
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. 24 (2009), 53–72

TURING MACHINE AND ITS SYMBOLIC SIMULATION ∗

Saša V. Vukašinović, Predrag S. Stanimirović, Marko D. Petković,

and Miroslav D. Ćirić

Abstract. We describe an implementation of the Turing machine by means of symbolic
processing, functional programming and 2D graphical primitives available in the pro-
gramming language MATHEMATICA. We determine the number of tapes and the number
of rules corresponding to a given non-deterministic Turing machine, and prove that
these numbers are bounded, regardless the halting problem. These results are used in the
simulation of the non-deterministic Turing machine.

1. Introduction and preliminaries

A Turing machine M is a finite device which performs operations on a paper
tape. This tape is infinite in both directions, and divided into single cells (squares).
At any time, each square of the tape contains a single symbol from a fixed finite
list of input symbols Σ or the blank character #. Cells that have not been written to
before are assumed to be filled with the blank symbol. Formally, a Turing machine
is defined as a 6-tuple

(Q, q0, #,Σ, Γ, δ)(1.1)

where:

Q is a non-empty and finite set of states;

q0 is the initial state;

is the blank symbol (the only symbol allowed to occur on the tape infinitely
often at any step during the computation);

Γ is the alphabet of the tape, defined by Γ=Σ ∪ {#};

δ : Q × Γ→ Q × Σ × {L,R,P} is a partial transition function.

We stipulate that the machine M starts computation in the initial state q0 and
the reading head positioned on the first left cell which is not the blank character

Received March 03, 2009.
2000 Mathematics Subject Classification. Primary 68Q05; Secondary 68W30
∗Supported by Ministry of Science and Technological Development, Republic of Serbia, Grant no. 144011.

53

54 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

#. The number of different states is always finite. The action that M takes at any
instant depends on the current state of M and the symbol currently being scanned.
This dependence is defined in M’s transition function δ, which is defined by the
set T of rules of the form {qi, s j} → {qk, sl, α}, where qi, qk ∈ Q, s j ∈ Γ, sl ∈ Σ and
α ∈ {L,R,P}. The rule {qi, s j} → {qk, sl, α} specifies the action when M is in the state
qi and the head scans the symbol s j. In this case, the machine do the following in
sequence: (i) takes the new state qk, (ii) in the scanned cell writes the symbol sl or
erases the symbol s j and (iii) moves the head (if α = R, moves the reading head
one cell to the right, if α = L, moves the tapehead one cell to the left, and if α = P
keeps the reading head in the same place). We use the following convention: if sl

is the space character (SPACE), the machine erases s j from the tape. The Turing
Machine will halt if its current state and current symbol do not match the first two
components of any rule.

We have described the deterministic Turing machine. Now, we will describe the
non-deterministic Turing machine. A Turing machine is non-deterministic if its action
table has at least one entry for each combination of symbol and state. The formal
definition of the non-deterministic Turing machine corresponds to definition of the
deterministic Turing machine, except in the last component in (1.1). Namely, in the
non-deterministic case δ is a relation from Q × Γ to Q × Σ × {L,R,P} instead of a
partial transition function. It means that for each element {qi, s j} ∈ Q× Γ there exist
a number of different triples {qk, sl, α} ∈ Q × Σ × {L,R,P} during the execution of a
simple action of the Turing machine M. Formally δ is defined by:

δ({qi, s j}) ⊆
⋃

qk∈Q, sl∈Σ, α∈{L,R,P}

{qk, sl, α}.(1.2)

This is one of many variations on the Turing machine theme (see for example
[3, 7, 8]). Hopcroft and Ullman ([7]) formally define a (one-tape) Turing machine
as a 7-typle

(Q, q0, #,Σ, Γ, δ, F)(1.3)

where F ⊆ Q is the set of final or accepting states. Also, there exist definitions
where instructions are defined as 4-tuples.

It is known that all of these definitions are equivalent. About the Turing machine
the reader is also referred to [2, 5, 10, 11, 12].

We observed several simulations ([6, 16, 17, 18]) of the Turing machine, written
in procedural programming languages, and we will give some notes about that.
Main criteria used in this analysis are: existence of non-deterministic part, simple
usage, graphical illustrations, power in computations and code simplicity. The
simulation in [18] has two parts. In the first part it simulates deterministic Turing
machine. This simulation uses object oriented programming, but it is not user
friendly and does not use symbolic computation. Second part contains simulation
of the non-deterministic Turing machine. This simulation does only recognition of
input word but not any computation. Moreover, graphical presentation is not used.

Turing machine and its symbolic simulation 55

The simulation [16] is very good visual simulation with powerful computation, but
there is not non-deterministic part. This simulation is, essentially, an improvement
of the simulation [17]. The simulation [6] is the specific usage of the Turing machine
and it is interesting as a similar work in the same MATHEMATICA package.

