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Ser. Math. Inform. 24 (2009), 29–37

FINITE TERMINATION AND DECREASING DIMENSIONS IN
MEHROTRA’S PRIMAL-DUAL ALGORITHM∗

Nebojša V. Stojković and Predrag S. Stanimirović†

Abstract. In this paper we propose a modification of the Mehrotra’s primal dual algo-
rithm. This modification reduces dimensions of the problem, improves stability of the
method and eliminates the need for the finite termination algorithm. A few illustrative
numerical examples which compare the modification with respect to the original method
are reported.

1. Introduction

We are concerned with the linear programming problem given in the general
form, which we write in the standard form as

min cTx subject to Ax = b, x > 0,(1.1)

where c, x ∈ Rn, b ∈ Rm, and A is an m × n real matrix and cT is transpose of the
vector c. The dual problem for the problem (1.1) is

max bTλ subject to ATλ + s = c, s ≥ 0,(1.2)

where λ ∈ Rm and s ∈ Rn. It is known that the vector x∗ ∈ Rn is a solution of
(1.1) if and only if there exist vectors s∗ ∈ Rn and λ∗ ∈ Rm such that the following
conditions hold:

ATλ∗ + s∗ = c,(1.3)

Ax∗ = b,(1.4)

x∗i s
∗
i = 0, i = 1, . . . , n,(1.5)

(x∗, s∗) ≥ 0.(1.6)
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All primal-dual methods generate iterates (xt, λt, st) that satisfy the bounds (1.6)
strictly and instead the condition (1.5) deal with the condition xisi = τ, i = 1, . . . , n,
where τ→ 0.

For every solution (x∗, λ∗, s∗) we know that x∗
j
= 0 and/or s∗

j
= 0 for all j = 1, . . . , n.

Let
B = { j ∈ {1, . . . , n}| x∗j > 0}, N = { j ∈ {1, . . . , n}| s∗j > 0}.

It is easy to see that B ∩N = Ø. Primal-dual strictly feasible set F0 is

F0 = {(x, λ, s)|Ax = b, ATλ + s = c, (x, s) > 0}.

The motivation for the present paper is based on the fact that the primal-dual
algorithm only generates a sequence converging towards the optimal solution and
it needs the finite termination algorithm to find an exact primal-dual solution.
Also, the finite termination algorithm is by itself a relatively complicated nonlinear
optimization problem; see, for instance [1], [2], [3] and [10]. Our main goal is to de-
velop an algorithm which avoid the application of the finite termination algorithm.
Moreover, we intend to reduce dimensions of the problem as well as to improve
the stability and centrality of the iterative sequence.

The paper is organized as follows. In the second section we provide the theoret-
ical fundament for a modification of the Mehrotra’s method. In the third section we
select a small set of test problems from the public domain collections of linear pro-
gramming solvers to illustrate the presented algorithm. Finally, in the last section
we present a few concluding remarks and comparisons of the modified method
with respect to the Mehrota’s method and known linear programming solvers.

2. Modified Mehrotra’s primal-dual algorithm

Note that there are several variants of the Mehrotra’s algorithm, all quite similar.
In this section we briefly describe a variant of the Mehrotra’s algorithm which is
similar to the variant used in the code of PCx (see for example [3, 6, 9]).

Step 1. Generate the starting iteration (xt, λt, st), t = 0.

Step 2. Calculate the residues

rb = Axt − b, rc = ATλt + st − c

and check the following stopping criteria

||rb||

1 + ||b||
6 ǫ,

||rc||

1 + ||c||
6 ǫ,

|cTx − bTλ|

1 + |cTx|
6 ǫ.

If the stopping criterion is satisfied, return the output xt; otherwise, go to Step 3.

Step 3. Form the matrices S, X and the vector e, defined by

S = diag s1, . . . , sk+q, X = diag x1, . . . , xk+q, e= (1, . . . , 1)T ∈ Rk+q.
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Step 4. Set D = S−1/2X1/2, and rxs = XSe and solve the following system with
respect to (∆xa f f ,∆λa f f ,∆sa f f ):

AD2AT∆λa f f = −rb − A(S−1Xrc − S−1rxs),

∆sa f f = −rc − AT∆λa f f ,

∆xa f f = −S−1(rxs + X∆sa f f ).

It is easy to verify the following

S−1=diag 1/s1, . . . , 1/sk+q, D2=diag x1/s1, . . . , xk+q/sk+q.

Step 5. Calculate the measure of duality µ = 1
k+q

∑k+q

i=1
xisi.

Step 6. Calculate the conditions for non-negativity of the iterative point

α
pri

a f f
= max{α ∈ [0, 1] : xt + α∆xa f f ≥ 0}

αdual
a f f = max{α ∈ [0, 1] : st + α∆sa f f ≥ 0}.

