CHARACTERIZATIONS OF RIGHT RING CONGRUENCES ON A SEMIRING *

Xiaofeng Zhu, Yuanlan Zhou, and Wenting Xiong

Abstract. This paper develops the relationship between ring congruences and normal subsemirings. As an application of this relationship, if right ring congruences on a semiring *S* exist, the structure of *S* is determined and the right ring congruences are characterized in terms of ring congruences and right zero band semiring congruences on *S*.

1. Introduction and Preliminaries

A *semiring S* is an algebraic structure $(S, +, \cdot)$ consisting of a non-empty set *S* together with two binary operations + and \cdot such that (S, +) and (S, \cdot) are semigroups, connected by ring-like distributivity (that is, x(y+z) = xy + xz, (y+z)x = yx + zx, for all *x*, *y* and *z* in *S*). Usually, we write $(S, +, \cdot)$ simply as *S*, and for any *x*, $y \in S$, write $x \cdot y$ simply as *xy*. An element *a* of a semiring *S* is called a *zero* if a + x = x + a = x and ax = xa = a for all $x \in S$. Clearly, the zero of a semiring *S* is unique if there exists. Usually, we denote it by 0. A non-empty subset *K* of a semiring *S* is a *subsemiring* if a + b, $ab \in K$ for every $a, b \in K$. A subsemiring *K* of *S* is an *ideal* if as, $sa \in K$ for any $a \in K$ and $s \in S$. A subsemiring *K* of *S* is called *reflexive* (*left-unitary*, *dense*) if its additive reduct (S, +) is reflexive (unitary, dense). We denote the set of all additive idempotents of a semiring *S* by $E^+(S)$. Easily, we can prove that $E^+(S)$ is an ideal of (S, \cdot) . If *C* is a class of semirings and ϱ is a congruence on a semiring *S* then ϱ is called a \mathscr{C} -congruence if $S/\varrho \in \mathscr{C}$.

A semiring $S = (S, +, \cdot)$ is called an *idempotent semiring*, if $(\forall a \in S) a + a = a = a \cdot a$. An idempotent semiring *S* is called a *band semiring* ([6]), if *S* satisfies the conditions that for any $a, b \in S, a + ab + a = a, a + ba + a = a$. A band semiring *S* = (*S*,+, .) is called a *T*-band semiring ([6]), if the additive reduct (*S*, +) of *S* is a *T*-band, where *T* is, respectively, a *rectangular*, *right* (*left*) *zero*, *right* (*left*) *regular*, *regular*, *normal*, *commutative* band and so on. A semiring *S* is said to be a *right ring* ([2]), if *S* can be decomposed as a direct product of a ring *R* and a right zero band semiring *E*.

Received May 17, 2009.

²⁰¹⁰ Mathematics Subject Classification. Primary 16Y60; Secondary 20M10

^{*}The research is supported by the NSF of Jiangxi Province (0611051); the SF of Education Department of Jiangxi Province (GJJ09459) and the SF of Jiangxi Normal University (1905).

In Petrich and Reilly [5], the structure of a right group is characterized, and some properties are extended to a right ring in [2]. In [4], [7] and [9], some special semirings are studied. Based on those, the main purpose of this paper is to investigate the right ring congruences on a semiring *S*. A central notion considered is that of how the normal subsemiring associated with a group congruence on a semiring is related to right ring congruences on a semiring.

For other notations and terminology about semigroups and semirings not mentioned in this paper, the reader is referred to [1] and [3]. In this paper the phrases "right ring congruence", "ring congruence", and "right zero band ring congruence" will be denoted by *RRC*, *RC*, and *RZBC* respectively. When such a congruence is minimum, it will be denoted by *MRRC*, *MRC*, and *MRZBC* respectively.

