A K-FUNCTIONAL CHARACTERIZATION OF THE SPLINE APPROXIMATION

Magnolia F. Tilca

Abstract

The purpose of this paper is to identify the spline operator L_{T} (see $[\mathrm{R}$. DeVore, G. Lorentz: Constructive Approximation. Springer-Verag, Berlin Heidelberg, 1993]) as the Draganov-Ivanov operator \mathbb{A} defined in [B. Draganov and K. Ivanov: A new characterization of weighted Peetre K-functionals, Constr. Approx. 21 (2005), 113-148] and to give a new characterization of spline approximation using the K-functionals.

1. Introduction

Let the linear operators be

$$
\begin{equation*}
L_{T}(f)=\sum_{j=1}^{n+r} f\left(\xi_{j}\right) N_{j} \tag{1.1}
\end{equation*}
$$

which maps $C(I)$ onto $S_{r}(T, I)$ for each given T. Here the notations $I, T, S_{r}(T, I)$, N_{j}, ξ_{j}, are as follows: $I:=[0 ; 1], T:=\left(t_{j}\right)$ consists of n uniform simple knots $0<t_{r+1}<\cdots<t_{n+r}<1$ with the step size h and auxiliary knots $t_{1}<\cdots<$ $t_{r-1}<t_{r}:=0$ and $1:=t_{n+r+1}<\cdots<t_{n+2 r}$, also uniform. Because of their good support, the normalized B-splines $N_{j}, j=1, \ldots, n+r$, for $S_{r}(T, I)$ - the Schoenberg space on I, which consists of all splines S of order r, with breakpoints contained in T - are particularly useful for constructing good spline approximants. The points ξ_{j} are selected so as $\xi_{j} \in I \cap \operatorname{supp} N_{j}:=I \cap\left(t_{j}, t_{j+r}\right), j=1, \ldots, n+r$. The normalized B-spline functions are the linear combinations of the truncated powers $\left(t_{j}-x\right)_{+}^{(r-1)}$ and therefore $N_{j} \in S_{r}(T, I)$.

For later reference we list some known facts about B-splines [1]:

$$
N_{j}(x) \geq 0, \quad \operatorname{supp} N_{j}=\left[x_{j}, x_{j+r}\right], j=1, \ldots, n+r, \quad \sum_{j=1}^{n+r} N_{j}(x)=1
$$

Received December 6, 2007.
2000 Mathematics Subject Classification. Primary 41A15; Secondary 41A27, 41A65, 57R15
for $x \in[0,1]$.
We will treat the case of continuous functions f with the all $r \geq 0$ derivatives continuous, $f \in C^{r}(I)$.

On the other hand, the operator introduced by Draganov and Ivanov is defined as follows.

Definition 1.1. (see [4]) Let $\left(X_{1}, Y_{1}, D_{1}\right),\left(X_{2}, Y_{2}, D_{2}\right)$ be the triples with X_{1}, X_{2} two Banach spaces, and D_{1}, D_{2} two differential operators. The linear operator \mathbb{A} maps continuously (X_{1}, Y_{1}, D_{1}) onto (X_{2}, Y_{2}, D_{2}), and writes

$$
\mathbb{A}:\left(X_{1}, Y_{1}, D_{1}\right) \longmapsto\left(X_{2}, Y_{2}, D_{2}\right)
$$

if and only if $\mathbb{A}: X_{1} \rightarrow X_{2}$ is invertible and together with its inverse $\mathbb{A}^{-1}: X_{2} \rightarrow X_{1}$ satisfies the conditions:
a) $\|\mathbb{A} f\|_{X_{2}} \leq C\|f\|_{X_{1}}$, for any $f \in X_{1}$,
b) $\left\|D_{2} \mathbb{A} f\right\|_{X_{2}} \leq C\left\|D_{1} f\right\|_{X_{1}}$, for any $f \in Y_{1} \cap D_{1}^{-1}\left(X_{1}\right)$,
c) $\left\|\mathbb{A}^{-1} F\right\|_{X_{1}} \leq C\|F\|_{X_{2}}$, for any $F \in X_{2}$,
d) $\left\|D_{1} \mathbb{A}^{-1} F\right\|_{X_{1}} \leq C\left\|D_{2} F\right\|_{X_{2}}$, for any $F \in Y_{2} \cap D_{2}^{-1}\left(X_{2}\right)$,
e) $\mathbb{A}\left(Y_{1} \cap D_{1}^{-1}\left(X_{1}\right)\right)=Y_{2} \cap D_{2}^{-1}\left(X_{2}\right)$, where $D^{-1}(X):=\{g \in X / D g \in X\} \subset X$ and $C>0$ is a constant independent on f and t.

