
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. 24 (2009), 39–51

PERFORMANCE COMPARISON OF STORAGE FORMATS
FOR SPARSE MATRICES ∗

Ivan P. Stanimirović and Milan B. Tasić †

Abstract. The sparse data structure represents a matrix in space proportional to the
number of non-zero entries. Many storage formats have been proposed to represent
sparse matrices. In this paper we evaluate and compare the storage efficiency of various
sparse matrix storage formats, and consider the performance results of matrix-vector
multiplication using these storage formats.

1. Introduction

Most physical and social structures are sparse in the sense that the elements of
these structures are loosely connected. For example, the atoms of very large mole-
cules are directly connected only to a few other atoms, etc. A mathematical model
of these connections is the adjacency matrix A, where ai j = 1 if the element i is
connected directly to element j, and ai j = 0 otherwise. We can also represent a road
network by an adjacency matrix, where ai j is the distance or travel time between
towns i and j directly connected by a road, and ai j = 1 otherwise. Such adjacency
matrices occur in many applications and they all have the characteristic that most
of their elements are 0 or 1, [2, 4].

In most applications involving sparse matrices the size of the matrix is very
large. Typically the dimensions are in the range 1, 000 − 1, 000, 000, with 220 non-
zeros per row. Storing such large matrices is impossible, even on supercomputers.
Besides, most of the storage would be wasted on zeros and, worse still, most of the
calculations would be wasted on zeros. Sparse matrices (matrices with a substantial
minority of nonzero elements, normally less than 10% nonzero elements) are per-
vasive in many mathematical and scientific applications. These matrices provide
an opportunity to minimize storage and computational requirements by storing,

Received
2000 Mathematics Subject Classification. Primary 68N15; Secondary 97N60, 65F50
∗Supported by Ministry of Science and Technological Development, Republic of Serbia, Grant no. 144011.
†Corresponding author

39

40 I. P. Stanimirović and M. B. Tasić

and performing arithmetic with, only the nonzero elements. The significant num-
ber of different storage formats gives us the source of a research. For example,
consider the published Basic Linear Algebra Subroutines (BLAS) standard and the
part dedicated to sparse matrices (Sparse BLAS), [5]. The (Sparse BLAS) do not state
which storage formats must be supported or used. Each specific hardware vendor
has the freedom (or problem) to select the storage format (or formats) that perform
best for its hardware. In the context of iterative methods [1] and JAVA, this paper
investigates the performance delivered by different storage formats considering a
implementation in C++ and MATHEMATICA.

The structure of the paper is as follows. Section 2 introduces the most com-
monly used storage formats for sparse matrices. The Java Sparse Array (JSA)
storage format was recently proposed in [6] to take advantage of Java arrays. The
performance evaluation consider a specific kernel from iterative methods, namely
matrix-vector multiplication, and compares this operation on two different compu-
tational platforms with nine different storage formats. The C++ and MATHEMATICA

implementation of this matrix operation is described in Section 3. The performance
study considers around 200 different sparse matrices representing various CS&E
applications as recorded by the Matrix Market repository [7]. To the best of the
authors knowledge, there is no other performance evaluation of storage formats
for sparse matrices which consider such a variety of matrices and storage formats.
Conclusions and future work are given in the last Section.

2. Storage formats for sparse matrices

The objective of storage formats for sparse matrices is to best exploit certain
matrix properties by (1) reducing memory space, by storing only nonzero elements
of a sparse matrix, and (2) by storing these elements in contiguous memory lo-
cations, for more efficient execution of subroutines on the matrix data. From an
implementation point of view, there are two categories of storage formats. Point
entry is used to categories storage formats where each entry in the storage format
is a single element of the matrix. Block entry refers to storage formats where each
entry defines a dense block of elements of any two dimensions. For both cases,
programming languages provide static and dynamic data structures.

There are many documented versions of different storage formats for sparse
matrices. One of the most complete sources is the book by Duff et al. [4], (for a
historical source see [8]). Some examples of these storage formats follow.

