of new object. Graphical illustration made using Mathematica is presented
on Figure 2.
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Figure 2. Distance is computed as the length of arc

Corresponding lengths of arcs are:

l11 =

∫ π

0

√

1 + cos2(sin t) · cos2 t dt ≈ 3.68

l12 =

∫ π

0

√

2 + cos2(t + sin t) · (cos t + 1)2 dt ≈ 5.08

l21 =

∫ 0

−π

√

2 + cos2(t + π + sin(−t)) · (cos(−t) − 1)2 dt ≈ 5.08

l22 =

∫ π

0

√

1 + cos2(π + sin t) · cos2 t dt ≈ 3.68.

The sum of weighted distances are:

W1 = w1 · l11 + w2 · l21 = 3 · 3.68 + 1 · 5.08 = 16.12

W2 = w1 · l12 + w2 · l22 = 3 · 5.08 + 1 · 3.68 = 18.92.

Therefore, the new object will be built on the location B1(0, π, 0). The sum of weighted distances for that
point is equal to 16.12.

This model could be solved by the next Mathematica command

discreteSurface[{{{0, t, Sin[Sin[t]]}, {t, t, Sin[t + Sin[t]]}},

{{t+Pi, -t, Sin[t+Pi+Sin[-t]]}, {Pi, t, Sin[Pi+Sin[t]]}}},

{{0, 0, 0}, {Pi, 0, 0}}, {{0, Pi, 0}, {Pi, Pi, 0}}, {3, 1}]

3. Conclusion

It seems interesting and reasonable to investigate the location problem and its
various extensions in a more general non-convex case, where the shortest length
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of arc is used as distance instead of a particular metrics. Also, a lot of real-word
problems are non-convex.

We consider the discrete location problem where the points, instead of being on
a plane or on a sphere, lie on arbitrary surface S. arbitrary surface S in R3 is used
instead of the plane or a sphere. The trajectories that connect certain locations are
arcs of curves on S. Lengths of these curves are calculated as a generalization of
the usage of a particular metric in distances calculation.

Visual and interactive representation of the location problem is useful in ped-
agogical purposes. Visualization and interactive tools help students to quickly
obtain an intuitive feel of the location problem as well as to learn the topic more
rapidly and with lesser pain.

We use the programming package Mathematica as a powerful visualization tool
and a powerful platform for performing calculations.
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