Step 7. Calculate

µa f f =
1

n
(xt + α

pri

a f f
∆xa f f )(st + αdual

a f f ∆sa f f ) and σ = (
µa f f

µ
)3.

Step 8. Compute rxs = −σµe + ∆Xa f f∆Sa f f e, where

∆Xa f f = diag∆x
a f f

1
, . . . ,∆x

a f f
n , ∆Sa f f = diag∆s

a f f

1
, . . . ,∆s

a f f
n ,

and solve the following system for (∆xcor,∆λcor,∆scor):

AD2AT∆λcor = AS−1rxs,

∆scor = −AT∆λcor,

∆xcor = −S−1(rxs + X∆scor).

Step 9. Set

(∆xt,∆λt,∆st)= (∆xa f f ,∆λa f f ,∆sa f f )+(∆xcor,∆λcor,∆scor)

Step 10. Calculate the parameters

α
pri
max = max{α ≥ 0 : xt + α∆xt ≥ 0}

αdual
max = max{α ≥ 0 : st + α∆st ≥ 0}.

Step 11. Set

α
pri
t = min{0.99α

pri
max, 1}

αdual
t = min{0.99αdual

max, 1}.
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Step 12. Compute the next iteration

xt+1 = xt + α
pri
t ∆xt,

(λt+1, st+1) = (λt, st) + αdual
t (∆λt,∆st),

put (xt, λt, st) = (xt+1, λt+1, st+1) and go to Step 2.

In this paper we propose the following modifications of Step 12 and Step 2. The
modification of Step 12 is based on the elimination of variables xi and si converging
to zero. It is possible to use the following criterion which guarantees the conver-
gence of some variables to zero. For any point (x, λ, s) ∈ N−∞(γ), we can estimate
the sets B and N when µ is sufficiently small [9][Theorem 7.2.1], as follows:

B(x, s) = {i ∈ {1, . . . , n}| xi ≥ si}, N(x, s) = {1, . . . , n}\B(x, s),(2.1)

where
N−∞(γ) = {(x, λ, s) ∈ F0| xisi ≥ γµ for all i = 1, . . . , n}

and γ ∈ (0, 1). Also, it is known that there is a threshold value µ such that for all
(x, λ, s) that satisfy

(x, λ, s) ∈ N−∞(γ) ⊂ F0, 0 < µ = xTs/n ≤ µ,

we have B(x, s) = B and N(x, s) = N, i.e. the actual index sets B and N are estimated
correctly by (2.1) [9].

We need small real numbers eps1 and eps2 as criteria for the application of
reductions. We use the vector xzero to remember the indices of deleted elements of
the vecor x. The empty list is the initial value for the vector xzero.

Step 12M. Compute the next iteration

x = xt+1 = xt + α
pri
t ∆xt,

(l, s)= (λt+1, st+1) = (λt, st) + αdual
t (∆λt,∆st).

Note that it is assumed that first q constraints are inequalities, while the con-
straints with the order numbers q + 1, . . . , q + m are equalities. If the condition
xs = xTs < eps1 is satisfied, perform two cycles, Cycle 1 and Cycle 2, defined as in
the following.

Cycle 1. For each i=1, . . . , k, if the conditions

xi=xt+1
i <eps1, xi≤si=st+1

i(2.2)

are satisfied, run the following steps 1.1-1.4.

1.1. Delete i-th element from the vectors x, c and s, and delete i-th column
from the matrix A.

1.2. Put k = k − 1.
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1.3. Insert the index i at the beginning of the vector xzero.

1.4. Set i = i − 1.

Cycle 2. For each i = k + 1, . . . , k + q execute steps 2.1-2.4.

2.1. Put False as the value of the logical variable l1. This variable is used
as the indicator that any element from x is deleted at any time.

2.2. Under the conditions (2.2) run the following:

2.2.1. Put l1 = True.

2.2.2. Delete i-th element from x, c, s and i-th column from A.

2.2.3. Put q = q − 1.

2.2.4. Replace (i − k)-th and the last elements in A, x and l = λ.

2.3. In the case i ≤ Len1th[s], if the conditions

l1=False, si = st+1
i <eps2, si≤xi=xt+1

i

are satisfied, execute the following steps:

2.3.1. Delete i-th element from x, c and s, delete (i − k)-th element of b
and l=λ, and delete (i − k)-th row and i-th column from A.

2.3.2. Put q = q − 1.

2.4. In the case l1=True put i = i − 1.

Finally, as in the usual method, put (xt, λt, st) = (xt+1, λt+1, st+1) and go to Step
2M, a modification of Step 2.

Step 2M. Check the stopping criteria as in Step 2.

