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DISCRETE AUTOREGRESSIVE STOPPING TIME MODEL∗

Vladica Stojanović and Biljana Popović

Abstract. In the paper were described the new, original model used in modelling of
time events in series with “low” frequency. As basic model’s distributions we used
distributions of discrete type, and the model called Discrete Autoregressive Stopping
Time model (or D-AST model). The basic stochastic properties of D-AST model (mo-
ments, variance, correlation function) were described, too. The important segment of
the paper is its statistical aspect, estimation of parameters and practical usage in the
modelling of the real time series. In our case, we showed the usage of D-AST model
in describing the intensity of changing dynamics of stock prices in some of the eminent
Serbian companies, which are traded them on Belgrade Stock Exchange for quite a few
years.

1. Introduction and Motivation

Indeterminacy in the market might be described with model in which price of
some product is shown as stochastic process S = (Sn), i.e., as family of random
variables which depends on discrete time parameter n ∈ D = {0, 1, 2, . . .}. The
presumption that time moments n are discrete is based on the fact that in concrete
exchange situation the price S is registered in different time intervals. Let us assume,
as supplementary, that the probability space (Ω,F , P ) is expanded with filtration
F = (Fn), i.e., family of σ-algebras which satisfies the condition

Fn ⊆ Fn+1 ⊆ F .

In the basic interpretation, family (Fn) is the set of information about the market
situation which is available to all its participants, up to the moment n. On this
way, the evolution of the price is considered inside the filtrate space of probability
(Ω,F , F, P ) which is named stochastic basis. For random variables Sn we assume
that are Fn adaptive, i.e., value of price in the moment n depends on all available
information described with Fn.
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On the other side, some investigations of the real data recommend the statis-
tical models which show the financial indexes dynamic like stochastic processes in
continuous time. The evolution of financial indexes (price) can be represented with
a piecewise constant functions, like in the figure 1, which have a constant value on
the interval

[
τk−1, τk

)
, and then, in the (random) moment τk, the change comes.

Fig. 1.1: Dynamic of the price of stocks of the company Hemofarm-Vršac. (Source:
The Belgrade Stock Exchange)

On this way, natural expression for price dynamic is the model

St = S0 +
∞∑

k=1

ξkI(τk ≤ t), t ≥ 0,(1.1)

where S0 is the initial value of the price in moment t = 0, and ξk are returns of
price changes in the random moment τk. Here, the price is defined like stochastic
process in continuous time, and the stochastic basis B must be extended with new,
continuous-time basis B̃ = (Ω,F , F̃ , P ), where F̃ =

(
F̃t

)
t≥0

and F̃t = F[t].

However, our point of view is to describe so called discrete power of the events

which exists in the realizations of sequences ξ = (ξk) and τ = (τk). Such modelling
needs some extended analysis on the stochastic properties of these two sequences.
Especially important role in (1.1) plays the sequence τ = (τk)k≥1 which describes
the time changes of the values in the so called stopping time and is usually called
the stopping sequence. Stopping sequence shows the property of irregularity in the
dynamics of financial indexes, and it will be in the center of our attention. In order
to do more precise analysis, we will use some of the most basic concepts which are
in relation to this sequence, that is with which the stopping time is described.

Definition 1.1. Let us assume that the filtration F = (Fn) is given on the prob-
ability space (Ω,F , P ). The random variable τ = τ(ω), ω ∈ Ω, with set of values
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D = {0, 1, 2, . . .} is called Markov moment with respect to the filter F if for every
n ∈ D

(i)
{
ω | τ(ω) = n

}
∈ Fn.

If, in addition,

(ii) P
{
ω | τ(ω) <∞

}
= 1

then τ is the Markov stopping time. △

Markov moment is interpreted as the moment of time when some financial de-
cision is brought up, for instance when buying or selling shares, or, in our case, the
changing of value of the financial index. As, according to (i) and the definition of
the filter F ,

{
ω | τ(ω) ≤ n

}
=

n⋃

k=0

{
ω | τ(ω) = k

}
∈ Fn ,

it will be {
ω | τ(ω) > n

}
=

{
ω | τ(ω) ≤ n

}c ∈ Fn.

