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A MULTI-STEP CURVE SEARCH ALGORITHM IN NONLINEAR
OPTIMIZATION: NONDIFFERENTIABLE CONVEX CASE

Nada I. Ðuranović-Miličić and Milanka Gardašević-Filipović

Abstract. In this paper a multi-step algorithm for minimization of a nondifferentiable
function is presented. It is based on the results from [5] and [6]. The algorithm uses the
Moreau-Yosida regularization of the objective function and its second order Dini upper
directional derivative. This method uses previous multi-step iterative information and
curve search to generate new iterative points. It is proved that the algorithm is well
defined, as well as the convergence of the sequence of points generated by the algorithm
to an optimal point. An estimate of the rate of convergence is given, too.

Keywords. multi-step, Moreau-Yosida regularization, unconstrained non-smooth con-
vex optimization, second order Dini upper directional derivative.

1. Introduction

The following minimization problem is considered:

(1.1) min
x∈Rn

f (x)

where f : Rn → R∪{+∞} is a convex and not necessary differentiable function with
a nonempty set X∗ of minima.

For nonsmooth programs, many approaches have been presented so far and they
are often restricted to the convex unconstrained case. It is reasonable because a
constrained problem can be easily transformed to an unconstrained problem using
a distance function. In general, the various approaches are based on combina-
tions of the following methods: subgradient methods; bundle techniques and the
Moreau-Yosida regularization.

For a function f it is very important that its Moreau-Yosida regularization is a new
function which has the same set of minima as f and is differentiable with Lipschitz
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continuous gradient, even when f is not differentiable. In [13], [14] and [23] the
second order properties of the Moreau-Yosida regularization of a given function f
are considered.

Having in mind that the Moreau-Yosida regularization of a proper closed convex
function is an LC1 function, we present an optimization algorithm (using the second
order Dini upper directional derivative (described in [1] and [2])) based on the
results from [5]. That is the main idea of this paper.

We shall present an iterative algorithm for finding an optimal solution of problem
(1.1) by generating the sequence of points {xk} of the following form:

(1.2) xk+1 = xk + αksk + α
2
kdk k = 0, 1, . . . , sk , 0, dk , 0

where the step-size αk and the directional vectors sk and dk are defined by the
particular algorithms.

Paper is organized as follows: in the second section some basic theoretical pre-
liminaries are given; in the third section the Moreau-Yosida regularization and its
properties are described; in the fourth section the definition of the second order Dini
upper directional derivative and the basic properties are given; in the fifth section
the semi-smooth functions and conditions for their minimization are described.
Finally in the sixth section a model algorithm is suggested and its convergence is
proved, and an estimate rate of its convergence is given, too.

2. Theoretical preliminaries

Throughout the paper we will use the following notation. A vector s refers to

a column vector, and ∇ denotes the gradient operator
(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)T

. The

Euclidean product is denoted by 〈·, ·〉 and ‖ · ‖ is the associated norm; B(x, ρ) is
the ball centred at x with radius ρ. For a given symmetric positive definite linear
operator M we set 〈·, ·〉M := 〈M·, ·〉; hence it is shortly denoted by ‖x‖2

M
:= 〈x, x〉M.

The smallest and the largest eigenvalue of M we denote by λ and Λ respectively.

The domain of a given function f : Rn → R∪{+∞} is the set dom( f ) = {x ∈ Rn| f (x) <
+∞}. We say that f is proper if its domain is nonempty.

The point x∗ = arg minx∈Rn f (x) refers to the minimum point of a given function
f : Rn → R ∪ {+∞}.

The epigraph of a given function f : Rn → R ∪ {+∞} is the set epi f = {(α, x) ∈
R × Rn| α > f (x)}. The concept of the epigraph gives us a possibility to define
convexity and closure of a function in a new way. We say that f is convex if its
epigraph is a convex set, and f is closed if its epigraph is a closed set.