If these criteria are not satisfied, go to the next iteration. When these criteria
are satisfied, perform the reconstruction of the vector x, inserting zero values at
the corresponding positions of the vector xt, where corresponding elements are
deleted. For this purpose, we use the list xzero and apply the following For cycle:

For each i = 1, . . . , n = Len1th[xzero] insert the zero at the i-th position in the
vector xt.

Then return x as the output.

Remark 2.1. An important practical issue is a choice of an indicator B(x, s) for the
optimal partition B. Besides the criteria (2.2) we also used an alternative criterion
xTs/x1Ts1 = r < eps2, where x1 and s1 are values for x and s in the previous iterative
step [4]. Our numerical experience shows that the most of tested problems in
the last stages of iterative processes take the value r ≈ 0.01. This means that the
superlinear convergence is achieved for the values eps2 = 0.01. But, some of these
problems possesses a quite satisfactory convergence even for the values eps2 = 0.1.
After the application of this criterion we get almost the same results as the previous
criterion is applied.

Remark 2.2. The settings xi = 0, i ∈ I, sk+ j = 0, j ∈ J in Step 12M are analogous to the
settings x∗

i
= 0, i ∈ N(x, s), s∗

i
= 0, i ∈ B(x, s) which are known from the finite termina-

tion algorithm. Our strategy differs from the classical finite termination algorithm
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in the fact that we do not estimate all elements from the sets N and B. Moreover,
we apply these assignments successively during the iterations, performing only
simple verifications.

3. Numerical experiences

Example 3.1. In this example we consider a subset of known test problems in the literature.
Several results obtained by the modified algorithm are arranged in the Table 1. Notice
that the variable eps denotes the stopping criterion in the algorithm and the variables eps1
and eps2 are described in Step 12M. Also, the problem KbM is obtained by dropping upper
bounds from the known problem Kb2. An additional column, denoted by TMod/T, contains
the quotient of the processor time which is required for the modified and the original method
Mehrotra’s primal-dual method.

Problem eps eps1, 2 MPD opt. value It. MMPD opt. value It. TM/T
Afiro 10−13 10−1 -464.7531428571353 12 -464.75314285714694 12 0.73

Bandm 10−8 10−4 -158.6280184317434 19 -158.6280184499003 18 0.86
Blend 10−12 10−2 -30.81214984582682 13 -30.812149845827857 12 0.65

Israel 10−12 10−4 -896644.8218630098 25 -896644.8218630177 25 0.86
Kb2 10−10 10−3 -1749.9001299102652 17 -1749.900129938148 16 0.78

Adlittle 10−13 10−2 225494.96316236982 16 225494.9631623751 16 0.82
Sc50a 10−13 10−3 -64.57507705856638 13 -64.5750770585622 13 0.86

Sc50b 10−12 10−3 -69.99999999999217 11 -70.00000000000014 11 0.92
Sc105 10−12 10−3 -52.20206121170561 14 -52.202061211707324 14 0.82

Sc205 10−12 10−4 -52.20206121170699 18 -52.20206121170724 17 0.88
Scagr7∗ 10−13 10−5 -2.331389824329545×106 15 -2.3313898243310144×106 16 0.98
Sctap1 10−8 10−6 1412.2500007430447 15 1412.2499975456915 15 0.98

Share2b 10−11 10−4 -415.7322407432927 12 -415.73224074038535 12 0.83
Lotfi 10−8 10−4 -25.26470603192482 18 -25.264706046693806 18 0.88

Agg2 10−8 10−4 -2.023925235593424×107 22 -2.023925235068718×107 22 0.98
Agg3 10−10 10−4 1.031211593510225×107 23 1.031211593574227×107 21 0.92

Table 1. Comparison of the Mehrotra’s algorithm and its modification.

We also illustrate the claim that the finite termination algorithm is unnecessary in our
algorithm. Consider, for example, the test problem Afiro. The optimal point generated by
the modified algorithm possesses zero coordinates at the positions which are determined by
the following vector xzero {17, 17, 17, 12, 12, 12, 12, 12, 12, 11, 9, 2, 2, 2, 2, 1, 28}.

The optimal point xm is equal to
{0, 80.00000000000023,0,0,0,0,18.21428571428548,51.49692904472464,73.89388764455072,

25.49999999999969,500.0000000000107,475.9200000000041,24.08000000000006,0,

214.9999999999961,147.786872899196,0,54.50000000000029,0,0,0,0,0,0,

339.9428571428572,236.1559842436612,63.54835534665428,0,84.79999999999951,

69.71121475901005,0,0,0}.