2.1. Point entry storage formats

Coordinate Format (COO). Possibly the most intuitive storage format for a
sparse matrix is in terms of coordinates. Instead of storing the matrix densely, a
list of the coordinates in terms of row and column numbers is stored, with the
associated nonzero values. COO requires no specific structure of the matrix and

Performance comparison of storage formats for sparse matrices 41

is a very flexible format. It requires three (unordered) arrays and a single scalar
recording the total number of nonzero elements, nnz. The combination of the three
arrays provides a row i and column j coordinate pair for an element in the matrix
along with its value ai j . In general, for a matrix with nnz, COO requires three one-
dimensional arrays of length nnz plus a scalar. By default, some implementation
methods create matrices in COO. Using internal utilities subroutines, users can
easily transform from COO to the other storage formats.

2.1.1. Compressed sparse row/column storage formats (CSR/CSC)

CSR and CSC storage formats are not based on any particular matrix property
and hence can be used to store any sparse matrix. In CSR, the nonzero values of
every row in the matrix are stored, together with their column number, consecu-
tively in two parallel arrays, Value and j. There is no particular order with respect
to the column number, j. The Size and Pointer for each row define the number of
nonzero elements in the row and point to the relative position of the first nonzero
element of the next row, respectively. The column based version, CSC, instead
stores Value and i, in two parallel arrays and Size and Pointer of each column allows
each member of Value to be associated with a column as well as the row given in
i. The storage requirements are two arrays, each of length the number of rows (or
columns), and two further arrays of length nnz, and a scalar to point to the next
free location in the arrays i (or j) and Value.

Assume that A is a m × n sparse matrix and A1, . . . ,Am are the rows of A. In
CSR format matrix A is represented as the vector {l1, . . . , lm}, where the vector li
represents the ith row Ai. Each element li is the ordered pair of the form { j, ai j},
where j indicates the column which contains a non-zero element ai j. Each zero row
is represented by an empty list.

Example 2.1. Consider the following matrix A =

















a00 0 0 a03

0 a11 0 0
a20 0 a22 0

















.

Rows

�
�
��*

-

H
H
HHj

a00 a03

a11

a20 a22

Columns

�
�
��*

����:

XXXXz

H
H
HHj

a00 a20

a11

a22

a03

Fig. 2.1: An example sparse matrix A stored using CSR and CSC

42 I. P. Stanimirović and M. B. Tasić

2.2. Block entry storage formats

Block entry storage formats form an extension of certain point entry storage
formats based on partitioning matrices into blocks of elements (i.e. sub-matrices).
Block entry storage formats divide a matrix into blocks which can be squares or
rectangles. These storage formats also define schemes to describe the memory
position of a single block. If the block size remains fixed, for example, Block
Sparse Row/Column (BSR/BSC) storage format can be obtained from CSR/CSC,
respectively. Similarly, when the block size can vary the Variable Block Compressed
Sparse Row/Column formats (VBR/VBC) are obtained. An example of a variable
block matrix A is as follows:

A =









































a11 a12 | a13 a14 a15 a16 | a17
a22 a22 | a23 a24 a25 a26 | a27
a31 a32 | a33 a34 a35 a36 | a37
a41 a42 | a43 a44 a45 a46 | a47
a51 a52 | a53 a54 a55 a56 | a57
a61 a62 | a63 a64 a65 a66 | a67









































or

















A11 A12 A13
A21 A22 A23
A31 A32 A33

















where,

A11 =
[

a11 a12
]

, A13 =
[

a17
]

, A22 =

[

a23 a24 a25 a26
a33 a34 a35 a36

]

,A33 =

















a47
a57
a67

















.