2. The Spline Operators as Draganov-Ivanov Operators

In this section we propose the following problem.
Problem 2.1. Find the triples $\left(X_{1}, Y_{1}, D_{1}\right)$ and $\left(X_{2}, Y_{2}, D_{2}\right)$ knowing that there exists constant C so that the linear operator $L_{T}: X_{1} \rightarrow X_{2}$ from (1.1) maps continuously (X_{1}, Y_{1}, D_{1}) onto (X_{2}, Y_{2}, D_{2}).

Solution: We will follow three steps to solve this problem. First, we choose the Banach spaces X_{1}, X_{2} so that L_{T} be invertible; second, we find the proper spaces Y_{1}, Y_{2} and the differential operators D_{1}, D_{2}. Finally, for the chosen triples (X_{1}, Y_{1}, D_{1}), $\left(X_{2}, Y_{2}, D_{2}\right)$ we verify the conditions (a)-(e) from Definition 1.1.
L_{T} is invertible if and only if it is bijection. In order to ensure the injectivity, we define the equivalence relation $f \sim g$ as follows

$$
\left(\forall f, g \in X_{1}\right) \quad f \sim g \Leftrightarrow f\left(\xi_{j}\right)=g\left(\xi_{j}\right), \quad j=1, \ldots, n+r .
$$

Thus, the space X_{1} is the equivalence class $C^{r}(I) / \sim:=\tilde{C}^{r}(I)$. This space is a Banach space with respect to the norm

$$
\|f\|_{X_{1}}:=\max _{j=1, \ldots, n+r}\left|f\left(\xi_{j}\right)\right| .
$$

Using the surjective characterization $L_{T}\left(X_{1}\right)=X_{2}$ it follows $X_{2}:=\operatorname{Im}\left(L_{T}\right)$, where $\operatorname{Im}\left(L_{T}\right)$ denotes the image space of the L_{T} operator. It is easy to observe that $\left\|L_{T} f\right\|_{p}<+\infty, 1 \leq p \leq+\infty$, thus $\operatorname{Im}\left(L_{T}\right) \subset L_{p}(I)$. Here we use the classical notation $L_{p}(I)$ for the space of all measurable functions with finite norm

$$
\begin{gathered}
\|f\|_{p}:=\left(\int_{I}|f|^{p} d x\right)^{1 / p}, \quad 0<p<+\infty \\
\|f\|_{p}:=\operatorname{esssup}_{x \in I}|f(x)|, \quad p=+\infty
\end{gathered}
$$

Again, the space and the L_{p}-norm form a Banach space.
We complete the triples $\left(X_{i}, Y_{i}, D_{i}\right), i \in\{1,2\}$ by taking Sobolev space $Y_{1}=$ $Y_{2}:=W_{p}^{r}(I)$, the set of all functions $f: I \rightarrow \mathbb{R}$ with $f^{(r-1)}$ absolutely continuous and $f^{(r)} \in L_{p}$. Also, we choose

$$
D_{1} f:=\frac{1}{h} \int_{\xi_{j-1}}^{\xi_{j}} f^{\prime}(x) d x
$$

and $D_{2}:=D^{1}$, first derivative.
In what follows, there will be analyzed the conditions mentioned in Definition 1.1.
a) The inequality $\left\|L_{T} f\right\|_{p} \leq C\|f\|_{X_{1}}$ is valid for each $f \in \tilde{C}^{r}(I)$. Indeed,