Consequently, Turing machine interpreters are so far written in procedural
programming languages. Turing machine as a C++/Java function possesses the
following framework:

int anArbitraryTuringMachine(char tape[])

{ unsigned state = initialState; unsigned current = 0;

do { //series of if statements like this ...

if(state == p && tape[current] == x)

{ state = q; tape[current] =y;}

//or

if(state == p && tape[current] == x)

{ state = q; ++current; }

// or - // etc ...

while (state != haltState)

}

In [4] we found a simulation of deterministic 3-state, 2-color Turing machine
in MATHEMATICA. Turing machines discussed in ”A New Kind of Science” [15] are
deterministic. There is an another class of so called ”non-deterministic” Turing
machines. Modern computers are deterministic, so any executing over any non-
deterministic type of machine (FA or Turing) must be simulated.

In this paper we describe an implementation of the deterministic and non-
deterministic Turing machine in the package MATHEMATICA. We mainly use possi-
bility of symbolic processing in MATHEMATICA. Besides the symbolic possibilities,
we use its power in functional programming as well as in the representation of
two-dimensional graphical images.

Motivation for this work is to develop an user friendly interpreter for edu-
cational purpose and experiments in Theoretical Computer Science. Also, our
motivation is to exhibit symbolic and graphical possibilities of the package MATH-

EMATICA, and exceed the framework described above. Programs written in pro-
cedural computer languages such as C help with computations, but are of limited
value in developing understanding of included algorithms, because very little in-
formation about the intermediate steps is presented. The user interface for such
programs is primitive at best and typically requires definitions of user functions
and data files corresponding to a specific problem. Many researches have a need
for the capability to develop a ”rapid-prototype” code to test the behavior of an
algorithm before invest in a substantial effort in developing a code for the algorithm
in a procedural language such as C.

About the package MATHEMATICA see for example [1, 9, 13, 14].

56 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

The paper is organized as follows. In the second section we describe an im-
plementation of the deterministic Turing machine. In the third section we give
several theoretical results. We determine the number n ∈ N of deterministic Turing
machines (i.e. tapes) corresponding to a given non-deterministic Turing machine,
and prove that the number of tapes is bounded, regardless the halting problem.
Moreover, we prove that all programs performing actions on these tapes are of fixed
length. In the Section 4 we describe a simulation of the non-deterministic Turing
machine. Work of the non-deterministic Turing Machine M can be considered as a
parallel work of n deterministic Turing machines with identical number of rules.

2. Simulation of deterministic Turing machine

We restate main details from the functional programming available in MATHE-

MATICA, which are used in the simulation.

Map[f, expr] or f /@ expr applies function f to each element on the first level
in expr.

Scan[f, expr] evaluates f applied to each element of expr in turn. Unlike Map,
Scan does not build up a new expression to return.

Function[body] or body& is a pure function. The formal parameters are # (or
#1), #2, etc.

The contents of the tape is represented by the global array TAPE[1], TAPE[2], . . .
in which you fill in only those elements that you need at a particular time, i.e. ele-
ments corresponding to non-blank cells in the tape. The value TAPE[i] represents
the contents of i-th cell on the tape, with respect to last non-blank cell on the left.
Array TAPE can be defined by a string s, using the function InitTape[s]. This func-
tion defines global array TAPE, such that TAPE[i] = s[i]. Global variables MINPOS
and MAXPOS denote the minimal and maximal index, respectively, between the
indices in the array TAPE. All remainder cells contain the blank character # (also
called empty cells). Also, global variable POS denotes the index of the actually
scanned cell. In the function InitTape[s] we use the mapping function Map and a
pure function during the construction of the array TAPE:

InitTape[s_String] := (

MAXPOS = 0;

Clear[TAPE];

TAPE[_] := "#"; (* Fills the tape by blank characters *)

Map[(TAPE[++MAXPOS] = #) &, Characters[s]];

MINPOS = POS = 1;)

Immediately after the initialization of the tape by means of the function InitTape[s],
the minimal index MINPOS as well as the actual position POS are both equal to
1, and the value for global variable MAXPOS is equal to length of string s. These
values can be modified later.

Turing machine and its symbolic simulation 57

Example 2.1. The tape which is defined by the string ”1101” can be filled using the
following expression

In[1]:= InitTape["1101"]

The contents of the tape can be shown in this way:

In[2]:= ?TAPE

Global ‘TAPE

TAPE[1] = "1"

TAPE[2] = "1"

TAPE[3] = "0"

TAPE[4] = "1"

TAPE[] := "#"

The alphabet Σ (Γ), the set of states Q and actual state as well as the transition
function δ are defined using the set of rules

T =
{

{qim , s jm} → {qkm
, slm , α}, m = 1, . . . , k

}

.(2.1)

The sets Q, Σ and Γ are implicitly defined by

Q =

k
⋃

m=1

{qim }
⋃

k
⋃

m=1

{qkm
}, Σ =

k
⋃

m=1

{slm}, Γ =

k
⋃

m=1

{s jm }
⋃

Σ
⋃

{#}.

The transition function δ is defined by the rules contained in T:

δ({q1, s1}) =

{

{q2, s2, α}, {q1, s1} → {q2, s2, α} ∈ T
{}, {q1, s1} → {q2, s2, α} < T.