In this section we will give the definitions and statements necessary in this work.
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Definition 2.1. A vector 1 ∈ Rn is said to be a subgradient of a given proper convex
function f : Rn → R ∪ {+∞} at a point x ∈ Rn if the next inequality

(2.1) f (z) > f (x) + 1T · (z − x)

holds for all z ∈ Rn. The set of all subgradients of f (x) at the point x, called the
subdifferential at the point x, is denoted by ∂ f (x). The subdifferential ∂ f (x) is a
nonempty set if and only if x ∈ dom( f ).

For a convex function f it follows that f (x) = maxz∈Rn{ f (z)+ 1T(x− z)} holds, where
1 ∈ ∂ f (z) (see [7]).
The concept of the subgradient is a simple generalization of the gradient for non-
differentiable convex functions.

Lemma 2.1. Let f : S→ R∪ {+∞} be a convex function defined on a convex set S ⊆ Rn,
and x′ ∈ int S. Let {xk} be a sequence such that xk → x′, where xk+1 = xk + εksk + ε2

k
dk,

k = 0, 1, . . . , sk , 0, dk , 0, εk > 0, εk → 0 and sk → s, dk → d and 1k ∈ ∂ f (xk). Then all
accumulation points of the sequence {1k} lie in the set ∂ f (x′).

Proof. Since 1k ∈ ∂ f (xk) then the inequality f (y) > f (xk) + 1T
k
· (y − xk) holds for

any y ∈ S. Hence, taking any subsequence for which 1k → 1′ it follows that
f (y) > f (x′) + 1

′T · (y − x′), which means that 1′ ∈ ∂ f (x′).

Definition 2.2. The directional derivative of a real function f defined on Rn at the
point x′ ∈ Rn in the direction s ∈ Rn, denoted by f ′(x′, s), is

(2.2) f ′(x′, s) = lim
t↓0

f (x′ + t · s) − f (x′)
t

when this limit exists.

Hence, it follows that if the function f is convex and x′ ∈ dom f , then

(2.3) f (x′ + t · s) = f (x′) + t · f ′(x′, s) + o(t)

holds, which can be considered as one linearization of the function f (see in [8]).

Lemma 2.2. Let f : S→ R∪ {+∞} be a convex function defined on a convex set S ⊆ Rn,
and x′ ∈ int S. If the sequence xk → x′, where xk = x′ + εksk, εk > 0, εk → 0 and sk → s
then the next formula:

(2.4) f ′(x′, s) = lim
k→∞

f (xk) − f (x′)
εk

= max
1∈∂ f (x′)

sT
1

holds.

Proof. See in [9] or [17].
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Lemma 2.3. Let f : S→ R∪ {+∞} be a convex function defined on a convex set S ⊆ Rn.
Then ∂ f (x) is bounded for ∀x ∈ B ⊂ int S, where B is a compact.

Proof. See in [10] or [12].

Proposition 2.1. Let f : Rn → R ∪ {+∞} be a proper convex function. The condition:

(2.5) 0 ∈ ∂ f (x)

is a first order necessary and sufficient condition for a global minimizer at x ∈ Rn. This can
be stated alternatively as:

(2.6) ∀s ∈ Rn, ‖s‖ = 1 max
1∈∂ f (x)

sT
1 > 0.

Proof. See [16].

Lemma 2.4. If a proper convex function f : Rn → R ∪ {+∞} is a differentiable function
at a point x ∈ dom( f ), then:

(2.7) ∂ f (x) = {∇ f (x)}.

Proof. The statement follows directly from Definition 2.2.

Lemma 2.5. Let fi : Rn → R∪ {+∞} for i ∈ {1, 2, . . . , n}, n ∈ N be convex functions, and
f (x) = maxi∈{1,2,...,n} fi(x). Then the function f is a convex function, and its subgradient at
the point x ∈ Rn, i.e. 1 ∈ ∂ f (x) is given as follows:

(2.8) 1 =















∑

i∈Î

λi1i

∣

∣

∣

∣

∣

∣

∑

i∈Î

λi = 1, λi > 0, 1i ∈ ∂ fi(x) for i ∈ Î















where Î is the set Î = {i ∈ I| f (x) = fi(x)}.

Proof. See in [7].