$$
\begin{aligned}
\left\|L_{T} f\right\|_{p} & \leq\left(\int_{0}^{1}\left[\sum_{j=1}^{n+r}\left|f\left(\xi_{j}\right)\right|\left|N_{j}(x)\right|\right]^{p} d x\right)^{1 / p} \\
& \leq\|f\|_{X_{1}}\left(\int_{0}^{1}\left[\sum_{j=1}^{n+r}\left|N_{j}(x)\right|\right]^{p} d x\right)^{1 / p}=\|f\|_{X_{1}}
\end{aligned}
$$

where we applied the partition of unity property of the normalized B-spline. Furthermore, the value of the constant is $C=1$.
b) For $1 \leq p \leq+\infty$, the following inequality holds true

$$
\left(\forall f \in W_{p}^{r}(I) \cap D_{1}^{-1}\left(\tilde{C}^{r}(I)\right)\right) \quad\left\|D_{2} L_{T} f\right\|_{p} \leq C\left\|D_{1} f\right\|_{X_{1}}
$$

Taking into account the definition of the differential operators D_{1}, D_{2}, the inequality which has to be demonstrated becomes $\left\|\left(L_{T} f\right)^{\prime}\right\|_{p} \leq C\left\|D_{1} f\right\|_{X_{1}}$.

In the case of $1 \leq p<+\infty$, we apply the result (T.5.9, p. 195) from [5] for $d=2$: Let $s(x)=\sum_{i=1}^{n} c_{i} N_{i, r}$ be the spline function, and suppose $1 \leq d \leq r$. Then for all $x \in\left[x_{r}, x_{n}\right)$,

$$
D_{+}^{d-1} s(x)=\sum_{i=d}^{n} c_{i, d} N_{i, r-d+1}(x),
$$

where $c_{i, j}$ are as follows

$$
\begin{gather*}
c_{i, 1}=c_{i} \quad \text { for } i=1, \ldots, n, \tag{2.1}\\
c_{i, j}=\left\{\begin{array}{cc}
(r-j+1) \frac{c_{i, j-1}-c_{i-1, j-1}}{x_{i+r-j+1}-x_{i}}, & x_{i+r-j+1}-x_{i}>0, \\
0, & \text { otherwise },
\end{array}\right.
\end{gather*}
$$

for $j=2, \ldots, d$ and $i=1, \ldots, n$.
Thus, denoting $c_{j, 1}=c_{j}:=f\left(\xi_{j}\right), j=1, \ldots, n+r$, for $x \in\left[x_{r}, x_{n+r}\right)$ the left side of the inequality becomes

$$
\left\|\left(L_{T} f\right)^{\prime}\right\|_{p}=\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{p}
$$

Further, using the recurrent relations (2.1) (we have always the case $t_{j+r-1}-t_{j}>$ 0 because of the increasing knots), and taking into consideration the increasing uniform partition, we have

$$
c_{j, 2}=\frac{r-1}{t_{j+r-1}-t_{j}}\left[c_{j, 1}-c_{j-1,1}\right]=\frac{r-1}{(r-1) h}\left[c_{j, 1}-c_{j-1,1}\right]=\frac{1}{h}\left[f\left(\xi_{j}\right)-f\left(\xi_{j-1}\right)\right] .
$$

Thus, for $x \in\left[x_{r}, x_{r+n}\right)$

$$
\begin{gathered}
\left\|\left(L_{T} f\right)^{\prime}\right\|_{p} \leq\left[\int_{0}^{1}\left(\sum_{j=2}^{n+r} \frac{1}{h}\left|f\left(\xi_{j}\right)-f\left(\xi_{j-1}\right)\right|\left|N_{j, r-1}(x)\right|\right)^{p} d x\right]^{1 / p} \\
\leq C\left\|c_{j, 2}\right\|_{X_{1}}\left[\int_{0}^{1}\left(\sum_{j=2}^{n+r} N_{j, r-1}(x)\right)^{p} d x\right]^{1 / p}=C\left\|D_{1} f\right\|_{X_{1}}
\end{gathered}
$$