(2.2)

The function δ is defined in the function InitDelta[T], where it is denoted by the user-
defined function DELTA. Also, during the evaluation of the function InitDelta[T]
we define the initial state q0, denoted by the global variable STATE. In the function
InitDelta[T] we use the function Scan which applies a pure function to each element
of the list T.

InitDelta[T_] := (

Clear[DELTA];

DELTA[_, _] := {}; (* The second case in (2.2) *)

Scan[(DELTA[#[[1,1]], #[[1,2]]] = #[[2]]) &, T];

(* The first case in (2.2) *)

STATE = T[[1,1,1]];)

58 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

Example 2.2. Let the set T is defined by the list of rules

In[3]:=T={{A,"0"}->{A,"1",R},{A,"1"}->{A,"1",R},{A,"#"}->{B," ",L}}

After the application of the function InitDelta[T] we get the following initial state q0,
denoted by STATE, and the following definition of the function DELTA:

In[4]:=InitDelta[T];

STATE

Out[4]=A

In[5]:= ?DELTA

Global‘DELTA

DELTA[A, #] = {B, , L}

DELTA[A, 0] = {A, 1, R}

DELTA[A, 1] = {A, 1, R}

DELTA[_, _] := {}

In the auxiliary function TapeToList[t] we construct a list whose elements are
characters contained in the array t of indexed variables, starting from the position
MINPOS and ending at the position MAXPOS. It is clear that the value for the
formal parameter t is the global array TAPE.

TapeToList[t_] :=

Module[{l = {}, i},

For[i=MINPOS, i<=MAXPOS, i++, AppendTo[l, t[i]]];

Return[l];

]

All relevant elements which determine the situation of the machine M are
incorporated in the ordered quintuple

{STATE,MINPOS,POS,MAXPOS,TapeToList[TAPE]}(2.3)

In the sequel we construct a global list History which contains elements of the
form (2.3). In this way, the list History stores all steps of the evaluation. It can
be formed using the functions Move and Compute. The formal parameter of the
function Move is the list {s, x, d} which represents the right hand side of a selected
rule {a, b} → {s, x, d} from T.

By means of the function Move[{s, x, d}] we define the list of the form (2.3) and
append it to the end of the list History.

Move[{s_, x_, d_}] := (

If[x === " ", (* condition for erasing TAPE[POS] *)

MAXPOS = MAXPOS - 1; TAPE1 = TAPE;

Turing machine and its symbolic simulation 59

For[ji = POS, ji <= MAXPOS, ji++,

TAPE[ji] = TAPE1[ji + 1]];

TAPE[MAXPOS + 1] =. (* Erase TAPE[POS] *)

];

POS = POS + If[d === R, 1, If[d === L, -1, 0]];

MINPOS = Min[POS, MINPOS]; MAXPOS = Max[POS, MAXPOS];

STATE = s;

AppendTo[History,{STATE,MINPOS,POS,MAXPOS,TapeToList[TAPE]}];

True)

Move[{}] = False;

The machine stops when the value of the function Move is equal to False. This
means that there is no rule {qi, s j} → {qk, sl, α} from T in which sl, qk, α agrees with
s , x , d , respectively. The stopping criterion of our machine is different with respect
the stopping criterion in simulation [18], where the set of final states is used to halt
the evaluation.

Formal parameters of the next function Compute are:

T - the set of rules (2.1),

s - a string which determines the contents of the tape.

Values for the formal parameters s, x, d in each call of the function Move are
generated applying the function DELTA:

Compute[T_, s_] := (

InitTape[s];

InitDelta[T];

History = {{STATE,MINPOS,POS,MAXPOS,TapeToList[TAPE]}};

While[Move[DELTA[STATE, TAPE[POS]]]]

);

Example 2.3. Consider the set of rules T defined as in Example 2.2. Then the expression
Compute[T, ”110101010”] produces the following list, which represents value of the global
variable History:

{{A,1,1,9,{1,1,0,1,0,1,0,1,0}},

{A,1,2,9,{1,1,0,1,0,1,0,1,0}},

{A,1,3,9,{1,1,0,1,0,1,0,1,0}},

{A,1,4,9,{1,1,1,1,0,1,0,1,0}},

{A,1,5,9,{1,1,1,1,0,1,0,1,0}},

{A,1,6,9,{1,1,1,1,1,1,0,1,0}},

{A,1,7,9,{1,1,1,1,1,1,0,1,0}},

{A,1,8,9,{1,1,1,1,1,1,1,1,0}},

60 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

{A,1,9,9,{1,1,1,1,1,1,1,1,0}},

{A,1,10,10,{1,1,1,1,1,1,1,1,1,#}},

{B,1,9,9,{1,1,1,1,1,1,1,1,1}}

}

Example 2.4. In this example we show erasing the content of scanned cell when value of
parameter x in function Move is the space character. Consider the set of rules

T={{A,"0"}->{A," ",R},{A,"1"}->{A,"1",R},{A,"#"}->{B," ",L}}.