Definition 2.3. The real function f defined on Rn is LC1 function on the open set
D ⊆ Rn if it is continuously differentiable and its gradient ∇ f is locally Lipschitz,
i.e.

‖∇ f (x) − ∇ f (y)‖ 6 L‖x − y‖ for x, y ∈ D(2.9)

for some L > 0.
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3. The Moreau-Yosida regularization

Definition 3.1. Let f : Rn → R ∪ {+∞} be a proper closed convex function. The
Moreau-Yosida regularization of a given function f , associated to the metric defined
by M, denoted by F, is defined as follows:

(3.1) F(x) := min
y∈Rn

{

f (y) +
1
2
‖y − x‖2M

}

The above function is an infimal convolution. In [18] it is proved that the infimal
convolution of a convex function is also a convex function. Hence the function
defined by (3.1) is a convex function and has the same set of minima as the function
f (see in [8]), so the motivation of the study of Moreau-Yosida regularization is due
to the fact that minx∈Rn f (x) is equal to minx∈Rn F(x).

Definition 3.2. The minimum point p(x) of the function (3.1):

(3.2) p(x) := arg miny∈Rn

{

f (y) +
1
2
‖y − x‖2M

}

is called the proximal point of x.

Proposition 3.1. The function Fdefined by (3.1) is always differentiable.

Proof. See in [8].

The first order regularity of F is well known (see in [8] and [13]): without any
further assumptions, F has a Lipschitzian gradient on the whole space Rn. More
precisely, for all x1, x2 ∈ Rn the next formula:

(3.3) ‖∇F(x1) − ∇F(x2)‖2 6 Λ〈∇F(x1) − ∇F(x2), x1 − x2〉

holds (see in [13]), where ∇F(x) has the following form:

(3.4) G := ∇F(x) =M(x − p(x)) ∈ ∂ f (p(x))

and p(x) is the unique minimum in (3.1). So, according to above consideration and
Definition 2.3, we conclude that F is an LC1 function (see in [14]).
Note that the function f has nonempty subdifferential at any point p of the form
p(x). Since p(x) is the minimum point of the function (3.1) then (see in [8] and [13]):

p(x) = x −M−1
1 where 1 ∈ ∂ f (p(x)).(3.5)

In [13] it is also proved that for all x1, x2 ∈ Rn the next formula:

(3.6) ‖p(x1) − p(x2)‖2M 6 〈M(x1 − x2), p(x1) − p(x2)〉

is valid, namely the mapping x→ p(x), where p(x) is defined by (3.2), is Lipschitzian

with constant
Λ

λ
(see Proposition 2.3. in [13]).
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Lemma 3.1. The following statements are equivalent:

(i)x minimizes f ; (ii)p(x) = x; (iii)∇F(x) = 0;

(iv)x minimizes F; (v) f (p(x)) = f (x); (vi)F(x) = f (x).

Proof. See in [8] or [23].

4. Dini second upper directional derivative

We shall give some preliminaries that will be used in the remainder of the paper.

Definition 4.1. [22] The second order Dini upper directional derivative of the function
f ∈ LC1 at the point x ∈ Rn in the direction d ∈ Rn is defined to be

f ′′D (x, d) = lim sup
α↓0

[∇ f (x + αd) − ∇ f (x)]T · d

α
.

If ∇ f is directionally differentiable at xk, we have that

f ′′D (xk, d) = f ′′(xk, d) = lim
α↓0

[∇ f (x + αd) − ∇ f (x)]T · d

α

for all d ∈ Rn.

Since the Moreau-Yosida regularization of a proper closed convex function f is an
LC1 function, we can consider its second order Dini upper directional derivative at
the point x ∈ Rn in the direction d ∈ Rn. Using (3.4) we can state that:

F′′D(x, d) = lim sup
α↓0

11 − 12

α
d,

where F(x) is defined by (3.1) and 11 ∈ ∂ f (p(x + αd)), 12 ∈ ∂ f (p(x)).

Lemma 4.1. Let f : Rn → R be a closed convex proper function and F is its Moreau –
Yosida regularization. Then the next statements are valid.