Following the same idea, for the second case $p=+\infty$ we obtain

$$
\begin{aligned}
\left\|\left(L_{T} f\right)^{\prime}\right\|_{\infty} & =\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{\infty} \\
& \leq \sup _{x \in I}\left(\sum_{j=2}^{n+r}\left|c_{j, 2}\right|\left|N_{j, r-1}(x)\right|\right) \\
& \leq C\left\|c_{j, 2}\right\|_{X_{1}} \sup _{x \in I} \sum_{j=2}^{n+r}\left|N_{j, r-1}(x)\right| \\
& =C\left\|D_{1} f\right\|_{X_{1}}
\end{aligned}
$$

for each $f \in W_{p}^{r}(I) \cap D_{1}^{-1}\left(\tilde{C}^{r}(I)\right)$.
c) The inequality $\left\|L_{T}^{-1} F\right\|_{X_{1}} \leq\|F\|_{p}$, where $F \in \operatorname{Im}\left(L_{T} f\right)$ holds true.

Indeed, taking into accout that L_{T}^{-1} is the invert operator of the L_{T} operator, we have the relation $L_{T}\left(L_{T}^{-1} F\right)=F=L_{T} f$ for each $f \in \tilde{C}^{r}(I)$, so that $L_{T}^{-1} F=f$. The left side of the inequality becomes $\left\|L_{T}^{-1} F\right\|_{X_{1}}=\|f\|_{X_{1}}=\max _{j=1, \ldots, n+r}\left|f\left(\xi_{j}\right)\right|$ and the right side becomes $\|F\|_{p}=\left\|L_{T} f\right\|_{p} \leq C\|f\|_{X_{1}}$. Because there exists a constant $C \geq 1$ so that $\|f\|_{X_{1}} \leq C\|f\|_{X_{1}}$, the required inequality is true, for $1 \leq p \leq+$ infty and for all $F \in \operatorname{Im}\left(L_{T} f\right)$.
d) The inequality $\left\|D_{1} L_{T}^{-1} F\right\|_{X_{1}} \leq C\left\|F^{\prime}\right\|_{p}$ holds true for all $F \in W_{p}^{r}(I) \cap$ $D_{2}^{-1}\left(X_{2}\right)$.

Because $L_{T}^{-1} F=f$ and $F=L_{T} f$, the above inequality becomes $\left\|D_{1} f\right\|_{X_{1}} \leq$ $C\left\|\left(L_{T} f\right)^{\prime}\right\|_{p}$ for all $f \in W_{p}^{r}(I) \cap D_{1}^{-1} \operatorname{bigl}\left(\tilde{C}^{r}(I)\right)$. Applying the stable condition of the B-spline [2]: there exists a positive constant C_{r} which depends only on r so that for all $i=\overline{1, n+r}$,

$$
\left|c_{i}\right| \leq C_{r}\left\|\sum_{j} c_{j} N_{j, r}\right\|_{\left[t_{i}, t_{i+r}\right]}
$$

we have: there exists a positive constant C_{r-1} so that for all $i=1, \ldots, n+r$,

$$
\begin{equation*}
\left|c_{i, 2}\right| \leq C_{r-1}\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{\left[t_{i}, t_{i+r}\right]} \tag{2.2}
\end{equation*}
$$

Because for every $i \in\{1, \ldots, n+r\}$ the inequality (2.2) holds true, there exists a subscript $i \in\{1, \ldots, n+r\}$ so that

$$
\left\|c_{i, 2}\right\|_{X_{1}} \leq C_{r-1}\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{\left[t_{i}, t_{i+r}\right]}
$$

On the other hand

$$
\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{\left[t_{i}, t_{i+r}\right]} \leq(n+r-1)\left\|c_{j, 2}\right\|_{X_{1}}\left\|\sum_{j=2}^{n+k} N_{j, r-1}\right\|_{\left[t_{i}, t_{i+r}\right]}=(n+r-1)\left\|c_{j, 2}\right\|_{X_{1}}
$$

and

$$
\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{[0,1]} \leq(n+r-1)\left\|c_{j, 2}\right\|_{X_{1}}\left\|\sum_{j=2}^{n+k} N_{j, r-1}\right\|_{[0,1]}=(n+r-1)\left\|c_{j, 2}\right\|_{X_{1}} .
$$