The evaluation of the expression Compute[T,"101"] produces the following list History:

{{A,1,1,3,{1,0,1}},

{A,1,2,3,{1,0,1}},

{A,1,3,3,{1,1,#}},

{B,1,2,2,{1,1}}

}

We are going to write the function DumpHistory which produces a 2D graphical
representation of the list History. For this purpose we use a number of graphics
primitives from MATHEMATICA [13, 14].

Line[{{x1,y1},...}], is a graphics primitive which represents a line joining a se-
quence of points.

Rectangle[{xmin,ymin}, {xmax,ymax}], is a two-dimensional graphics primitive that
represents a filled rectangle, oriented parallel to the axes.

Text[expr,{x,y}] is a graphics primitive that represents text corresponding to the
printed form of expr, centered at the point {x, y}.

Graphics[primitives, options] represents a two-dimensional graphical image;

Show[graphics, options] displays two- and three-dimensional graphics, using
the options specified.

By means of the function cellc[i,j,k] we construct the list of two graphics
primitives. The first graphics primitive is a line joining four vertices of a square. It
is determined by the standard function Line:

Line[{{i,j}, {i+1,j}, {i+1,j+1}, {i,j+1}, {i,j}}]

The second graphics primitive is defined by the function Text[k,{i+0.5,j+0.5}],
and represents text corresponding to the printed form of k, centered at the point
specified by {i + 0.5, j + 0.5}, overlaying on the center of the first graphics object.

cellc[i_, j_, k_] := {

Line[{{i,j}, {i+1,j}, {i+1,j+1}, {i,j+1}, {i,j}}],

Text[k, {i+0.5, j+0.5}]

}

Turing machine and its symbolic simulation 61

Function Headc[i,j,s]generates a list whose both elements are graphics prim-
itives. The first element, denoted by s, represents a graphics directive which spec-
ifies that graphical objects which follow will be displayed, if possible, in the color
given. The second element is a filled rectangle, oriented parallel to the axes, and
determined by the parameters i and j.

Headc[i , j , s RGBColor] :=

{s, Rectangle[{i, j+1}, {i+1, j+2}]}

In the function line[s,mp,p,MP,tape] formal parameters are used in the fol-
lowing sense:

s is the actual state,

mp, p and MP denote the minimal index, actual index and the maximal index
of non-blank cells, and

tape means the list corresponding to the global array TAPE, generated by the
expression TapeToList[TAPE].

More precisely, the functionline[s,mp,p,MP,tape]uses five parameters,which
are defined by the actual situation (2.3) of the machine, and generates the list of two
elements. The first element is generated by the function Headc[p,j++,Color[s]],
where the initial value for variable j from global environment is equal to 0. The
second element is the list of graphics objects cellc[i,j,g], where i runs through
values from mp to MP. This list is generated applying the standard MATHEMATICA

function Table. Parameter 1 is defined in this way: if i is not equal to the index p of
the scanned cell, then 1 = tape[[i −mp + 1]]; otherwise, 1 = {tape[[i −mp + 1]], s}. In
this way, in the case i = p function celc generates text corresponding to the contents
of tape[[i −mp + 1]]; otherwise, it generates text {tape[[i −mp + 1]], s}.

line[{s_, mp_, p_, MP_, tape_}] :=

{ Headc[p, (j++), Color[s]],

Table[cellc[i,j,

If[i!=p,

tape[[i-mp+1]], (* Then *)

{tape[[i-mp+1]],s} (* Else *)

]],

{i,mp,MP}

]

}

The result of the function Color[s] is the graphic directive RGBColor, dependent
from the actual state s. For example, it can be defined by means of the following
sequence of assignments:

Needs["Graphics‘Colors‘"];

Color[] := Gray;

Color[A] = Blue;

62 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

Color[B] = Red;

Color[C] = Cyan;

Color[D] = Pink;

Color[E] = Magenta;

Color[F] = Yellow;

Color[G] = Green;

Color[H] = Brown;

The procedure DumpHistory gives the tabular representation of actions per-
formed by the Turing machine, and stored into the list History. In this procedure
we apply the function line to each element contained in the list produced by revert-
ing the list History. In this way, we obtain 2D graphical representation of the history
of the evaluation. Graphical representation represents the filled part of the tape,
scanned cells as well as the actual states. Each row of the list History is represented
by a row in 2D graphical representation.

DumpHistory := (

j = 0;

Show[Graphics[line /@ Reverse[History]],

AspectRatio -> Automatic,ImageSize -> {600,600}]

);

Example 2.5. Consider the set of rules T as in Example 2.2:

In[5]:=T={{A,"0"}->{A,"1",R},{A,"1"}->{A,"1",R},{A,"#"}->{B," ",L}}

Assume that the contents of the tape is defined by the string ”110101010”. Then we
use the expression Compute[T, ”110101010”] and the procedure DumpHistory to produce
2D graphical representation of the history of the evaluation which is represented by the list
in Example 2.3:

In[6]:= Compute[T, "110101010"]

In[7]:= DumpHistory;

In this picture, contents of any scanned cell is represented as two-element list and colored.
First element of such a list represents the contents of the tape, while the second element is
the actual state. Let us mention that the states of the machine are also indicated by the color
which is defined by means of the function Color.