In the point entry storage formats, the storage format describes the position in
the (Value) array of single matrix elements. Block entry storage formats (with length
of block lb), instead have a scheme to describe the position of a single block in a
n/lb×n/lb blocked matrix. Each block contains lb2 elements. In this way, most point
entry storage formats can be blocked to generate Block Coordinate storage format
(BCO), Block Sparse Row/Column storage format (BSR/BSC) and others where the
block does not have constant dimensions (e.g. Variable Block Compressed Sparse
Row).

2.3. Java sparse array (JSA)

Java Sparse Array (JSA) is a recently designed storage format, designed partic-
ularly to suit Java (see [6]), relying on declaring an array with individual elements
being arrays arrays of arrays. JSA is a row oriented storage format, similar to CSR.
The matrix is implemented as two arrays, each element of which is a pointer to
an array. One of these arrays, Value, stores pointers to arrays which contain the
matrix elements each row in the matrix has its elements in a separate array. All the
separate arrays can be reached through the pointers in the Value array, that is an
array of pointers to arrays. The second array Index stores pointers to arrays which
contain the column indices of the matrix, again one array per row. Fig. 2.2. shows
the matrix A introduced in Example 2.1 stored using JSA.

Performance comparison of storage formats for sparse matrices 43

Index

�
�
��*

-

H
H
HHj

0 3

1

0 2

Value

�
�
��*

-

H
H
HHj

a00 a03

a11

a20 a22

Fig. 2.2: The sparse matrix A stored using JSA

Short name Name Short name Name
DNS Dense ELL Ellpack-Itpack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse Column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

Table 2.1: Popular Storage Formats

2.4. Other storage formats with examples

Many sparse matrix storage formats are in use today, each of them having its
acronym. Some of the most applied sparse matrix storage structures and their
acronyms are shown in the Table 2.1. Please note that CSR is called CRS, CCS is
CSC, and SSK is SKS in some references.

Example 2.2. DNS is a simple, row-wise, easy blocked format. For matrix

A =

















1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0

















,

storage structure is AA = [3 3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0].

Example 2.3. Let us apply some known storage formats on the matrix

A =

































1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

































.

44 I. P. Stanimirović and M. B. Tasić

COO

The COO representation gives the following vectors:

AA = [12.0 9.0 7.0 5.0 1.0 2.0 11.0 3.0 6.0 4.0 8.0 10.0];

JR = [5 3 3 2 1 1 4 2 3 2 3 4];

JC = [5 5 3 4 1 4 4 1 1 2 4 3].

This method is simple, often used for entry.

CSR

The following arrays are generated here:

AA = [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0];

JA = [1 4 1 2 4 1 3 4 5 3 4 5];

IA = [1 3 6 10 12].

The lengths of both AA and JA are nnz, and the length of IA is n + 1. Denote
that for each j ∈ {1, ..., n} IA(j) gives the index (offset) of the beginning of j-th row
in AA and JA. According to some sources from Fortran programming language
this representation gives fast row access, but slow column access.

MSR

Now we have the following vectors:

AA = [1.0 4.0 7.0 11.0 12.0 ∗ 2.0 3.0 5.0 6.0 8.0 9.0 10.0];

JA = [7 8 10 13 14 14 4 1 4 1 4 5 3].

This method gives importance to diagonal elements in the matrix, which are
often nonzero or frequently accessed. The first n entries of the array AA are now
the diagonal elements, the (n + 1)-th entry is empty, and the rest of AA are the
nondiagonal entries. The first n + 1 entries in JA vector give the indices (offsets)
of the beginnings of each row, as introduced earlier (denote that the array IA from
the CSR representation can be generated from the array JA). The rest of JA vector
are the column indices.

ELL

Here we form columns from first non-zero in each row and repeat this process.
This representation assumes low number of nnz per row, equal to number of
columns in COEFF and JCOEFF.

COEF =

































1.0 2.0 0
3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 0

11.0 12.0 0

































, JCOEF =

































1 3 1
1 2 4
2 3 5
3 4 4
4 5 5

































.