Imposing the condition $r h \leq 1,\left(t_{i+r}-t_{i}=r h\right)$, we have

$$
\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{\left[t_{i}, t_{i+r}\right]} \leq\left\|\sum_{j=2}^{n+r} c_{j, 2} N_{j, r-1}\right\|_{[0,1]}
$$

e) The last condition (of Definition 1.1)

$$
L_{T}\left(W_{p}^{r}(I) \cap D^{-1}\left(\tilde{C}^{r}(I)\right)\right)=W_{p}^{r}(I) \cap D^{-1}\left(\operatorname{Im}\left(L_{T} f\right)\right)
$$

is true.
We have found a linear operator $\mathbb{A}:=L_{T} f$, so we conclude the notes by the following result:

Conclusion. Being given the uniform knots $0<t_{r+1}<\cdots<t_{r+n}<1$ and auxiliary uniform knots $t_{1}<\cdots<t_{r}:=0,1:=t_{r+n+1}<\cdots<t_{n+2 r}$, the linear operator $\left(L_{T} f\right)(x)=\sum_{j=1}^{n+r} f\left(\xi_{j}\right) N_{j}(x)$ maps continuously $\left(\tilde{C}^{r}(I), W_{p}^{r}(I), D_{1}\right)$ onto $\left(\operatorname{Im}\left(L_{T} f\right), W_{p}^{r}(I), D_{2}\right)$, for all $f \in \tilde{C}^{r}(I)$, where $\xi_{j} \in I \cap \operatorname{supp} N_{j}$, i.e.,

$$
\begin{equation*}
L_{T}:\left(\tilde{C}^{r}(I), W_{p}^{r}(I), D_{1}\right) \longmapsto\left(\operatorname{Im}\left(L_{T} f\right), W_{p}^{r}(I), D_{2}\right) \tag{2.3}
\end{equation*}
$$

3. Spline Error Evaluation

In this section we propose the following problem.
Problem 3.1. For a function $f: C^{r}[0,1] \rightarrow \mathbb{R}$, find an equivalence

$$
E\left(f, S_{r}(T, I)\right)_{p}:=\inf _{S \in S_{r}(T, I)}\|f-S f\|_{p} \sim K\left(\mathbb{A} f, \eta ; X, Y, D^{\alpha}\right), \quad 1 \leq p \leq+\infty
$$

where \mathbb{A} is the Draganov-Ivanov operator, D^{α} the differential operator of order α, η is a quantity to be determined and X, Y are two spaces (X must to be Banach space). There are supposed to be given the positive integers $n, r, r<n$ and the finite set of uniform knots $T=\left(t_{j}\right)_{j=r}^{n+r+1}, 0:=t_{r}<t_{r+1}<\cdots<t_{n+r}<t_{n+r+1}:=1$.

First, we will prove the equivalence between $E\left(f, S_{r}(T, I)\right)_{p}$ and the modulus of the smoothness of f of order r in the L_{p}-norm

$$
\omega_{r}(f, \eta)_{p}:=\sup _{0<t \leq \eta}\left\|\Delta_{t}^{r}(f, \cdot)\right\|_{p}
$$

It is known that a is equivalent with $b, a \sim b$, if there are two constants $c_{1}, c_{2}>0$ so that $c_{1} a \leq b \leq c_{2} a$. The right inequality is known as the direct theorem, and the left one as the inverse theorem. Schumaker proves both of them in [5], [6].

Theorem 3.1. (T 6.27, [5]) Let $1 \leq p \leq+\infty$. Then there exists a constant C (depending only on r and n) so that for $f \in L_{p}[a, b], E\left(f, S_{r}(\Delta)\right)_{p} \leq C \omega_{r}(f ; \bar{\Delta})_{p}$, where $S_{r}(\Delta)$ is the space of splines of order r with simple knots from $\Delta:=\left(t_{j}\right)_{j=0}^{n+1}$ and $\bar{\Delta}:=\max _{0 \leq i \leq n}\left(t_{i+1}-t_{i}\right)$.