(i) F′′
D

(xk, kd) = k2F′′
D

(xk, d)
(ii) F′′

D
(xk, d1 + d2) 6 2(F′′

D
(xk, d1) + F′′

D
(xk, d2))

(iii) |F′′
D

(xk, d)| 6 K · ‖d‖2, where K is some constant.

Proof. See in [22] and [2].

Lemma 4.2. Let f : Rn → R be a closed convex proper function and let F be its Moreau
– Yosida regularization. Then the next statements are valid.

(i) F′′D(x, d) is upper semicontinuous with respect to (x, d), i.e. lim supi→∞ F′′D(xi, di) 6
F′′D(x, d) when (xi, di)→ (x, d)

(ii) F′′
D

(x, d) = max{dTVd| V ∈ ∂2F(x)}.

Proof. See in [22] and [2].
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5. Semi-smooth functions and optimality conditions

Definition 5.1. A function ∇F : Rn → Rn is said to be semi-smooth at the point
x ∈ Rn if ∇F is locally Lipschitzian at x ∈ Rn and the limit lim

h→ d
λ ↓ 0

{Vh}, V ∈ ∂2F(x+λh)

exists for any d ∈ Rn.

Note that for a closed convex proper function, the gradient of its Moreau-Yosida
regularization is a semi-smooth function.

Lemma 5.1. [22]: If ∇F : Rn → Rn is semi-smooth at the point x ∈ Rn then ∇F is
directionally differentiable at x ∈ Rn and for any V ∈ ∂2F(x + h), h → 0 we have:
Vh − (∇F)

′

(x, h) = o(‖h‖). Similarly we have that hTVh − F′′(x, h) = o(‖h‖2).

Lemma 5.2. Let f : Rn → R be a proper closed convex function and let F be its Moreau-
Yosida regularization. So, if x ∈ Rn is solution of the problem (1.1) then F′(x, d) = 0 and
F′′D(x, d) > 0 for all d ∈ Rn.

Proof. See in [6].

Lemma 5.3. Let f : Rn → R be a proper closed convex function, F its Moreau-Yosida
regularization, and x a point from Rn. If F′(x, d) = 0 and F′′D(x, d) > 0 for all d ∈ Rn, then
x ∈ Rn is a strict local minimizer of the problem (1.1).

Proof. See in [6].

6. A model algorithm

In this section an algorithm for solving the problem (1.1) is introduced. We suppose
that at each x ∈ Rn it is possible to compute f (x), F(x), ∇F(x) and F′′D(x, d) for a given
d ∈ Rn.

At the k-th iteration we consider the following problem

(6.1) min
d∈Rn
Φk(d), Φk(d) = ∇F(xk)Td +

1
2

F′′D(xk, d)

where F′′
D

(xk, d) stands for the second order Dini upper directional derivative at
xk in the direction d. Note that if Λ is a Lipschitzian constant for F it is also a
Lipschitzian constant for ∇F. The function Φk(d) is called an iteration function. It
is easy to see that Φk(0) = 0 and Φk(d) is Lipschitzian on Rn.

We generate the sequence {xk}of the form xk+1 = xk+αksk+α2
k
dk, where the directional

vectors sk and dk are defined by the particular algorithms called Direction vector
rule 1 and 2, and the step-size αk is defined by the particular algorithm called Curve
search rule.
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We suppose that at the k-th iteration, there is an index set Ik = {1, 2, . . . , k}, and we
store information as a bundle Bk = {(xi, f (xi), 1i)| i ∈ Ik} i.e a set of triplets indexed
by Ik consisting of the generic point xi, the value f (xi) of the objective function f at
the point xi, and an arbitrary subgradient 1i ∈ ∂ f (xi). Each triplet in the bundle Bk

defines one linearization fi(x) of the objective function given as

fi(x) = f (xi) + 1T
i (x − xi),

where i ∈ Ik. If f is a convex function then f (x) = maxz∈Rn{ f (z) + 1T(x − z)} holds,
where 1 ∈ ∂ f (z). Hence, we have that the function

f̂k(x) = max
06i6k

fi(x) = max
06i6k
{ f (xi) + 1T

i (x − xi)}

(which is, in literature, known as a cutting plane function) is a good approximation
of the function f . It is easy to see that f (x) > f̂k+1(x) > f̂k(x) hold for all x ∈ Rn.