DIA (or CDS-Compressed Diagonal Storage)

If the matrix A is banded with bandwidth that is fairly constant from row to
row, then it is worthwhile to take advantage of this structure in the storage scheme

Performance comparison of storage formats for sparse matrices 45

by storing sub-diagonals of the matrix in consecutive locations. Not only can we
eliminate the vector identifying the column and row, but we can pack the nonzero
elements in such a way as to make the matrix-vector product more efficient. This
storage scheme is particularly useful if the matrix arises from a finite element or
finite difference discretization on a tensor product grid. We say that the matrix
A = (ai, j) is banded if there are nonnegative constants p, q, called the left and right
half-bandwidth, such that ai, j , 0 only if i − p ≤ j ≤ i + q. In this case, we can
allocate for the matrix A an array val(1 : n,−p : q). Usually, band formats involve
storing some zeros. The CDS format may even contain some array elements that
do not correspond to matrix elements at all.

Consider the nonsymmetric matrix A defined by

A =











































10 −3 0 0 0 0
3 9 6 0 0 0
0 7 8 7 0 0
0 0 8 7 5 0
0 0 0 9 9 13
0 0 0 0 2 −1











































.

Using the CDS format and an array val = (6,−1 : 1), we store this matrix A as

DIA =











































0 10.0 −3.0
3.0 9.0 6.0
7.0 8.0 7.0
8.0 7.0 5.0
9.0 9.0 13.0
2.0 −1.0 0











































.

Example 2.4. LIL is very similar to CSR, but rather than a flat AA vector, each row
is a linked list of elements. First element of each row is accessed by ROOT, each
element in AA has a corresponding NEXT entry.

Consider the next matrix:

A =

































7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4

































→

i | IA JA AA NEXT
1 | 4 3 2 −1
2 | 3 2 2 5
3 | 2 2 1 1
4 | 8 1 7 −1
5 | 7 4 2 −1
6 | − 5 6 6
7 | − 6 4 −1
8 | − 5 5 −1

.

Number −1 indicates the end of a row. Column lookup take O(nnz). Store a
column wise index in the same way as rows. Very good element insertion time,
but more memory.

46 I. P. Stanimirović and M. B. Tasić

3. The implementation of some storage format

Here we implement some storage formats in two different programming lan-
guages. The idea is to show the implementation of the sparse-vector functions
when the exact storage format is known.

3.1. The implementation of CSR and CSC formats in C++

When implementing the CSR/CSC storage formats in programming language
C++, we use the following pointer representation.

typedef float type;

typedef struct element

{ int row; int col; type val;

struct element *NextInRow; struct element *NextInCol;

} Element;

typedef struct RPM

{ Element **rows; Element **cols; short int dim;

} SparseMatrix;

Denote that our sparse matrix is implemented as a structure containing the
matrix size stored in the variable dim, and two arrays of the pointers to the elements
of the matrix, which are stored in the variables rows and cols. Also, each element
is stored as a structure that contains its value, position in the matrix denoted as its
row and column number and, eventually, two pointers to the elements which are
successive in Row and Column. These two pointers are stored using NextInRow
and NextInCol statements. Notice that the memory required for CSR/CSC matrix
storage is equal to:

NumberO f NonzeroElements × Stora1eSizeO f IndividualElement.

3.1.1. Converting sparse matrix to the matrix-vector

The function that converts sparse matrix to the matrix vector introduced by
CSR storage format requires two parameters: the matrix in standard form with
elements of the corresponding type and the matrix size. Here we give one way to
implement this function.