On the other side, the usual Mehrotra’s method gives the optimal point x, equal to the vector

{2.215848062666221×10−12 ,79.99999999999929,1.312660664489544×10−13,4.394145729655261×10−13,

4.353491369592836×10−13,5.774260579869571×10−13,18.21428571428262,51.50061507109443,

73.89779483249926,25.5000000000001,500.00000000001,475.9199999999925,24.08000000000016,

7.65658212305429×10−12,214.9999999999957,147.7683249031915,2.425875538820393×10−13,
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54.49999999999952,2.415068530966149×10−13,2.403460673212315×10−13,1.409009221948509×10−13,

4.755857873948911×10−13,4.713557464415677×10−13,4.670668078581763×10−13,339.9428571428506,

236.1745322396589,63.54037970837263,3.686831036665461×10−14,84.79999999999963,

69.71490078537609,2.196141063804613×10−13,2.170131429848782×10−13,1.773714715268836×10−13}.

The similar solution is generated by the solver PCx also. Small elements in x, which
can generate badly conditioned matrix D−2, are eliminated during the application of the
modified method. Similarly, small elements in s which can generate badly conditioned
matrix D2, are also avoided in calculations of the modified algorithm. For this purpose, the
modified algorithm produces the better solution with respect to the original one.

Example 3.2. Consider the following small and illustrative problem from [5]:

min 3x3 + 2x4 + x5

subject to x1 + 2x2 + x3 = 1000.02,
x1 + x2 + x4 = 1000.01,
x1 − x2 + x5 = 999.99.

Applying the modified algorithm with eps = 10−12, eps1 = 10−4 and eps2 = 10−3 we get
the optimal value 0 and the extreme point {999.9999999998636, 0.01000000039754838,0,0,0}.
On the other side, the usual algorithm is not able to make the result with the same precision
10−12. It is interesting that PCx is unable to solve this problem, too. Without the iterative
refinement, PCx stops after six iterations with the status infeasible. Using the iterative
refinement, PCx stops after six iterations with unknown status.

4. Comparisons and concluding remarks

We describe an improvement of the primal-dual interior point method which is
mainly based on the Mehrotra’s algorithm, restated in [3] and [9]. We also develop
a research code for the implementation of the Mehrotra’s algorithm and the mod-
ification. For this purpose we select the package MATHEMATICA [7], [8]. At this
moment, we do not develop a software with attractive performances relative to
the processor time with respect to known robust IPM codes. Our main aim is to
present a comparison between the Mehrotra’s primal-dual interior point method
and its modification, described in the third section.

After the application of the proposed modification of the Mehrotra’s algorithm
we have the following advantages with respect to original one, which are demon-
strated in the above presented examples:

• The modified method allows a better precision in the final solution.

• The modification improves stability and centrality of the iterative sequence.

For example, during the solving the problem Afiro by the modified method,
badly conditioned matrices which cause significant numerical errors are not arise.
However, during the application of the usual method we observe badly conditioned
matrices after the ninth step. Similar situation happens in the problem Blend, where
the usual method causes badly conditioned matrix after the tenth step. Possible
appearance of badly conditioned matrices can be avoided using more carefully
selected values for some of parameters eps1 or eps2.
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• The modified method is faster with respect to the original one, although
it incorporates the additional elimination of some rows and columns and later
reconstruction of the solution. This fact is justified by the last column in Table 1.
Also, let us observe that the modification reduces the processor time to solve the
problems Blend and Kb2, in spite of one additional step which is required in the
modification.

• The modification decreases dimensions of the problem and the memory space
requirements.

In the Table 2, by Dim[AS] we denote starting dimensions of the matrix A and
Dim[AF] denotes dimensions of the final matrix A. Also, the maximum number
of bytes of memory used to store the initial matrix A is denoted by ByteCount[AS],
while ByteCount[AF] denotes the maximum number of bytes of memory required
to store the matrix A after the final iterative step.

Problem Dim[AS] Dim[AF] ByteCount[AS] ByteCount[AF]

Afiro 27 × 52 21 × 16 28864 7336
Blend 74 × 114 60 × 56 170816 68904

KbM 43 × 68 27 × 6 59712 3808
Kb2 52 × 77 33 × 33 81768 22864

Adlittle 56 × 138 46 × 61 156152 57616

Table 2. Further comparison of the Mehrotra’s algorithm and its modification

Moreover, we observe the following additional properties of the modified met-
hod.

• In the modified algorithm the finite termination algorithm is unnecessary.

• It is possible to use the modification in any primal-dual algorithm, not only
in the Mehrotra’s.

• The described modification is applicable in already existing computer primal-
dual codes.

• Since the modification reduces dimensions of the problem during the itera-
tive steps, it is really to expect that it is especially efficient for large scale linear
programming problems.

Because of high numerical characteristics of the package MATHEMATICA, even
the first version of the implementation gives relatively satisfactory performances.
For example, sometimes we get the result with better precision with respect to
traditional implementations.
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