2. Characterizations and structure

If σ is a *RC* on a semiring *S*, we define the set

 $N = \{a \in S \mid a\sigma \text{ is an additive zero of } S/\sigma\}.$

Then *N* is a subsemiring of *S* and, moreover, *N* can be used in the following manner to generate σ . Define a relation σ_N on *S* by

(2.1)
$$\sigma_N = \{(a, b) \in S \times S \mid a + x, b + x \in N \text{ for some } x \in S\}.$$

It can be easily verified that $\sigma = \sigma_N$. The subset *N* which generates ring images of *S*, relative to the relation defined in equation (2.1), satisfies:

 $(2.2) N ext{ is an ideal of } S;$

(2.3) *N* is reflexive, i.e., if $a, b \in S$ and $a + b \in N$ then $b + a \in N$;

- (2.4) *N* is left-unitary, i.e., $a, b \in S$ and $a, a + b \in N$ then $b \in N$;
- $(2.5) a+b+c+d \in N \Leftrightarrow a+c+b+d \in N;$
- (2.6) N is dense, i.e., $(\forall s \in S)(\exists x, y \in S) s + x \in N \land y + s \in N$.

A subsemiring of *S* satisfying (2.2)-(2.6) will be called a *normal subsemiring* of *S*. The following lemma relates ring congruences on *S* and related normal subsemirings.

Lemma 2.1. The correspondence

 $\varphi : \sigma \to N = \{a \in S \mid a\sigma \text{ is the additive zero of } S/\sigma\}$

is a one-to-one correspondence from the set of the ring congruences onto the set of normal subsemirings of S.

Proof. First φ is evidently well defined. Now we prove φ is injective and surjective.

For any two ring congruences σ_1, σ_2 with $\varphi(\sigma_1) = \varphi(\sigma_2)$, if $(a, b) \in \sigma_1$, then there exists an element $c \in S$ such that $(a + c)\sigma_1 = (b + c)\sigma_1 = 0_{S/\sigma_1}$, which implies that

 $a + c, b + c \in \varphi(\sigma_1) = \varphi(\sigma_2)$, then $(a + c)\sigma_2 = (b + c)\sigma_2 = 0_{S/\sigma_2}$, and therefore, $(a, b) \in \sigma_2$. This proves that $\sigma_1 \subseteq \sigma_2$. Similarly, $\sigma_2 \subseteq \sigma_1$. So φ is one-to-one.

For any normal subsemiring *N* of *S*, we can define a relation σ_N by means of (2.1). Obviously, σ_N is an equivalence relation. Let $(a, b) \in \sigma_N$ and $c \in S$. Then there exists $x \in S$ such that $a + x, b + x \in N$, for the element a + c + x in *S* there exists $y \in S$ such that $a + c + x + y \in N$ since *N* is dense. Then $a + x + c + y \in N$ by (2.5), which implies $c + y \in N$. Therefore $b + c + x + y \in N$ means that $(a + c, b + c) \in \sigma_N$, and similarly, $(c + a, c + b) \in \sigma_N$. Further, *ac*, *bc*, *ac* + *xc* = $(a + x)c \in N$, *bc* + *xc* = $(b + x)c \in N$, since *N* is a ideal of *S*, so $(ac, bc) \in \sigma_N$, and similarly, $(ca, cb) \in \sigma_N$. Thus, we have proved σ_N is a congruence on the semiring *S*.

For each $a \in N$, we can easily verify that $a\sigma_N$ is the zero of S/σ_N , for each $b \in S$ there exists an element $x \in S$ such that $b + x \in N$ then $b\sigma_N + x\sigma_N = (b + x)\sigma_N$ which is the additive zero of S/σ_N . Then $(S, +)/\sigma_N$ is a group. For each $a, b \in S$ there exist $x, y \in S$ such that $a + x, b + y \in N$ and $a + x + b + y \in N$, then $a + b + x + y \in N$ by (2.5), and $y + a + b + x \in N$ since N is reflexive, then by the same reason, $b + a + x + y \in N$. Now we have found an element x + y such that $a + b + x + y \in N$, which means that $(a + b, b + a) \in \sigma_N$, so σ_N is a ring congruence. Obviously, σ_N satisfies $\varphi(\sigma_N) = N$. So φ is onto. \Box

Now we generalize the preceding work to right ring congruences, the following theorem develops the sought for characterizations of a *RRC* on a semiring *S*. A *RRC* will now be classified as being trivial if it is a ring congruence or if it is a right zero band semiring congruence.

Lemma 2.2. If there exists a nontrivial right ring congruence ρ on a semiring S then there exist a nontrivial ring congruence σ on S and a nontrivial right zero band semiring congruence π on S.