Function f̂k(x) is a polyhedral function (piecewise linear function) and hence it is a
closed convex function. More than that, f̂k(x) could be considered as a composition
of the linear functions, i.e. max06i6k fi(x). If 1̂ ∈ ∂ f̂k(x) then since f̂k(x) is a polyhedral
function according to Lemma 2.5 we have that 1̂ =

∑

i∈Îk
λi1i, where Îk = {i ∈

Ik| f̂k(x) = fi(x)} and 1i ∈ ∂ f (xi), i ∈ Îk,
∑

i∈Îk
λi = 1, λi > 0, i.e. 1̂ is a convex

combination of the subgradients from the bundle Bk.

Lemma 6.1. Let f : Rn → R be a proper closed convex function, {xk} is a sequence of
points from Rn and 1i ∈ ∂ f (xi). Let

f̂k(x) = max
06i6k

fi(x) = max
06i6k
{ f (xi) + 1T

i (x − xi)}

be a polyhedral function. If 1̂ ∈ ∂ f̂k(x) then 1̂ ∈ ∂ f (x) for any x ∈ Rn.

Proof. Let 1̂ ∈ ∂ f̂k(y) for some y ∈ Rn. Then by Definition 2.1 the inequality

f̂k(x) > f̂k(y) + 1̂T(x − y)

holds for any x ∈ Rn. If we suppose that 1̂ < ∂ f (y) then by Definition 2.1 the next
inequality f (x) < f (y) + 1̂T(x − y) holds for any x ∈ Rn. So, we get that

f (x) − f (y) < 1̂T(x − y) 6 f̂k(x) − f̂k(y)

hold, and hence f (x) − f̂k(x) < f (y) − f̂k(y). Since f (x) > f̂k+1(x) > f̂k(x) hold for all
x ∈ Rn then from f (x)− f̂k(x) < f (y)− f̂k(y) it follows that f (y) < f̂k(y) holds for some
y ∈ Rn which contradicts f (x) > f̂k+1(x) > f̂k(x) for all x ∈ Rn.

Algorithm. Let 0 < ρ < 1, 0 < σ < 1, x1 ∈ Rn, and ε and µ be real positive numbers
small enough, k := 1 and I0 = ∅, B0 = ∅.



A multi-step curve search algorithm in nonlinear optimization 19

Step 1. For a given xk calculate fk = f (xk) and 1k = 1(xk). Set Ik = {k}∪ Ik−1\Sk, where
Sk = {i ∈ Ik−1| ‖xi − xk‖ > µ}. Set Bk = {(xi, f (xi), 1i)| i ∈ Ik}.

Step 2. If ‖1k‖ 6 ε then STOP; else solve the problem min
∥

∥

∥

∑

i∈Îk
λi1i

∥

∥

∥ such that
∑

i∈Îk
λi = 1, λi > 0 where Îk = {i ∈ Ik| f̂k(x) = fi(x)}, f̂k(x) = max06i6k{ f (xi)+ 1T

i
(x− xi)}

and 1i ∈ ∂ f (xi), i ∈ Îk and denote by λ(k)
i

its solution. If
∥

∥

∥

∑

i∈Îk
λ(k)

i
1i

∥

∥

∥ 6 ε, then stop.
Otherwise go to step 3.

Step 3. Set xk+1 = xk + αksk(αk) + α2
k
dk(αk), where αk is selected by the Curve search

rule, and sk(αk) and dk(αk) are computed by the Direction vector rules 1 and 2. For
simplicity we denote sk(αk) by sk, dk(αk) by dk and 1(xk) by 1k.

Curve search rule:

Choose αk = qi(k), 0 < q < 1, where i(k) is the smallest integer from {0, 1, 2, . . .} such
that

(6.2) F(xk) − F(xk + qi(k)sk + q2i(k)dk) > σ
(

−qi(k)
1

T
k sk +

1
2

q4i(k)F”
D(xk; dk)

)

.