Turing machine and its symbolic simulation 63

Fig. 2.1: Simulation of the deterministic Turing machine

3. Correlations between deterministic and non-deterministic Turing machine

An apparently more radical reformulation of the notion of Turing machine al-
lows the machine to explore alternative computations in parallel. If the machine
specified multiple transitions for a given state/symbol pair, all the resulting com-
putations are continued in parallel. One way to visualize this is that the machine
spawns an exact copy of itself and the tape for each alternative available transition.

A necessary quantity for the useful simulation of the non-deterministic Turing
machine is the number of corresponding deterministic Turing machines, i.e. the
number of tapes in non-deterministic machine.

In the following definition we introduce the notion called similarity rules.

Definition 3.1. Two rules {Ai, ai}−> {Bi, bi,Di} and {A j, a j}−> {B j, b j,D j} satisfy the
similarity rules relation if Ai = A j and ai = a j. This fact we denote by

{Ai, ai}−> {Bi, bi,Di} ∼ {A j, a j}−> {B j, b j,D j} ⇔ Ai = A j ∧ ai = a j.

It is clear that ∼ is the equivalence relation. Assume that there exists p disjoint
classes. Denote a class of equivalence corresponding to the situation {A j, a j} by

T j = {{A j, a j}−> {B j1 , b j1 ,D j1}, . . . , {A j, a j}−> {B jnj
, b jnj
,D jnj

}},(3.1)

1 ≤ j ≤ p.

It is easy to see
⋃p

j=1
T j = T.

64 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

Theorem 3.1. (a) The number of tapes corresponding the non-deterministic Turing ma-
chine M defined in (1.1) is determined by the number

n =

p
∏

i=1

ni(3.2)

where p is the number of equivalence classes Ti of the form (3.1) in T and ni is the number
of rules in class Ti, i = 1, . . . , p.

(b) An arbitrary from generated tapes uses the rules of the form

{r1,i1 , . . . , rp,ip}, r j,i j
∈ T j, 1 ≤ i j ≤ n j, 1 ≤ j ≤ p,(3.3)

where r j,i j
denotes i j-th rule from the class T j.

(c) The total number of rules in M is equal to n · p.

Proof. (a), (b) The proof of these parts proceeds by the mathematical induction
on the number p of classes. By T(k) we denote the sublist containing the first k
classes from T. Turing machine corresponding to T(k) is denoted by Mk.

1. For p = 1, complete list T(1) is of the form

T1 = {{A1, a1}−> {B11
, b11
,D11
}, · · · , {A1, a1}−> {B1n1

, b1n1
,D1n1

}}

= {r1,1, . . . , r1,n1
},

and the number of rules in T(1) is n1. Therefore, M1 has n1 tapes, whose rules are of
the form

{r1,i1}, 1 ≤ i1 ≤ n1.

2. Suppose that the claim is valid for machine Mk−1. The number of tapes for

this machine is
k−1
∏

i=1
ni. In view of (3.3), rules on the generated tapes possess the form

{r1,i1 , . . . , rk−1,ik−1
}, r j,i j

∈ T j, 1 ≤ i j ≤ n j, 1 ≤ j ≤ k − 1.(3.4)

3. If we add k-th class Tk into T(k−1) with nk elements {rk,1, . . . , rk,nk
}, we obtain

the list of rules T(k) and corresponding Turing machine Mk. for each rule rk,ik ∈ Tk,

1 ≤ ik ≤ nk there exists exactly
k−1
∏

i=1
ni tapes in Mk−1. It means that M has

k
∏

i=1
ni tapes,

whose rules are

{r1,i1 , . . . , rk−1,ik−1
, rk,ik}, r j,i j

∈ T j, 1 ≤ i j ≤ n j, 1 ≤ j ≤ k.

Therefore, the claims are valid for an arbitrary positive integer p.

(c) Follows from (a) and (b).

Turing machine and its symbolic simulation 65

Remark 3.1. The halting problem is well known (see for example [3, 5]). There cannot
exists an algorithm which, for each Turing machine M and each configuration determines
whether M will eventually halt. This does not mean that we cannot determine whether a
specific M in a specific configuration will halt. A Turing machine can go into an infinite
loop. In this case, the number n of tapes defined in (3.2) can be finite or infinite. In the
following statement we show that for any finite set Q and any finite alphabet Γ the number
of tapes is also finite.