Identifying $[a, b]:=[0,1]=I, \Delta:=T$ and $S_{r}(\Delta):=S_{r}(T, I)$ and taking into account the uniform mesh $\left(\bar{\Delta}=\max _{r \leq i \leq n+r}\left(t_{i+1}-t_{i}\right)=\frac{1}{n+1}\right)$, we have

$$
\begin{equation*}
E\left(f, S_{r}(T, I)\right)_{p} \leq \omega_{r}\left(f,(n+1)^{-1}\right)_{p} \tag{3.1}
\end{equation*}
$$

Theorem 3.2. ([5], [6]) Let $0 \leq m \leq r, 1 \leq p \leq+\infty, 1 \leq q \leq+\infty$. There is a constant $C>0$ (depending on $r, m, p)$ so that for any partition Δ of $[a, b]$ there exists a function $f \in W_{q}^{m}[a, b]$ with $\|f\|_{W_{q}^{m}[a, b]}=1$ and

$$
E\left(f, P P_{r}(\Delta)\right)_{p} \geq C(\bar{\Delta})^{m+1 / p-1 / q} \omega_{r-m}\left(f^{(m)}, \bar{\Delta}\right)_{q}
$$

where $P_{r}(\Delta)$ is the space of piecewise polynomials of order r associated to the partition Δ.

We consider the particular case $p=q$. Because $S_{r}(T, I) \subset P P_{r}(T)(\Delta:=T)$, the lower bounds for $P P_{r}(T)$ will automatically produce lower bounds for all spline spaces $S_{r}(T, I)$ ([5], p. 210). It remains to prove the inequality

$$
\omega_{r-m}\left(f^{(m)},(n+1)^{-1}\right)_{p} \geq \omega_{r}\left(f,(n+1)^{-1}\right)
$$

for $f \in W_{p}^{m}(I)$.
Indeed, by using the relation (7.13), Chap. 2, from [3] we have

$$
\omega_{k}\left(f^{(r)}, t\right)_{p} \geq t^{-r} \omega_{r+k}(f, t)_{p}
$$

for $t \geq 0,1 \leq p \leq+\infty, f \in L_{p}(I)$, with our notation we have

$$
\omega_{r-m}\left(f^{(m)},(n+1)^{-1}\right)_{p} \geq\left((n+1)^{-1}\right)^{-m} \omega_{m+r-m}\left(f,(n+1)^{-1}\right)_{p}
$$

or

$$
\omega_{r-m}\left(f^{(m)},(n+1)^{-1}\right)_{p} \geq(n+1)^{m} \omega_{r}\left(f,(n+1)^{-1}\right)_{p}
$$

Thus, the inverse theorem is

$$
\begin{align*}
& E\left(f, S_{r}(T, I)\right)_{p} \geq C\left((n+1)^{-1}\right)^{m} \omega_{r-m}\left(f^{(m)},(n+1)^{-1}\right) \tag{3.2}\\
& \quad \geq C(n+1)^{-m}(n+1)^{m} \omega_{r}\left(f,(n+1)^{-1}\right)_{p}=C \omega_{r}\left(f,(n+1)^{-1}\right)_{p}
\end{align*}
$$

Because $W_{p}^{m}(I)$ is a subspace of the space $L_{p}(I)$, from (3.1) and (3.2) we can conclude the next proposition.

Proposition 3.1. There exists a function $f \in W_{p}^{m}(I)$ with $0 \leq m \leq r, 1 \leq p \leq$ $+\infty$ and the constant $C>0$ so that the equivalence holds true

$$
\begin{equation*}
E\left(f, S_{r}(T, I)\right)_{p} \sim \omega_{r}\left(f,(n+1)^{-1}\right)_{p} \tag{3.3}
\end{equation*}
$$