SparseMatrix Convert(type **mat, int n)

{ SparseMatrix A; A.dim=n;

A.rows = (Element **) malloc(n*sizeof(Element *));

A.cols = (Element **) malloc(n*sizeof(Element *));

for(int i=0; i<n; i++) A.rows[i]=NULL;

for(int i=0; i<n; i++) A.cols[i]=NULL;

for(int i=0; i<n; i++)

Performance comparison of storage formats for sparse matrices 47

for(int j=0; j<n; j++)

if(mat[i][j])

{ Element *novi=(Element *) malloc(sizeof(Element));

novi->row=i; novi->col=j;

novi->val=mat[i][j];

novi->NextInCol = novi->NextInRow = NULL;

if (A.rows[i]==NULL) A.rows[i]=novi;

else {Element *p=A.rows[i];

while (p->NextInRow) p=p->NextInRow;

p->NextInRow=novi; }

if (A.cols[j]==NULL) A.cols[j]=novi;

else {Element *p=A.cols[j];

while (p->NextInCol) p=p->NextInCol;

p->NextInCol=novi;}}

return A;}

3.1.2. C++ implementation of matrix-vector multiplication

For matrix-vector multiplication, two for-cycles are carried out, creating the
products of matrix A row-vectors and matrix B column-vectors. After that, the im-
plementation of matrix-vector multiplication present an if-then-else code structure
separating special cases.

SparseMatrix Multiply(SparseMatrix A, SparseMatrix B)

{ SparseMatrix C; C.dim=A.dim;

C.rows = (Element **) malloc(C.dim*sizeof(Element *));

C.cols = (Element **) malloc(C.dim*sizeof(Element *));

for(int i=0; i<C.dim; i++) C.rows[i]=NULL;

for(int i=0; i<C.dim; i++) C.cols[i]=NULL;

for(int i=0; i<C.dim; i++)

for(int j=0; j<C.dim; j++)

{ Element *p=A.rows[i], *q=B.cols[j];

int s=0;

while(p)

{ while(q && (p->col > q->row)) q=q->NextInCol;

if(q && (p->col == q->row)) s+=p->val*q->val;

p=p->NextInRow;}

if (s)

{ Element *novi=(Element *)malloc(sizeof(Element));

novi->row = i;

novi->col = j;

novi->val = s;

novi->NextInCol=novi->NextInRow=NULL;

if(!C.rows[i]) C.rows[i]=novi;

else {Element *p=C.rows[i];

while (p->NextInRow) p=p->NextInRow;

p->NextInRow=novi;}

if(!C.cols[j]) C.cols[j]=novi;

else {Element *p=C.cols[j];

while (p->NextInCol) p=p->NextInCol;

p->NextInCol=novi;} } }

return (C);}}

48 I. P. Stanimirović and M. B. Tasić

3.2. Representation of COO format in MATHEMATICA

In the COO representation, a sparse matrix is represented as a vector of ap-
propriate ordered triples. Each ordered triple corresponds to a non-zero element
ai j, and possesses the form {i, j, ai j}. When we deal with sparse matrices, computer
algebra comes close to the methods of numerical calculation [3]. For this purpose
in this paper are written functions for implementation of basic operations in ma-
trix algebra, which are applicable to sparse matrix representation. The function
Sparse[mat] uses the formal parameter mat , representing a matrix in the usual
(“dense”) form, required in MATHEMATICA [9].

The local variable l denotes an adequate sparse representation of the matrix mat:

l = {{i1, j1,mati1, j1}, {i2, j2,mati2, j2}, . . . , {iu, ju,matiu, ju}}.

Local variables a1 and b1 are assigned to store the lists which contain different
elements from the lists {i1, i2, . . . , iu} and { j1, j2, . . . , ju}, respectively. More precisely,
the list a1 represents the union of first elements from the list l, while elements of
the list b1 are the union of the second elements from the lists l.

The result of the function Sparse[mat List] is the ordered triple {a1, b1, l}.

Sparse[mat_List]:= Block[{a1=b1=l={},m,n,i,j},

{m,n}=Dimensions[mat];

For[i=1, i<=n, i++,

For[j=1, j<=m, j++, If[mat[[i,j]] =!= 0,l=Append[l,{i,j,mat[[i,j]]}]]]];

For[i=1,i<=Length[l],i++,a1=Union[a1,{l[[i,1]]}]; b1=Union[b1,{l[[i,2]]}]];

{a1,b1,l}];

Let us mention that an arbitrary sparse row-matrix a is represented in the form
{{1, i1, a1,i1}, · · · , {1, ik, a1,ik }}, and a sparse column-matrix is represented by the list
{{i1, 1, ai1,1}, · · · , {ik, 1, aik,1}}.