Theorem 3.2. If |Q| < ∞, |Γ| < ∞, then the Turing machine M defined in (1.1) satisfies:

(a) the number n of tapes corresponding to M is limited by

n ≤ (|Q| · (|Γ| − 1) ∗ 3)|Q|·|Γ| < ∞;(3.5)

(b) the total number of rules in M is bounded by

n · p ≤ (|Q| · (|Γ| − 1) ∗ 3)|Q|·|Γ| · |Q| · |Γ| < ∞.(3.6)

Proof. (a) Any class T j in (3.1) is defined by the situation {A j, a j}, A j ∈ Q, a j ∈ Γ.
Therefore, the number of classes satisfies

p ≤ |Q| · |Γ| < ∞.(3.7)

Since |Q| < ∞, |Γ| < ∞, each number n j = |T j|, j = 1, . . . , p is finite, and bounded by

n j ≤ |Q| · |Σ| · 3 = |Q| · (|Γ| − 1) · 3.

Therefore, in view of (3.6) and (3.7) we have

n =

p
∏

j=1

n j ≤ (|Q| · (|Γ| − 1) · 3)p
≤ (|Q| · (|Γ| − 1) · 3)|Q|·|Γ| < ∞.

(b) This part of Theorem follows from part (c) of Theorem 3.1, (3.5) and (3.7).

Corollary 3.1. The number of rules which specify the behavior of any deterministic Turing
machine (1.1) is limited by

|Q||Γ|.

Proof. In the deterministic case we have n =
p
∏

i=1
ni = 1, so that in view of (3.7)

the number of rules is bounded by

p ≤ |Q||Γ|.

Remark 3.2. Corollary 3.1 is known result from [4].

Example 3.1. The equivalence classes corresponding to the list of rules

66 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

T={{A,"#"}->{B,"a",R},{B,"#"}->{C,"a",R},{C,"#"}->{G,"a",R},

{A,"#"}->{D,"b",R},{D,"#"}->{F,"b",R},{G,"#"}->{G," ",L},

{F,"#"}->{F," ",L}}

are equal to

T1={{A,#}->{B,a,R},{A,#}->{D,b,R}},

T2={B,#}->{C,a,R},T3={C,#}->{G,a,R},

T4={D,#}->{F,b,R},T5={F,#}->{F, ,L},T6={G,#}->{G, ,L}

Their cardinal numbers are 2, 1, 1, 1, 1, 1, respectively. In view of Theorem 3.1, the non-
deterministic Turing machine defined by T consists of two deterministic Turing machines,
whose rules are of the form (3.3). Hence, these rules are defined by the first and the second
element of the following list, respectively.

{{{A,#}->{D,b,R},{B,#}->{C,a,R},{C,#}->{G,a,R},{D,#}->{F,b,R},

{F,#}->{F, ,L},{G,#}->{G, ,L}},

{{A,#}->{B,a,R},{B,#}->{C,a,R},{C,#}->{G,a,R},{D,#}->{F,b,R},

{F,#}->{F, ,L},{G,#}->{G, ,L}}}

4. Simulation of non-deterministic Turing machine

Our implementation of non-deterministic Turing machine is based on this main
idea: replace a given non-deterministic Turing machine by the corresponding set
of deterministic Turing machines.

The formal parameter of the function Clases[T] is the list of rules of the given
non-deterministic machine. Its output is the list TList, which contains classes of
the form (3.1). Standard function Union[list] gives a sorted version of a list, in
which all duplicated elements have been dropped.

Clases[T_] := Module[{TT, TList, i},

TT=Union[T];

TList={{TT[[1]]}};

For[i=2, i<=Length[TT], i++,

If [TT[[i-1, 1]] =!= TT[[i, 1]], (* Then *)

AppendTo[TList, {TT[[i]]}];

, (* Else *)

AppendTo[TList[[Length[TList]]], TT[[i]]];

];

];

Return[TList];

];

Example 4.1. The similarity rules classes corresponding to list

Turing machine and its symbolic simulation 67

T={{A,"#"}->{G," ",L},{A,"0"}->{A,"1",R},{A,"0"}->{A,"0",R},

{A,"5"}->{A,"2",R},{A,"3"}->{A,"1",R},{A,"3"}->{A,"2",R},

{A,"3"}->{A,"3",R},{A,"1"}->{A,"0",R},{A,"5"}->{A,"1",R},

{A,"4"}->{A,"2",R},{A,"4"}->{A,"3",R},{A,"1"}->{A,"4",R},

{A,"2"}->{A,"1",R},{A,"2"}->{A,"2", R}}

are contained into the following list

TList={ {{A,#}->{G, ,L}}, {{A,0}->{A,0,R}, {A,0}->{A,1,R}},

{{A,1}->{A,0,R},{A,1}->{A,4,R}}, {{A,2}->{A,1,R}, {A,2}->{A,2,R}},

{{A,3}->{A,1,R}, {A,3}->{A,2,R}, {A,3}->{A,3,R}},

{{A,4}->{A,2,R}, {A,4}->{A,3,R}},

{{A,5}->{A,1,R}, {A,5}->{A,2,R}} }

Their cardinal numbers are 1, 2, 2, 2, 3, 2, 2, respectively. The number of tapes in M is
1 · 2 · 2 · 2 · 3 · 2 · 2 = 96.

We now describe the simulation of the non-deterministic Turing machine. De-
note by T the list of rules.