With it we can point out the Markov property of τ(ω), because the changing of the
price values does not depend on the future prospects. On the other hand, the term
stopping is directly connected with the premise (ii) which enables the realization of
this values in the final time. Finally, we will supply the well known but necessary
premises which enable us using the sequences of Markov stopping times, which we
will use as the basic stochastic model in the work ahead.

Definition 1.2. Let τ = (τk) be the stochastic sequence in which for every k ≥ 1
the following conditions are satisfied:

(i) τk is Markov stopping time (in sense of the definition above);

(ii) with probability 1 is τk ≤ τk+1 for all k ∈ D and τk → ∞ when k → ∞ .

Then the sequence (τk) is called the Markov stopping time sequence, or just the
stopping sequence. △

2. D-AST Model. The Definition and the Basic Characteristics

In order to apply the idea of changing dynamics of the prices on some concrete
data, above all on the time dynamic of changing the prices of the shares with
which Serbian stock market trades, we will show the original model, based on the
distribution of the random variables of the discrete type. The basic reason for
introducing the changes like these lies in the fact that Serbian stock market has
very slow tendency of changing the prices, which is in contradiction with the most
of the developed foreign countries. Namely, it is very common that the prices of
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certain portfolios do not change during some long-lasting time period, so that their
irregular dynamics can be interpreted with the number of days which pass between
two successional changes of the price of shares.

On this way, the basic purpose of the model mentioned here is based upon the
possibility of the stochastic modelling of time moments of price changes, which is
usually shown by the stopping sequence (τk), but it is also based upon the descrip-
tion the intensity of those changes. Because of the emphasized low dynamics in
price changing, distributions of the discrete type are extremely suitable stochastic
apparatus which will, in this purpose, be used here. The basic idea for creating our
model is based upon the autoregressive principle used in many stochastic models.
Similar ideas in modelling changes of price in time domain we can find in the def-
inition of so called autoregressive conditional duration (ACD) model, introduced
by Engle and Russel [4], and innovated later by Bauwens and Giot [2], Meitz and
Teräsvirta [6] or Stojanović [9]. In this purpose, we are introducing the next for-
mal definition of stopping sequence, which is based on the recurrent, autoregressive
dependence of its members, considered upon the prior realizations.

Definition 2.1. Let us assume that for every k ∈ N next conditions are fulfilled:

(i) (εk) is the sequence of the i.i.d. random variables with the set of values
D = {0, 1, 2 . . .} so that E(εk) = 1, Var(εk) = σ2;

(ii) (λk) is the sequence of the independent random variables too, which is also
independent of the sequence (εk), and which has the uniform distribution
defined on the set A = {1, 2, . . . , a}, a ∈ N;

(iii) Fk = Gen
{
(εj , λj) | j = 1, 2, . . . , k

}
, F0 = ∅.

In this case, the sequence of random variables (τk) represents the discrete autore-

gressive stopping time model (D-AST model) if it satisfies the recurrent relation

τk = τk−1 + λk εk, k ≥ 1 (τ0 = 0). △(2.1)

As we can see, the stated definition proposes stopping sequence (τk) in the form
of random walk sequence with discrete distribution which depends on the distribu-
tion of the two sequences. The first of these, sequence (εk) with the normalized
distribution has the role of noise. Its values affects the changes of the next real-
ization of stopping sequence. Yet, mean value of these changes is equivalent to
the unit of time in which we observe the dynamics of change of the value of the
regarded financial sequence. That fact is, like we will see, rarely convenience in
practice modelling.

On the other hand, the sequence (λk) implies the addition changes in values
of (τk), and have, as for the distinction to the normalized sequence (εk), the more
emphatic and bigger fluctuation. This sequence we interpret like the intensity of a

reaction of D-AST model related to its previous realization, and we emphasize the
important role of the parameter a which is the parameter of the distribution of the
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sequence (λk). As it is in the average εk ∼ 1, it means that the value of parameter
a, in free interpretation, will show the upper limit of intensity of fluctuations in the
stopping sequence. In this way, its role, altogether with parameter σ2, the variance
of the noise (εk), is very important in the description of the irregularity in dynamics
of the viewed financial sequence. If it is, for example, λk ≡ εk ≡ 1, the dynamics
of observed sequence is quite regular, i.e., the changes of its values will happen in
every moment in which we observe its behavior. This situation can be described by
means of the parameters themselves, because in that case we have (a, σ2) = (1, 0).

