FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 23 (2008), pp. 13–21

A K-FUNCTIONAL CHARACTERIZATION OF THE SPLINE APPROXIMATION

Magnolia F. Tilca

Abstract. The purpose of this paper is to identify the spline operator L_T (see [R. DEVORE, G. LORENTZ: Constructive Approximation. Springer-Verag, Berlin Heidelberg, 1993]) as the Draganov-Ivanov operator A defined in [B. DRAGANOV and K. IVANOV: A new characterization of weighted Peetre K-functionals, Constr. Approx. **21** (2005), 113–148] and to give a new characterization of spline approximation using the K-functionals.

1. Introduction

Let the linear operators be

(1.1)
$$L_T(f) = \sum_{j=1}^{n+r} f(\xi_j) N_j$$

which maps C(I) onto $S_r(T, I)$ for each given T. Here the notations $I, T, S_r(T, I)$, N_j , ξ_j , are as follows: $I := [0;1], T := (t_j)$ consists of n uniform simple knots $0 < t_{r+1} < \cdots < t_{n+r} < 1$ with the step size h and auxiliary knots $t_1 < \cdots < t_{r-1} < t_r := 0$ and $1 := t_{n+r+1} < \cdots < t_{n+2r}$, also uniform. Because of their good support, the normalized B-splines $N_j, j = 1, \ldots, n+r$, for $S_r(T, I)$ - the Schoenberg space on I, which consists of all splines S of order r, with breakpoints contained in T - are particularly useful for constructing good spline approximants. The points ξ_j are selected so as $\xi_j \in I \cap \text{supp } N_j := I \cap (t_j, t_{j+r}), j = 1, \ldots, n+r$. The normalized B-spline functions are the linear combinations of the truncated powers $(t_j - x)^{(r-1)}_+$ and therefore $N_j \in S_r(T, I)$.

For later reference we list some known facts about B-splines [1]:

$$N_j(x) \ge 0$$
, supp $N_j = [x_j, x_{j+r}], \ j = 1, \dots, n+r$, $\sum_{j=1}^{n+r} N_j(x) = 1$

Received December 6, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 41A15; Secondary 41A27, 41A65, 57R15

M. Tilca

for $x \in [0, 1]$.

We will treat the case of continuous functions f with the all $r \ge 0$ derivatives continuous, $f \in C^r(I)$.

On the other hand, the operator introduced by Draganov and Ivanov is defined as follows.

Definition 1.1. (see [4]) Let $(X_1, Y_1, D_1), (X_2, Y_2, D_2)$ be the triples with X_1, X_2 two Banach spaces, and D_1, D_2 two differential operators. The linear operator \mathbb{A} maps continuously (X_1, Y_1, D_1) onto (X_2, Y_2, D_2) , and writes

$$\mathbb{A}: (X_1, Y_1, D_1) \longmapsto (X_2, Y_2, D_2)$$

if and only if $\mathbb{A}: X_1 \to X_2$ is invertible and together with its inverse $\mathbb{A}^{-1}: X_2 \to X_1$ satisfies the conditions:

- **a)** $\|\mathbb{A}f\|_{X_2} \leq C \|f\|_{X_1}$, for any $f \in X_1$,
- **b)** $||D_2 \mathbb{A}f||_{X_2} \leq C ||D_1f||_{X_1}$, for any $f \in Y_1 \cap D_1^{-1}(X_1)$,
- c) $\|\mathbb{A}^{-1}F\|_{X_1} \leq C \|F\|_{X_2}$, for any $F \in X_2$,
- **d**) $\|D_1 \mathbb{A}^{-1} F\|_{X_1} \leq C \|D_2 F\|_{X_2}$, for any $F \in Y_2 \cap D_2^{-1}(X_2)$,

e) $\mathbb{A}(Y_1 \cap D_1^{-1}(X_1)) = Y_2 \cap D_2^{-1}(X_2)$, where $D^{-1}(X) := \{g \in X/Dg \in X\} \subset X$ and C > 0 is a constant independent on f and t.

2. The Spline Operators as Draganov-Ivanov Operators

In this section we propose the following problem.

Problem 2.1. Find the triples (X_1, Y_1, D_1) and (X_2, Y_2, D_2) knowing that there exists constant C so that the linear operator $L_T : X_1 \to X_2$ from (1.1) maps continuously (X_1, Y_1, D_1) onto (X_2, Y_2, D_2) .

Solution: We will follow three steps to solve this problem. First, we choose the Banach spaces X_1 , X_2 so that L_T be invertible; second, we find the proper spaces Y_1, Y_2 and the differential operators D_1, D_2 . Finally, for the chosen triples $(X_1, Y_1, D_1), (X_2, Y_2, D_2)$ we verify the conditions (a)–(e) from Definition 1.1.