The following standard functions for list operations are used [13]:

Join[list1, list2, ...] concatenates lists together.

Flatten[list, n] flattens nested lists to level n.

Rules corresponding to generated deterministic Turing machines are placed
into the list ND. List ND is generated using the classes Cls of the similarity rules
relation. List Cls is the output of the function Clases. Into the cycle

ND=Table[

Join[ND[[k]],{Cls[[i,j]]}],{j,Length[Cls[[i]]]},{k,Length[ND]}

];

we concatenate all elements from the class Ti to each elements ND[[k]] of the list
ND.

In the starting moment all of generated deterministic machines possess identical
tapes, filled by the array TAPE. Assume that the array TAPE is produced applying
the function InitTape[word], where word is a given string. Therefore, it is sufficient
to evaluate the expressions

Compute[ND[[i]], word]; DumpHistory

for each i = 1, . . . , Len1th[ND].

DumpND[T_] := Module[{ND, Cls, i, j, k},

Cls=Clases[T];

ND=Table[{Cls[[1, j]]}, {j, Length[Cls[[1]]]}];

For[i=2, i<=Length[Cls], i++,

68 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

ND=Table[

Join[ND[[k]],{Cls[[i,j]]}],{j,Length[Cls[[i]]]},{k,Length[ND]}

];

ND=Flatten[ND, 1];

];

For[i=1, i<=Length[ND], i++,

Print["Tape",i]; Compute[ND[[i]],word]; DumpHistory

]

];

Example 4.2. Consider the following list of rules T and value of global variable word.

T={ {A,"#"}->{B,"a",R},{B,"#"}->{C,"a",R},{C,"#"}->{G,"a",R},

{A,"#"}->{D,"b",R},{D,"#"}->{F,"b",R},

{G,"#"}->{G," ",L},{F,"#"}->{F," ",L}};

word="#";

DumpND;

Tape1

History={{A,1,1,1,{#}},{D,1,2,2,{b,#}},{F,1,3,3,{b,b,#}},

{F,1,2,2,{b,b}}}

Fig. 4.1: Simulation of nondeterministic Turing machine corresponding to Tape1

Tape2

History = {{A,1,1,1,{#}},{B,1,2,2,{a,#}},{C,1,3,3,{a,a,#}},

{G,1,4,4,{a,a,a,#}},{G,1,3,3,{a,a,a}}}

Example 4.3. In this example we verify that non-deterministic Turing machine reduces
to identical deterministic in the case p = 1.

Turing machine and its symbolic simulation 69

Fig. 4.2: Simulation of nondeterministic Turing machine corresponding to Tape2

T={{A,"0"}->{A,"0",R},{A,"1"}->{A,"0",R},{A,"#"}->{G," ",L}};

word="101";

DumpND;

Tape1

History = {{A,1,1,3,{1,0,1}},{A,1,2,3,{0,0,1}},{A,1,3,3,{0,0,1}},

{A,1,4,4,{0,0,0,#}},{G,1,3,3,{0,0,0}}}

Fig. 4.3: Nondeterministic Turing machine reduces to deterministic

Example 4.4. In this example we apply our simulator of nondeterministic Turing machine
to the list of rules

T={{A,"#"}->{C,"1",L}, {A,"1"}->{B,"#",R}, {A,"1"}->{B,"#",L},

{B,"#"}->{A,"1",R}, {B,"1"}->{C,"1",R}, {C,"#"}->{B,"1",R},

{C,"1"}->{A,"#",L},{C,"1"}->{A,"#",R}};

and start the evaluation from the blank tape:

word = "#";

70 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

This machine spawns four deterministic machines, whose evaluations are illustrated by the
following picture:

1 1 1 1 1 8#, B< 1

1 1 1 1 8#, C< # 1

1 1 1 81, B< # # 1

1 1 1 1 81, A< # 1

1 1 1 1 1 81, C< 1

1 1 1 1 1 1 8#, A<

1 1 1 1 1 8#, B<

1 1 1 1 8#, C<

1 1 1 81, B< #

1 1 1 1 81, A<

1 1 1 8#, B< 1

1 1 8#, C< # 1

1 81, B< # # 1

1 1 81, A< # 1

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B<

1 1 8#, C<

1 81, B<

8#, C< 1

8#, A<

1 #8#, B<1 # 1

181, A<# 1 # 1

#8#, B<1 # 1 # 1

1, A<# 1 # 1 # 1

181, C<1 # 1 # 1

1 18#, A<# 1 # 1

1 1 #81, C<1 # 1

1 1 # 18#, A<# 1

1 1 # 1 #81, C<1

1 1 # 1 # 18#, A<

1 1 # 1 #8#, B<

1 1 # 181, A<

1 1 #8#, B<1

1 181, A<# 1

1 1 181, C<1

1 1 1 18#, A<

1 1 18#, B<

1 18#, C<

181, B<

#, C<1

8#, A<

1 1 1 8#, B< #

1 1 1 # 81, A<

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B< #

1 1 1 # 81, A<

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B< #

1 1 1 # 81, A<

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B< #

1 1 1 # 81, A<

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B<

1 1 8#, C<

1 81, B<

8#, C< 1

8#, A<

1 1 1 # # # # # # # # 8#, B<

1 1 1 # # # # # # # 81, A<

1 1 1 # # # # # # 81, C< 1

1 1 1 # # # # # # 1 8#, A<

1 1 1 # # # # # # 8#, B<

1 1 1 # # # # # 81, A<

1 1 1 # # # # 81, C< 1

1 1 1 # # # # 1 8#, A<

1 1 1 # # # # 8#, B<

1 1 1 # # # 81, A<

1 1 1 # # 81, C< 1

1 1 1 # # 1 8#, A<

1 1 1 # # 8#, B<

1 1 1 # 81, A<

1 1 1 81, C< 1

1 1 1 1 8#, A<

1 1 1 8#, B<

1 1 8#, C<

1 81, B<

8#, C< 1

8#, A<

Fig. 4.4: Four deterministic machines initiated by the nondeterministic machine

Remark 4.1. With respect to our implementation of deterministic Turing machines, in [15]
the content of the tape is represented by a color, whereas the head has several possible states,
indicated by the directions of the arrows.

5. Conclusion

An efficient implementation of the deterministic Turing machine in the package
MATHEMATICA is described. Possibility of symbolic processing in MATHEMATICA

are used. Besides the symbolic possibilities, we use MATHEMATICA power in the
representation of two-dimensional graphical images.

The number of deterministic Turing machines corresponding to a given non-
deterministic Turing machine is determined in (3.2). We proved that this number
is bounded, regardless the halting problem. Also, it is verified that each tape of the
machine possess a certain number of rules defined by (3.3).

Using these theoretical results we derive corresponding implementation of non-
deterministic Turing machine.

Turing machine and its symbolic simulation 71

R E F E R E N C E S

1. N. Blachman: Mathematica: A Practical Approach. Englewood Cliffs, New Jersey:
Prentice-Hall, 1992.

2. N. Cutland: Computability: An Introduction to Recursive Functions Theory. Cambridge
University Press, Cambridge, London, New York, Sydney,1986.

3. M. D. Davies and E. J. Weyuker: Computability, Complexity, and Languages. Academic
Press, New York, London, Paris, 1983.

4. W. W. Eric: Turing Machine, From MathWorld – A Wolfram Web Resource. http://mathworld.
wolfram.com/TuringMachine.html.

5. D. Gries: Compiler Construction for Digital Computers. John Wiley & Sons, Inc., New York,
London, Sydney, Toronto, 1971.

6. J. Hertel: Quantum turing machine simulator. The Mathematica Journal, Vol. 8, Issue 3,
Wolfram Media, Inc., 2002.

7. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and Compu-
tation, AddisonWesley Publishing Co., Reading Massachusetts, 1979.

8. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata Theory, Languages,
and Computation. 2nd ed., Addison-Wesley, 2001.

9. R. Maeder: Programming in Mathematica. 3rd ed., Redwood City, California: Adisson-
Wesley, 1996

10. R. McNaughton: Elementary Computability, Formal Language and Automata. Prentice-Hall,
1982.

11. J. P. Tremblay and P. G. Sorenson: The Theory and Practice of Compiler Writing. McGraw-
Hill Book Company, New York, 1985.

12. A. M. Turing: On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc. Ser 2, 1936.

13. S. Wolfram: The Mathematica Book. 4th ed., Wolfram Media/Cambridge University Press,
1999.

14. S. Wolfram: Mathematica Book, Version 3.0. Addison-Wesley Publishing Co, Redwood
City, California, 1997.

15. S. Wolfram: A New Kind of Science. Wolfram Media, 2002; pp. 78–81, 888–889, 110, 1119,
1128.

16. www.cheran.ro/vturing.

17. www.userpages.wittenberg.edu/bshelburne/Turing.htm.

18. www.csee.umbc.edu/∼squire/cs451 sim.html.

Saša V. Vukašinović

Faculty of Science and Mathematics

Department of Mathematics and Informatics

Višegradska 33, 18000 Niš, Serbia

sasavukasinovic 7@msn.com

72 S. V. Vukašinović, P. S. Stanimirović, M. D. Petković, and M. D. Ćirić

Predrag S. Stanimirović

Faculty of Science and Mathematics

Department of Mathematics and Informatics

Višegradska 33, 18000 Niš, Serbia

pecko@pmf.ni.ac.rs

Marko D. Petković

Faculty of Science and Mathematics

Department of Mathematics and Informatics

Višegradska 33, 18000 Niš, Serbia

dexter of nis@neobee.net

Miroslav D. Ćirić

Faculty of Science and Mathematics

Department of Mathematics and Informatics

Višegradska 33, 18000 Niš, Serbia

mciric@pmf.ni.ac.rs

	Introduction and preliminaries
	Simulation of deterministic Turing machine
	Correlations between deterministic and non-deterministic Turing machine
	Simulation of non-deterministic Turing machine
	Conclusion