Direction vector rule 1:

sk(α) =
{

s⋆
k

k 6 m − 1
−

[(

1 −
∑m

i=2 α
i−1pi

k

)

1k +
∑m

i=2 α
i−1pi

k
sk−i+1

]

k > mk

where m = card Ik, m > 1,

pi
k =

ρ‖1k‖
2

(m − 1)
[

‖1k‖2 + |1
T
k
sk−i+1|

] , i = 2, 3, . . . ,m,

and s∗
k
, 0, k 6 m − 1 is any vector satisfying the descent property 1T

k
s∗

k
6 0.
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Direction vector rule 2.

The direction vector d∗
k
, k 6 m − 1, presents a solution of the problem (6.1) and

dk(α) =
{

d∗
k
, k 6 m − 1

∑m
i=2 α

i−1d∗
k−i+1, k > m.

Step 4. Set k := k + 1, go to step 1.
We make the following assumptions.
A1. We suppose that there exist constants c2 > c1 > 0 such that c1‖d‖

2
6 F′′D(xk, d) 6

c2‖d‖
2 hold for every d ∈ Rn.

A2. ‖dk‖ = 1 and ‖sk‖ = 1, k = 0, 1, . . .

Lemma 6.2. Under the assumption A1 the function Φk(·) is coercive.

Proof. See in [6].

Remark 6.1. Coercivity of the functionΦk(·) assures that the optimal solution of the problem
(6.1) exists (see in [23]).

Proposition 6.1. If the Moreau-Yosida regularization F(·) of the proper closed convex
function f (·) satisfies the condition A1, then:

(i) the function F(·) is uniformly and, hence, strictly convex;

(ii) the level set L(x0) = {x ∈ Rn : F(x) 6 F(x0)} is a compact convex set, and

(iii) there exists a unique point x∗ such that F(x∗) = minx∈L(x0) F(x).

Proof. See in [6].

Lemma 6.3. The following statements are equivalent:

(i) d = 0 is globally optimal solution of the problem (6.1)

(ii) 0 is the optimum of the objective function in (6.1)

(iii) the corresponding xk is such that 0 ∈ ∂ f (xk)

Proof. See in [6].

Lemma 6.4. For α ∈ [0, 1] and all k > m, we have 1T
k
sk(α) 6 −(1 − ρ)‖1k‖

2.

Proof. >From Direction rule 1 we have for k > m that:

1
T
k sk = 1

T
k















−





























1 −
m

∑

i=2

αi−1pi
k















1k +

m
∑

i=2

αi−1pi
ksk−i+1





























=

= −‖1k‖
2 +
ρ‖1k‖

2

m − 1

m
∑

i=2

αi−1
‖1k‖

2 − 1T
k
sk−i+1

‖1k‖2 + |1
T
k
sk−i+1|

= −‖1k‖
2 +
ρ‖1k‖

2

m − 1

m−1
∑

i=1

αi( since 1T
k sk−i+1 6 0) = −‖1k‖

2 +
ρ‖1k‖

2

m − 1
α

1 − αm−1

1 − α
6 −(1 − ρ)‖1k‖

2

where the last inequality holds by assumptions.
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(From assumptions α ∈ [0, 1] and m > 1 it follows that αm−1
6 α, α

1 − αm−1

1 − α
6 1 and

1
m − 1

6 1.)

Convergence theorem. Suppose that f is a proper closed convex function and F is
its Moreau-Yosida regularization, and the assumptions A1 and A2 hold. Then for
any initial point x0 ∈ Rn, xk → x̄, as k→ ∞, where x̄ is a unique minimal point.