 L_T is invertible if and only if it is bijection. In order to ensure the injectivity, we define the equivalence relation $f \sim g$ as follows

 $(\forall f, g \in X_1) \quad f \sim g \Leftrightarrow f(\xi_j) = g(\xi_j), \quad j = 1, \dots, n+r.$

Thus, the space X_1 is the equivalence class $C^r(I)/_{\sim} := \tilde{C}^r(I)$. This space is a Banach space with respect to the norm

$$||f||_{X_1} := \max_{j=1,\dots,n+r} |f(\xi_j)|.$$

14

Using the surjective characterization $L_T(X_1) = X_2$ it follows $X_2 := \text{Im}(L_T)$, where $\text{Im}(L_T)$ denotes the image space of the L_T operator. It is easy to observe that $\|L_T f\|_p < +\infty$, $1 \le p \le +\infty$, thus $\text{Im}(L_T) \subset L_p(I)$. Here we use the classical notation $L_p(I)$ for the space of all measurable functions with finite norm

$$\begin{split} \|f\|_p &:= \left(\int_I |f|^p \, dx\right)^{1/p}, \qquad 0$$

Again, the space and the L_p -norm form a Banach space.

We complete the triples (X_i, Y_i, D_i) , $i \in \{1, 2\}$ by taking Sobolev space $Y_1 = Y_2 := W_p^r(I)$, the set of all functions $f: I \to \mathbb{R}$ with $f^{(r-1)}$ absolutely continuous and $f^{(r)} \in L_p$. Also, we choose

$$D_1 f := \frac{1}{h} \int_{\xi_{j-1}}^{\xi_j} f'(x) \, dx$$

and $D_2 := D^1$, first derivative.

In what follows, there will be analyzed the conditions mentioned in Definition 1.1.

a) The inequality $||L_T f||_p \leq C ||f||_{X_1}$ is valid for each $f \in \tilde{C}^r(I)$. Indeed,

$$\begin{aligned} \|L_T f\|_p &\leq \left(\int_0^1 \left[\sum_{j=1}^{n+r} |f(\xi_j)| \, |N_j(x)| \right]^p \, dx \right)^{1/p} \\ &\leq \|f\|_{X_1} \left(\int_0^1 \left[\sum_{j=1}^{n+r} |N_j(x)| \right]^p \, dx \right)^{1/p} = \|f\|_{X_1} \end{aligned}$$

where we applied the partition of unity property of the normalized B-spline. Furthermore, the value of the constant is C = 1.

b) For $1 \le p \le +\infty$, the following inequality holds true

$$(\forall f \in W_p^r(I) \cap D_1^{-1}(\tilde{C}^r(I))) \qquad \|D_2 L_T f\|_p \le C \|D_1 f\|_{X_1}.$$

Taking into account the definition of the differential operators D_1, D_2 , the inequality which has to be demonstrated becomes $||(L_T f)'||_p \leq C ||D_1 f||_{X_1}$.

In the case of $1 \leq p < +\infty$, we apply the result (T.5.9, p. 195) from [5] for d = 2: Let $s(x) = \sum_{i=1}^{n} c_i N_{i,r}$ be the spline function, and suppose $1 \leq d \leq r$. Then for all $x \in [x_r, x_n)$,

$$D_{+}^{d-1}s(x) = \sum_{i=d}^{n} c_{i,d}N_{i,r-d+1}(x),$$

,

M. Tilca

where $c_{i,j}$ are as follows

(2.1)
$$c_{i,1} = c_i \quad for \quad i = 1, \dots, n,$$
$$c_{i,j} = \begin{cases} (r-j+1)\frac{c_{i,j-1} - c_{i-1,j-1}}{x_{i+r-j+1} - x_i}, & x_{i+r-j+1} - x_i > 0, \\ 0, & otherwise, \end{cases}$$

for j = 2, ..., d and i = 1, ..., n.

Thus, denoting $c_{j,1} = c_j := f(\xi_j)$, j = 1, ..., n + r, for $x \in [x_r, x_{n+r})$ the left side of the inequality becomes

$$||(L_T f)'||_p = \left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_p.$$

Further, using the recurrent relations (2.1) (we have always the case $t_{j+r-1}-t_j > 0$ because of the increasing knots), and taking into consideration the increasing uniform partition, we have

$$c_{j,2} = \frac{r-1}{t_{j+r-1}-t_j} \left[c_{j,1} - c_{j-1,1} \right] = \frac{r-1}{(r-1)h} \left[c_{j,1} - c_{j-1,1} \right] = \frac{1}{h} \left[f(\xi_j) - f(\xi_{j-1}) \right].$$

Thus, for $x \in [x_r, x_{r+n})$

$$\|(L_T f)'\|_p \le \left[\int_0^1 \left(\sum_{j=2}^{n+r} \frac{1}{h} |f(\xi_j) - f(\xi_{j-1})| |N_{j,r-1}(x)|\right)^p dx\right]^{1/p}$$
$$\le C \|c_{j,2}\|_{X_1} \left[\int_0^1 \left(\sum_{j=2}^{n+r} N_{j,r-1}(x)\right)^p dx\right]^{1/p} = C \|D_1 f\|_{X_1}.$$