This fact can be, in some way, used in an investigation of the grade of regularity
in behavior of some empiric financial sequence. The possible hypotheses about
it, that the uniform distribution of the sequence (λk) is concentrated in the point
x = 1, that means that a = 1, corresponds to the fact that the dynamics of the
considered financial sequence has no emphasized irregularity, that means that every
time interval

[
τk−1, τk

)
which satisfies the inequality τk−τk−1 > 1 is the consequence

of the fluctuation inside the values of the sequence (εk). Of course, a and σ2 are the
unknown parameters of D-AST model, which are necessary to be estimated upon
the realization τ1, . . . , τN , so, we shall pay the great attention on the problem further
on. First of all, we shall appoint the basic stochastic properties of the sequence (τk).

Theorem 2.1. The sequence of random variables (τk), defined by (2.1), represent

the stopping time sequence in the sense of the definition 1.2. Thereat, the basic

stochastic properties of this sequence are

(i) E(τk) =
k

2
(a+ 1);

(ii) Var(τk) =
k

12
(a+ 1)

[
2(σ2 + 1)(2a+ 1) − 3(a+ 1)

]
;

(iii) Corr(τk, τk+h) =

√
k

k + h
, h ≥ 0.

Proof. It is obvious that the condition (i) from the Definition 1.2 is fulfilled as
well as τk ≤ τk+1, k = 0, 1, 2, . . ., which is valid almost sure.

Let us notice that

{
τk 6→ ∞, k → ∞

}
=

∞⋃

k=1

∞⋂

n=k

{
λnεn = 0

}
.

According to the well known property of the continuity of probability, we have

P
{
τk 6→ ∞, k → ∞

}
= lim

k→∞

(
lim

m→∞

k+m∏

n=k

P
{
λnεn = 0

})
= 0.

This completes the definition of the sequence (τk). Its stochastic properties
which are discussed in this theorem (mean, variance and correlate function) can be
easily verified by the standard computation.
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According to the above mentioned, it is clear that (τk) is the nonstationary
sequence and that it can produce difficulties in practical applications. That is why
we shall consider the sequence of increments of this stopping sequence

Xk = τk − τk−1 = λkεk, k = 1, 2, . . .

only. It is the i.i.d. sequence of random variables, and its distribution is enough
for the full description of the stopping sequence. In the simple way we can appoint
basic stochastic properties of the sequence (Xk), mean value

E(Xk) = E(λk) =
a+ 1

2
(2.2)

and the variance

Var(Xk) = E(λ2
k)E(ε2k) −

[
E(λk)

]2
(2.3)

=
a+ 1

12

[
2(σ2 + 1)(2a+ 1) − 3(a+ 1)

]
.

Further on, we shall use the notation Var(Xk) = V .

In some practical applications (see for instance section 4.) we will assume that
the sequence (εk) has normalized Poisson’s distribution, defined as

P
{
εk = m

}
=

1

e ·m!
, m, k ∈ D.(2.4)

Then σ2 = 1 and the distribution of the sequences (Xk), according to the definition
of D-AST model, can be described as

P{Xk = m} =





1/e , m = 0,

1/(ae)
∑

d∈D(m)

1/d! , m ≥ 1,

where D(m) is the set of divisors d of the number m with the obvious property
m/d ≤ a.

3. Parameters Estimation

The basic problem in the estimation and later formation of the D-AST model
over the empirical data, is the estimation of the unknown parameter (a, σ2) based on
the realization τ1, . . . , τN of the stopping sequence. As this sequence is exchanged
by the stationary sequence of the incrementsXk = τk−τk−1, the simplest possibility
of evaluating the unknown parameters give us the equations (2.2) and (2.3), which
express the mean and the variance of the sequence (Xk). Using the method of
moments, where we use the notation

X̄N =
1

N

N∑

k=1

Xk, D̄N =
1

N

N∑

k=1

(
Xk − X̄N

)2
,
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we get the estimates

{
ã = 2X̄N − 1

σ̃2 =
[
12D̄N + 3(ã+ 1)2

][
2(ã+ 1)(2ã+ 1)

]−1 − 1,
(3.1)

for which the “good” stochastic properties are shown in the next proposition.