Proof. Assume ρ is a nontrivial *RRC* on *S* and that $S/\rho = R \times E$ where *R* is a ring and *E* is a right zero band semiring. Note that $E \cong E(S/\rho)$. For each *e* in *E*, define L_e to be the preimage of $R \times \{e\}$, and define *K* to be the kernel of ρ , i.e., the union of all the ρ -classes meeting *E*. Evidently $S = \bigcup \{L_e : e \in E\}$, with the union disjoint. If $s \in L_e, t \in L_f$ and $e, f \in E$, then

$$(s+t)\varrho^{\natural} = (s\varrho^{\natural}) + (t\varrho^{\natural}) \in (R \times \{e\}) + (R \times \{f\}).$$

But $(R \times \{e\}) + (R \times \{f\}) \subseteq R \times \{f\}$ and therefore $s + t \in L_f$, i.e., L_f is a left ideal of (S, +). Now we show that K satisfies (2.2). Obviously, K is the preimage of $\{0_R\} \times E$, for each $a, b \in K$, there exist $e, f \in E$ such that $(a + b)\varrho = (a + b)\varrho^{\natural} = a\varrho^{\natural} + b\varrho^{\natural} = (0_R, e) + (0_R, f) = (0_R, f) \in \{0_R\} \times E$ which means that $a + b \in K$. If $k \in K, s \in S$ then exists $g \in R, c, d \in E$ such that $(ks)\varrho = k\varrho^{\natural} \cdot s\varrho^{\natural} = (0_R, c) \cdot (g, d) = (0_R, cd) \in \{0_R\} \times E$ then $ks \in K$, similarly, $sk \in K$. So K is a ideal of S. We can also easily verify that K satisfies (2.2)–(2.6). So K is a dense normal subsemiring of S. Let $\sigma = \sigma_K$ as defined by (2.1). Now we define a relation π on S by

$$\pi = \{(a, b) \in S \times S \mid a, b \in L_e \text{ for some } e \in E\}$$

then we can easily verify that π is a right zero band semiring congruence. \Box

Thus, a *RRC* ρ induces a *RC* σ_K , where *K* is the kernel of ρ , and a *RZBC* π , where the π -classes are left ideal of (*S*, +). The exact relationship between ρ , σ_K and π is exhibited in the following theorem.

Theorem 2.1. Let ρ be a right ring congruence on a semiring *S*. Then S/ρ admits a direct product decomposition $S/\rho = R \times E$ where *R* is a ring and *E* is a right zero band semiring. Let $K = \{a \in S \mid a\rho \in E(S/\rho)\}$, and for each $e \in E$, let L_e the preimage of $R \times \{e\}$, and denote by π the right zero band semiring congruence induced on *S* by the $\{L_e : e \in E\}$. Then:

- (1) $\varrho = \sigma_K \cap \pi$.
- (2) $S/\varrho \cong S/\sigma \times S/\pi$.

Proof. (1) If $a \rho b$, then $a\rho^{\natural} = (r, e) = b\rho^{\natural}$ for some (r, e) in $R \times E$. There exists an element x in S such that $x\rho^{\natural} = (-r, e)$, and therefore $(x + a)\rho^{\natural} = (-r, e) + (r, e) = (0_R, e)$, and similarly $(x + b)\rho^{\natural} = (0_R, e)$, then $x + a, x + b \in K$ and therefore $a \sigma_K b$. Since $a\rho^{\natural}, b\rho^{\natural} \in R \times \{e\}, a\pi b$ and thus $\rho \subseteq \sigma_K \cap \pi$.

Conversely, $(a, b) \in \sigma_K \cap \pi$ implies that there exists e in E such that $a\varrho^{\natural}, b\varrho^{\natural} \in R \times \{e\}$, and that there exists x in S such that $x + a, x + b \in K$. Thus $(x + a)\varrho^{\natural} = (0_R, e) = (x + b)\varrho^{\natural}$. If $x \in L_f$, then there exist $x' \in S$ such that $(x' + x)\varrho^{\natural} = (0_R, f)$, then

$$a\varrho^{\natural} = (0_R, f) + a\varrho^{\natural} = (x' + x + a)\varrho^{\natural} = (x' + x + b)\varrho^{\natural} = (0_R, f) + b\varrho^{\natural} = b\varrho^{\natural},$$

i.e., *a* ρ b and $\sigma_K \cap \pi \subseteq \rho$.