Proof. If dk , 0 is a solution of (6.1), it follows thatΦk(dk) 6 0 = Φk(0). Consequently,
we have by assumption A1 that

(6.3) 1(xk)Tdk 6 −
1
2

F”
D(xk; dk) 6 −

1
2

c1‖dk‖
2 < 0,

i.e. dk is a descent direction at xkfor the function F. From (6.2), A1 and Lemma 6.4
it follows that

F(xk) − F(xk+1) > σ
[

−qi(k)
1

T
k sk +

1
2

q4i(k)F”
D(xk; dk)

]

>

> qi(k)σ(1 − ρ)‖1k‖
2 +
σ

2
q4i(k)c1‖dk‖

2 > 0.
(6.4)

Hence {F(xk)} is a decreasing sequence and consequently {xk} ⊂ L(x0). SinceL(x0) by
Proposition 6.1 is a compact convex set, it follows that the sequence {xk} is bounded.
Therefore there exist accumulation points of {xk}. Since the gradient G = ∇F is by
assumption continuous (because F ∈ LC1), then, if Gk = ∇F(xk) → 0 as k → ∞, it
follows that every accumulation point x̄ of the sequence {xk} satisfies Ḡ = ∇F(x̄) = 0
and hence by Lemma 3.1 follows that x̄ is the minimum point of the function f .
Since F by Proposition 6.1 is strictly convex, it follows that there exists a unique
point x̄ ∈ L(x0) such that Ḡ = ∇F(x̄) = 0.

Hence, {xk} has a unique limit point x̄ and it is a global minimizer. Therefore we
have to prove that Gk = ∇F(xk)→ 0 as k→∞. There are two cases to consider.
a) The set of indices {i(k)} for k ∈ K1, is uniformly bounded above by a number I,
i.e. i(k) 6 I < ∞ for k ∈ K1. Consequently, from (6.2) and (6.4) and since 1(xk)Tsk 6 0
and F”

D
(xk; dk) > 0 it follows that

F(xk) − F(xk+1) > σ
[

−qi(k)
1

T
k sk +

1
2

q4i(k)F”
D(xk; dk)

]

>

> σ
[

−qI
1

T
k sk +

1
2

q4IF”
D(xk; dk)

]

> qIσ(1 − ρ)‖1k‖
2 +
σ

2
q4IF”

D(xk; dk).(6.5)

Since {F(xk)} is bounded below (on the compact set L(x0)) and monotone (by (6.4)),
it follows that F(xk+1)− F(xk)→ 0 as k→∞, k ∈ K1. Hence from (6.5) it follows that
‖1(xk)‖ → 0 and F′′

D
(xk, dk)→ 0, k→∞, k ∈ K1.

b) There is a subset K2 ⊂ K1 such that limk→∞ i(k) = ∞.

This part of proof is analogous to the proof in [6].
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In order to have a finite value i(k), it is sufficient that sk and dk have descent
properties, i.e.1(xk)Tsk < 0 and 1(xk)Tdk < 0 whenever 1(xk) , 0. The first relation
follows from Lemma 6.4 and the second follows from (6.3). At a saddle point the
relation (6.2) becomes

(6.6) F(xk) − F(xk+1) > σ
[1
2

q4i(k)F”
D(xk; dk)

]

In that case by Lemma 6.3 dk , 0 and hence, by A1 it follows that F”
D(xk; dk) > 0; so

(6.6) clearly can be satisfied.
Convergence rate theorem. Under the assumptions of the previous theorem we have
that the following estimate holds for the sequence {xk} generated by the algorithm.

F(xn) − F(x̄) 6 µ0















1 +
µ0

η2

n−1
∑

k=0

F(xk) − F(xk+1)
‖∇F(xk)‖2















−1

,

n = 1, 2, . . .where µ0 = F(x0)− F(x̄), and diamL(x0) = η < ∞ since by Proposition 6.1
it follows that L(x0) is bounded.

Proof. The proof directly follows from the Theorem 9.2, page 167 in [11], since the
assumptions of that theorem are fulfilled.

CONCLUSION

The algorithm presented in this paper is based on the algorithms from [21], [5] and
[6]. The convergence is proved under mild conditions. This method uses previous
multi-step iterative information and curve search rule to generate a new iterative
point at each iteration. Relating to the algorithm in [21], the presented algorithm is
defined and converges under weaker assumptions than the algorithm given in [21].
Relating to the algorithm in [5], the presented algorithm is defined and converges
for nondifferentiable convex function.
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