Theorem 3.1. Estimate ã is unbiased, strictly consistent and asymptotically nor-

mal estimate of the parameter a. Estimate σ̃2 is strictly consistent and asymptoti-

cally normal estimate of the parameter σ2.

Proof. It is easy to notice that ã is unbiased and strictly consistent estimate of
the parameter a, because it is the linear function of the unbiased and strictly con-
sistent estimate X̄N . Likewise, based on the asymptotic normality of the empirical
mean value, that is, convergency

√
N

(
X̄N − a+ 1

2

)
d−→ N (0, V1),

where V1 = lim
N→∞

Var(
√
NX̄N) = V , according to (3.1), we get

√
N

(
ã− a

) d−→ N (0, V2),(3.2)

where V2 = 4V .

Similarly, estimate σ̃2, as the continuous function ψ : R
2 → R of the strictly

consistent estimate (ã, D̄N ), is strictly consistent. Furthermore, the asymptotic
normality of σ̃2 is based on the asymptotic normality of the ã, that is, on the
convergency (3.2), as well as the convergency,

√
N

(
D̄N − σ2

)
d−→ N (0,M4 − σ4)

where M4 = E(X4
k). Then, when we apply the theorem of continuity of the conver-

gency in distribution (Serfling [8, p. 122]), we have

√
N

(
σ̃2 − σ2

) d−→ N (0, V3),

where V3 = 4ψ2
1V + ψ2

2(M4 − σ4) and

ψ1 =
∂ψ(ã, D̄N )

∂ã

∣∣∣∣
(ea,D̄N )=(a,σ2)

= − 3

2(2a+ 1)2
− 6σ2(4a+ 3)

(a+ 1)2(2a+ 1)2
,

ψ2 =
∂ψ(ã, D̄N )

∂D̄N

∣∣∣∣
(ea,D̄N )=(a,σ2)

=
6

(a+ 1)(2a+ 1)
.

Beside the stated properties of the estimate (ã, σ̃2), it is clear that it is not the
most efficient estimate of the parameter (a, σ2) because the value of the dispersion
described by variances V2 and V3, can be huge, especially when the values a ∈ N
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and σ2 > 0 are great. Thus, it is of interest to find the more efficient estimate of
this parameter. In the similar way as it is in Lawrence and Lewis [5], we will define
the autoregressive stationary sequence

Wk = bWk−1 + ηk, k ∈ N,

where ηk = Xk − E(Xk) and b = ϕ(a) ∈ (0, 1) is the continuously differentiable
monotonous function of the parameter a. Obviously, the sequence (Wk) is stationary
ergodic sequence of the random variables with the mean E(Wk) = 0, variance

W = Var(Wk) = E(W 2
k ) = (1 − b2)−1 V

and the correlation function

ρ
W

(h) =

{
1, h = 0;

b|h|, h 6= 0.

Now, if we use the standard regression procedure, we can get the estimate of
parameter b,

b̂ =

( N−1∑

k=0

WkWk+1

)
·
( N−1∑

k=0

W 2
k

)−1

.(3.3)

From here, we get the estimate of (a, σ2) in the form

(â, σ̂2) =
(
ϕ−1 (̂b), ψ(â, D̄N )

)

for which, as it was in the previous case, we can show the asymptotic properties.

Theorem 3.2. The estimate (â, σ̂2) is strictly consistent and asymptotically nor-

mal estimate of the parameter (a, σ2).

Proof. According to ergodicity and stationarity of the sequence (Wk), we can
apply the ergodic theorem on (3.3). Then we have

1

N

N−1∑

k=0

WkWk+1
a.s.−→ bW, N −→ ∞,

where E(WkWk+1) = bW for any k, and, also,

1

N

N−1∑

k=0

W 2
k

a.s.−→W, N −→ ∞.(3.4)

Therefore,

b̂ =

(
1

N

N−1∑

k=0

WkWk+1

)
·
(

1

N

N−1∑

k=0

W 2
k

)−1
a.s.−→ b, N −→ ∞,
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i.e., b̂ is strictly consistent estimate of parameter b. ¿From here, according to the
continuity of the almost sure convergence (Serfling [8], pg. 24), we have

â− a = ϕ−1(̂b) − ϕ−1(b)
a.s.−→ 0, N −→ ∞,

which shows the strictly consistency of â.