By means of the function ColS[a,k] it is possible to form the vector whose ele-
ments are taken from the k-th column of the sparse representation a of the matrix
A.

ColS[a_List,k_]:= Block[{Ak={},i},

For[i=1,i<=Length[a],i++,If[a[[i,2]]==k,Ak=Append[Ak,{a[[i,1]],1,a[[i,3]]}]]];

Ak];

The function MaxDim[a,k] computes the maximal index between the indices of
rows which contain a non-zero element, in the case k = 1. Similarly, in the case
k = 2, the result of this function is the maximum in the set of indices of columns
containing a non-zero element. It is assumed that a is the sparse representation of
the matrix A.

MaxDim[a_List,k_]:=Block[{l={},i},

For[i=1,i<=Length[a],i++,l=Append[l,a[[i,k]]]]; Max[l]];

Performance comparison of storage formats for sparse matrices 49

By means of the function InPos[a,i1,i2] we compute the value A[[i1, i2]], denoted
by S, and the position pos of this value in the sparse representation a of the matrix
A.

InPos[a_List,i1_,i2_]:= Block[{find=True,i=1,s,pos},

While[find,If[(a[[i,1]]==i1)&&(a[[i,2]]==i2),

s=a[[i,3]];pos=i;find=False,

If[i==Length[a],s=0;find=False,i++]]];

{s,pos}];

The result of the function MultMat[a,b] is the product of two matrices a and b,
given in the form of ordered triples.

MultMat[a_List,b_List]:= Block[{C={},Amb={},i,j,k,m1,m2,n1,n2,m,n},

m1=MaxDim[a,1];m2=MaxDim[b,1];n1=MaxDim[a,2];n2=MaxDim[b,2];

m=Max[m1,m2];n=Max[n1,n2];

For[i=1,i<=m,i++, For[j=1,j<=n,j++,

C=Append[C,{i,j,Sum[InPos[a,i,k][[1]]*InPos[b,k,j][[1]],{k,1,n}]}]]];

For[i=1,i<=Length[C],i++,If[C[[i,3]]=!=0,Amb=Append[Amb,C[[i]]]]];

Simplify[Amb]];

The function MultSk[a,b] gives the matrix which is equal to the product of the
matrix a with the scalar b.

MultSk[a_List,b_]:= Block[{A=a,i},

For[i=1,i<=Length[A],i++,A[[i,3]]=A[[i,3]]*b]; Simplify[A]];

The result of the function Rcpv[a] is a matrix whose sparse representation is
determined by reciprocal values of elements contained in the sparse representation
a.

Rcpv[a_List]:=Block[{A=a,i},

For[i=1,i<=Length[A],i++,A[[i,3]]=1/A[[i,3]]]; Simplify[A]];

Transpose of a given sparse matrix a can be generated by means of the function
HermitS[a].

HermitS[a_List]:=Block[{A=a,t,i},

For[i=1,i<=Length[A],i++,t=A[[i,1]];A[[i,1]]=A[[i,2]];A[[i,2]]=t]; A];

The result of the function SubMat[a List,b List] is equal to the difference of
matrices a and b, represented in the sparse form. The sum of matrices a and b can
be computed using the function call SubMat[a,MultSk[b,-1]].