(2) From part (1), $\rho = \sigma_K \cap \pi$, we can define a map θ from S/ρ to $S/\sigma_K \times S/\pi$ by $(s\rho)\theta = (s\sigma_K, s\pi)$. Clearly, θ is well defined. For $s, t \in S$

 $(s\varrho + t\varrho)\theta = ((s+t)\varrho)\theta = ((s+t)\sigma_K, (s+t)\pi) = (s\sigma_K, s\pi) + (t\sigma_K, t\pi) = (s\varrho)\theta + (t\varrho)\theta$

 $(s\varrho \cdot t\varrho)\theta = (st\varrho)\theta = (s\sigma_K \cdot t\sigma_K, s\pi \cdot t\pi) = (s\sigma_K, s\pi) \cdot (t\sigma_K, t\pi) = (s\varrho)\theta \cdot (t\varrho)\theta$

and hence θ is a homomorphism. For $(s\sigma_K, t\pi) \in S/\sigma \times S/\pi$, let $t \in L_e$ and $k \in K \cap L_e$. Thus $((s+k)\varrho)\theta = ((s+t)\sigma_K, (s+k)\pi) = (s\sigma_K + k\sigma_K, k\pi) = (s\sigma_K, t\pi)$, which means that θ is onto. If $(s\varrho)\theta = (t\varrho)\theta$ then $s\sigma_K t$ and $s\pi t$, and therefore $s \varrho t$, θ is one-to-one on S/ϱ . \Box

A sufficient condition for the existence of a minimum right ring congruence is given in the next theorem.

Theorem 2.2. Let *S* be a semiring having nontrivial right ring congruences. If *S* has a minimum normal subsemiring *K*, then *S* has a (unique) minimum right ring congruence.

Proof. We denote the set of left ideal partitions of (S, +) by $\{P_i \mid i \in I\}$, each P_i induces a *RZBC*, say π_i . Define a congruence π on S by $\pi = \bigcap \{\pi_i : i \in I\}$. If $a, b \in S$, then $(a + b)\pi_i = b\pi_i$ and $(a + a)\pi_i = (a \cdot a)\pi_i = a\pi_i$, for each $i \in I$, implies that $(a + b)\pi = b\pi$ and $(a + a)\pi = a\pi$, which means that π is the *MRZBC* on S. The *MRC* on S is evidently σ_K . The *MRRC* on S is therefore $\sigma_K \cap \pi$. \square

The following corollary is a direct consequence of Theorem 2.1 and Theorem 2.2.

Corollary 2.1. *Let S be a semiring. Then the following are equivalent:*

- (1) ρ is the minimum right ring congruence on S.
- (2) $\rho = \sigma \cap \pi$, where σ is the minimum ring congruence on *S* and π is the minimum right zero band semiring congruence on *S*.

REFERENCES

- 1. J. S. GOLAN: *The Theory of Semirings and Their Applications*, Kluwer Academic Publishers, 1999.
- Y. Q. GUO, K. P. SHUM, and M. K. SEN: The semigroup structure of left Clifford semirings, Acta Mathematica Sinica, English Series 19 (4) (2003), 783–792.
- 3. J. M. HOWIE, Fundamentals of Semigroup Theory, Oxford: Clarendon Press, 1995.
- 4. F. PASTIJN and Y. Q. GUO, *Semirings which are unions of rings*, Science in China (series A) 45 (2) (2002), 172–195.
- 5. M. PETRICH and N. R. REILLY, *Completely regular semigruops*, A Wiley-Interscience Publication, 1999.
- 6. M. K. SEN, Y. Q. Guo, and K. P. SHUM, A class of idempotent semirings, Semigroup Forum 60 (2000), 351-367.
- 7. J. ZELEZNIKOW, Regular semirings, Semigroup Forum 23 (1981), 119–136.
- 8. Y. L. ZHOU, The PhD thesis, Zhongshan University, 2006.
- 9. Y. L. ZHOU, Y. Q. GUO, and Z. P., WANG *The semigroup structure of orthorings*, Acta Mathematica Scientia, 2008.

Xiaofeng Zhu, Yuanlan Zhou, Wenting Xiong Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China Correspondence: ylzhou185@163.com