Now, we show the asymptotic normality of the estimate b̂. According to (3.3) it
follows that √

N (̂b− b) =
N−1/2 · UN

N−1 · VN
(3.5)

where UN =
N−1∑
k=0

ηk+1Wk, VN =
N−1∑
k=0

W 2
k , N = 1, 2, . . .. As the sequence (UN )

is martingale, applying the central limit theorem for martingales (see for instance
Billingsley [1] or Nicholls and Quinn [7]), we have

N−1/2 ·UN
d−→ N

(
0, D0

)
, N −→ ∞,

where D0 = Var(ηk+1Wk) = Var(Xk+1)Var(Wk) = VW . Then, according to the
almost sure convergence (3.4) and the equation (3.5), we have

√
N (̂b− b)

d−→ N
(
0, D1

)
, N −→ ∞,

where D1 = VW−1 = 1 − b2. Finally, as b = ϕ(a) is a continuous function of
the parameter a, we can apply the continuity of the convergency in distribution
(Serfling [8, p. 118]), and then we have

√
N (â− a)

d−→ N
(
0, D2

)
, N −→ ∞,

where D2 =
[
ϕ′(a)

]−2 ·D1.

The strong consistency and asymptotic normality of the estimate σ̂2 can be
proved in the same way as in the case of the estimate σ̃2, i.e., by analogues procedure
as in the Theorem 3.1.

At the end of this section let us notice the very important characteristic of the
estimate â, as well as of the estimates σ̂2. That is its asymptotic efficacy, expressed
by its variance D2 = D2(a). In the contrast to the variance V2 = V2(a, σ

2) of the
estimate ã, it depends only on the parameter a ∈ N, and not on the σ2 > 0. On
the other hand, by choosing the adequate function ϕ(a), it is possible to get strictly
consistent and asymptotically normal estimate of the parameter a which will be
asymptotically more efficient than the estimate ã, that is

D2(a) < V2(a, σ
2).

Some of the possibilities of such modelling are shown graphically in Figure 3.1.
There, the graphs of variances V2(a, σ

2) of the estimate ã are shown along with the
graph of the behavior of the variance of the estimate â in the cases D2(a) = a2 − 1
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and D2(a) = (a2 − 1)/a2. (Pictures on the left show the functional dependence of
the variances V2(a, σ

2) and D2(a, σ
2), while the special case of that dependency for

σ2 = 1 is shown on the right). So, the estimate â, in the case when it is more
efficient than ã, enables the more precise estimation of the unknown parameter a,
and along with it, the more precise estimation of variance σ2. That is why it will
be payed a special attention during the practical usage of the D-AST model.

Fig. 3.1: Comparative values of the asymptotic variances of the estimates ã and â

We can conclude that the procedure of the construction of such estimates de-
pends on the choice of the proper function ϕ(a), but also it depends on the estimates
ã which may be used as the initial estimates. In that way a sequence of the estimates
may be formed

âj+1 = ϕ−1
(
b̂j+1

)
, j = 1, 2, . . .(3.6)

where â0 = ã, and b̂j+1 is the estimate of the parameter b = ϕ(a) obtained by
the regressive procedure described above. The sequence (Wk) is generated by the
estimate âj . Of course, the important problem which appears here is the obtaining
of the necessary conditions for the convergence of the iterative method (3.6) in some
of the familiar stochastic forms.
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4. Monte Carlo Simulation. The Application of the Model

In this section we will describe some of the concrete applications of the D-AST
model in the analysis of the empirical time series, i.e., real data. In order to do
that we shall consider the possibilities of the estimation of the parameters a and
σ2 of the D-AST model, i.e., the stopping sequence (τk) which is described by the
equation (2.1) and the Monte Carlo simulations of the sequences (εk) and (λk).
In this purpose, we will assume that the sequence (εk) has Poisson’s normalized
distribution described by the equation (2.4). In order to simulate this sequence and
the sequence (λk) we can form the suitable simulations of the sequence Xk = λkεk,
and in that way, we can determine the estimates (ã, σ̃2) and (â, σ̂2) by the procedure
described in the section above.