The next step is to apply the Johnson result to the equivalence (3.3).
Theorem 3.3. (Johnson) For $m \geq 0,1 \leq p \leq+\infty$ and Banach spaces $L_{p}(I), W_{p}^{m}(I)$ the following equivalence holds true

$$
K\left(f, t^{m} ; L_{p}, W_{p}^{m}\right) \sim \omega_{m}(f, t)_{p}
$$

where

$$
K\left(f, t^{m} ; L_{p}, W_{p}^{m}\right)=\inf \left\{\|f-g\|_{p}+t^{m}\left\|g^{(m)}\right\|_{p}: g \in W_{p}^{m}\right\}
$$

is the Peetre K-functional
Thus, we have:
Proposition 3.2. There exists a function $f \in W_{p}^{m}(I)$ so that

$$
\begin{equation*}
E\left(f, S_{r}(T, I)\right)_{p} \sim K\left(f,(n+1)^{-m} ; L_{p}, W_{p}^{m}\right) \tag{3.4}
\end{equation*}
$$

Now, from (2.3) and the following Draganov-Ivanov proposition:
Proposition 3.3. (Proposition 2.1, [4]) Let the linear operator \mathbb{A} maps continuously $\left(X_{1}, Y_{1}, D_{1}\right)$ onto $\left(X_{2}, Y_{2}, D_{2}\right)$. Then, for every $f \in X_{1}$ and $t>0$, we have $K\left(f, t ; X_{1}, Y_{1}, D_{1}\right) \sim K\left(\mathbb{A} f, t ; X_{2}, Y_{2}, D_{2}\right)$.
we obtain the following result:
Proposition 3.4. For every $f \in \tilde{C}^{r}(I), I=[0,1]$ and uniform partition T, for $t>0$ and $1 \leq p \leq+\infty$ the equivalence holds true

$$
\begin{equation*}
K\left(f, t ; \tilde{C}^{r}, W_{p}^{r}, D_{1}\right) \sim K\left(L_{T} f, t ; \operatorname{Im}\left(L_{t} f\right), W_{p}^{r}, D_{2}\right) \tag{3.5}
\end{equation*}
$$

with $D_{1} f:=\frac{1}{h} \int_{\xi_{j-1}}^{\xi_{j}} f^{\prime}(x) d x$ and $D_{2}:=D^{1}$.
Finally, by combining (3.4) (in which we take the particular case $m:=r$) and (3.5), by denoting the space of all classes of equivalence of the functions $f \in W_{p}^{r}(I)$ with $\tilde{W}_{p}^{r}(I)$ and knowing that $\tilde{C}^{r}(I) \subset C^{r}(I), \operatorname{Im}\left(L_{t} f\right) \subset L_{p}(I), W_{p}^{r}(I) \subset L_{p}(I)$ we can give the final result.
Theorem 3.4. For $1 \leq p \leq+\infty, r \in \mathbb{N}$ there exists a function $f \in \tilde{W}_{p}^{r}(I)$ so that the equivalence takes place

$$
\begin{equation*}
E\left(f, S_{r}(T, I)\right)_{p} \sim K\left(L_{T} f,(n+1)^{-r} ; \operatorname{Im}\left(L_{t} f\right), W_{p}^{r}, D_{2}\right) \tag{3.6}
\end{equation*}
$$

with D_{1}, D_{2} defined in Proposition 3.4.
The above result (3.6) shows a new characterization of spline approximation from Peettre K-functional's point of view because the last one is applied not to the function f, but to the spline operator L_{T}.

REFERENCES

1. C. De Boor: On calculating with B-spline, J. Approx. Theory 6 (1972), 50-62.
2. C. DE Boor: The quasi-interpolant as a tool in elementary polynomial spline theory. In: Approximation Theory (G.G. Lorentz et al., eds.), Academic Press, New York, 1973, pp. 269-276.
3. R. DeVore, G. Lorentz: Constructive Approximation. Springer-Verag, Berlin Heidelberg, 1993.
4. B. Draganov and K. Ivanov: A new characterization of weighted Peetre K functionals, Constr. Approx. 21 (2005), 113-148.
5. L. Schumaker: Spline Functions - Basic Theory. New York, 1980.
6. L. Schumaker: Lower Bounds For Spline Approximation. Banach Center Publ. 4 (Z. Ciesieleski, ed.), 1979, pp. 213-223.

University Titu Maiorescu
Faculty of Information Sciences and Technology
187, Văcăreşti Ave., sector 1
040051, Bucharest, Romania
magnolia.tilca@utm.ro