SubMat[a_List,b_List]:= Block[{B=b,g,M={},C={},t,t1,i,s1,s2},

For[i=1,i<=Length[a],i++,s1=a[[i,1]];s2=a[[i,2]];g=InPos[B,s1,s2];t=g[[1]];t1=g[[2]];

If[Not[t=!=0],C=Append[C,a[[i]]],

If[a[[i,3]]=!=t,C=Append[C,{s1,s2,a[[i,3]]-t}]]; M=Append[M,B[[t1]]]]];

B=Complement[B,M];

For[i=1,i<=Length[B],i++,C=Append[C,{B[[i,1]],B[[i,2]],-B[[i,3]]}]];

Simplify[C]];

50 I. P. Stanimirović and M. B. Tasić

Table 4.1: Timings for matrix-vector multiplication of different sizes and densities.

Density 50 100 150 200 250 300 350 400 450 500
100% 0.2 0.4 0.85 1.6 3.2 6.1 10.8 16.5 28.3 42
75% 0.1 0.2 0.75 1.3 3 4.5 6.7 10.9 19.2 27.8
50% 0 0.2 0.7 1.2 2.3 3.1 3.9 6.2 10.6 14.1
25% 0 0.1 0.4 0.75 1 1.5 2.1 2.7 4.8 7.2
10% 0 0.1 0.3 0.55 0.8 1 1.2 1.6 1.9 2.3

Standard 0 0.1 0.35 0.7 1 1.3 1.8 2.3 3 3.7

4. CSC/CSR storage format performance results

Table 4.1 shows the performance results of matrix-vector multiplication using
CSC/CSR storage format implemented in programming language C++. All timings
in the table are given in seconds. No distinction is made between symmetric
and non-symmetric matrices. These performance results of each different matrix
density and matrix size are calculated as the average of the several testings. All
matrix elements in these test-examples are randomly generated. The results are
ordered by increasing the total number of non-zero elements.

Fig. 4.1: Time results for different matrix densities using CSR storage format.

Performance comparison of storage formats for sparse matrices 51

5. Conclusions

It would be presumptuous to say that all the storage formats for sparse matrices
are covered by this work, especially since there are many minor variations which
can create entirely new storage formats. Nonetheless, this paper has presented a
comprehensive performance comparison of storage formats for sparse matrices.
Future work underway is to include a similar set of experiments with Data Base
storage system implementations and the other operations supported by SQL.

R E F E R E N C E S

1. R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, SIAM, (1994).

2. D. O’Connor, Algorithms & Data Structures, (2002).

3. J.H. Davenport, Y. Siret and E. Tournier, Computer Algebra, Academic Press, (1988).

4. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, (1986).

5. I. S. Duff, M. A. Heroux, and R. Pozo, An overview of the sparse basic linear algebra subpro-
grams: The new standard from the BLAS technical forum,ACM Transactions on Mathematical
Software, 2002, pp. 239-267.

6. G. Gundersen, T. Steihaug, Data structures in Java for matrix computations, Concurrency
and Computation: Practice and Experience, 2004, 799-815.

7. The matrix market, http://math.nist.gov/MatrixMarket/.

8. U. W. Pooch, A. Nieder, A survey of indexing techniques for sparse matrices, ACM Comput-
ing Surveys, 1973, 109-133.

9. S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge University Press,
(1999).

Ivan P. Stanimirović

Faculty of Science and Mathematics,

Department of Mathematics and Informatics,

P. O. Box 224, Višegradska 33,

18000 Niš, Serbia

ivan.stanimirovic@gmail.com

Milan B. Tasić

Faculty of Science and Mathematics,

Department of Mathematics and Informatics,

P. O. Box 224, Višegradska 33,

18000 Niš, Serbia

milan12t@ptt.rs

	Introduction
	Storage formats for sparse matrices
	Point entry storage formats
	Compressed sparse row/column storage formats (CSR/CSC)

	Block entry storage formats
	Java sparse array (JSA)
	Other storage formats with examples

	The implementation of some storage format
	The implementation of CSR and CSC formats in C++
	Converting sparse matrix to the matrix-vector
	C++ implementation of matrix-vector multiplication

	Representation of COO format in MATHEMATICA

	CSC/CSR storage format performance results
	Conclusions