In Table 4.1 the average values of these estimates are shown, together with the
correspondent estimating errors (the values shown in the brackets), based on the 80
independent Monte Carlo simulations of (Xk) of the length N = 500. As the real
values of the parameter a, a = 2 and a = 5 are taken, while the real value of the
variance of the noise (εk), based on the assumption of its distribution stated above,
is σ2 = 1. The initial value for the sequence (Wk) is stated to be W0 = 0.

Table 4.1: Estimated values of Monte Carlo simulations

Parameters
Estimates

(a, σ2) = (2, 1) (a, σ2) = (5, 1)

ã 1, 990 (0, 0143) 5, 049 (0, 0514)

σ̃2 1, 009 (0, 0917) 1, 003 (0, 1231)

â 2, 001 (0, 0876) 5, 009 (0, 0581)

σ̂2 0, 998 (0, 0385) 1, 007 (0, 0682)

In Figure 4.1, the histograms of the empirical distributions of the stated esti-
mates in the case a = 5, σ2 = 1 are shown. The grouping of the received values
around the true values of the parameters a and σ2 and their asymptotic tendency
to the normal distribution is clearly noticeable.

On the other hand, the same method of the estimation of the parameter is
applied to the real data. To clarify, the changing of the price of shares of some
companies which where trading on the Belgrade Stock Exchange in the given mo-
ment are considered as the empirical sets. As all the changes of the stocks’ prices
until recently were registered daily, the realization of the sequence X1, . . . , XN on
which the unknown limits of reactions a and variance σ2 is based, can be deter-
mined in a very simple way. Of course, the estimated values are obtained by the
procedure described above in the text. Using the official data from the Belgrade
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Fig. 4.1: Histograms of the empirical distributions of estimates (ã, σ̃2) and (â, σ̂2).

Stock Exchange, the estimated values of the parameter (a, σ2) for some of the lead-
ing Serbian companies are shown in the Table 4.2. It is clear that all the companies
have the nontrivial estimated values of the parameter a > 1. Thus, the frequency
of their changes is slower than the regular, i.e., it happens rarely than daily changes
in price.

Of course, the greater the values of the limit a indicate the slower dynamics in
price changing, while, on the other hand, the greater the frequency in price changing
corresponds to the smaller estimate of the given parameter. Finally, the analysis
of the estimated values of the parameter σ2 enables the further research in the
degree of the regularity in the dynamics of sequence changing. The cases of the two
companies, Hemofarm and Sunce, are very interesting, where the estimated values
σ̃2 and σ̂2 give a reason for the presumption that the real value of this parameter
is σ2 = 1. On this way, the distribution of the noise (εk) can be interpreted whit
Poisson’s normalized distribution which we have already mentioned above.
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Table 4.2: Estimated values of real data

Parameters
Companies

Alfa Plam Hemofarm Metalac Sunce

Vranje Vršac G. Milanovac Sombor

ã 4,826 5,000 3,928 6,171

σ̃2 1,156 1,117 0,694 0,935

â 4,228 5,387 3,824 6,218

σ̂2 1,505 0,953 0,587 1,037

5. The Conclusion

The D–AST model defined here represents stopping time sequence (τk) with
discrete innovations of special type, shows its efficiency specially when the dynamics
in price changing is low. We can specially remark that it is convenient to estimate
prices whose changes are not regular, i.e., there are no changes in daily prices in
a several sequent days. Specially, models selection depends of the first correlation
of increments (Xk). If empirical investigations indicate low dependence of Xk and
Xk+1, D-AST model is adequate stochastic model. On the other hand, presence
of emphatic correlation indicate to different behavior and, at same time, different
stochastic modelling. In our case, some of the possibilitie is usage another, so called
D-ACD model, introduced by Popović and Stojanović [10].
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62 V. Stojanović and B. Popović
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