Following the same idea, for the second case $p = +\infty$ we obtain

$$\|(L_T f)'\|_{\infty} = \left\| \sum_{j=2}^{n+r} c_{j,2} N_{j,r-1} \right\|_{\infty}$$

$$\leq \sup_{x \in I} \left(\sum_{j=2}^{n+r} |c_{j,2}| |N_{j,r-1}(x)| \right)$$

$$\leq C \|c_{j,2}\|_{X_1} \sup_{x \in I} \sum_{j=2}^{n+r} |N_{j,r-1}(x)|$$

$$= C \|D_1 f\|_{X_1}$$

16

for each $f \in W_p^r(I) \cap D_1^{-1}(\tilde{C}^r(I))$.

c) The inequality $\left\|L_T^{-1}F\right\|_{X_1} \leq \|F\|_p$, where $F \in \text{Im}(L_T f)$ holds true.

Indeed, taking into accout that L_T^{-1} is the invert operator of the L_T operator, we have the relation $L_T(L_T^{-1}F) = F = L_T f$ for each $f \in \tilde{C}^r(I)$, so that $L_T^{-1}F = f$. The left side of the inequality becomes $\|L_T^{-1}F\|_{X_1} = \|f\|_{X_1} = \max_{j=1,\dots,n+r} |f(\xi_j)|$ and the right side becomes $\|F\|_p = \|L_T f\|_p \leq C \|f\|_{X_1}$. Because there exists a constant $C \geq 1$ so that $\|f\|_{X_1} \leq C \|f\|_{X_1}$, the required inequality is true, for $1 \leq p \leq +infty$ and for all $F \in \text{Im}(L_T f)$.

d) The inequality $\|D_1L_T^{-1}F\|_{X_1} \leq C \|F'\|_p$ holds true for all $F \in W_p^r(I) \cap D_2^{-1}(X_2)$.

Because $L_T^{-1}F = f$ and $F = L_T f$, the above inequality becomes $||D_1f||_{X_1} \leq C ||(L_T f)'||_p$ for all $f \in W_p^r(I) \cap D_1^{-1}bigl(\tilde{C}^r(I))$. Applying the stable condition of the B-spline [2]: there exists a positive constant C_r which depends only on r so that for all $i = \overline{1, n+r}$,

$$|c_i| \le C_r \left\| \sum_j c_j N_{j,r} \right\|_{[t_i, t_{i+r}]}$$

we have: there exists a positive constant C_{r-1} so that for all $i = 1, \ldots, n+r$,

(2.2)
$$|c_{i,2}| \le C_{r-1} \left\| \sum_{j=2}^{n+r} c_{j,2} N_{j,r-1} \right\|_{[t_i,t_{i+r}]}$$

Because for every $i \in \{1, ..., n + r\}$ the inequality (2.2) holds true, there exists a subscript $i \in \{1, ..., n + r\}$ so that

$$\left\|c_{i,2}\right\|_{X_{1}} \leq C_{r-1} \left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_{[t_{i},t_{i+r}]}.$$

On the other hand

$$\left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_{[t_i,t_{i+r}]} \le (n+r-1) \left\|c_{j,2}\right\|_{X_1} \left\|\sum_{j=2}^{n+k} N_{j,r-1}\right\|_{[t_i,t_{i+r}]} = (n+r-1) \left\|c_{j,2}\right\|_{X_1}$$

and

$$\left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_{[0,1]} \le (n+r-1) \left\|c_{j,2}\right\|_{X_1} \left\|\sum_{j=2}^{n+k} N_{j,r-1}\right\|_{[0,1]} = (n+r-1) \left\|c_{j,2}\right\|_{X_1}.$$

Imposing the condition $rh \leq 1$, $(t_{i+r} - t_i = rh)$, we have

$$\left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_{[t_i,t_{i+r}]} \le \left\|\sum_{j=2}^{n+r} c_{j,2} N_{j,r-1}\right\|_{[0,1]}.$$

e) The last condition (of Definition 1.1)

$$L_T\left(W_p^r(I) \cap D^{-1}(\tilde{C}^r(I))\right) = W_p^r(I) \cap D^{-1}(\operatorname{Im}(L_T f))$$

is true.

We have found a linear operator $\mathbb{A} := L_T f$, so we conclude the notes by the following result:

Conclusion. Being given the uniform knots $0 < t_{r+1} < \cdots < t_{r+n} < 1$ and auxiliary uniform knots $t_1 < \cdots < t_r := 0, 1 := t_{r+n+1} < \cdots < t_{n+2r}$, the linear operator $(L_T f)(x) = \sum_{j=1}^{n+r} f(\xi_j) N_j(x)$ maps continuously $(\tilde{C}^r(I), W_p^r(I), D_1)$ onto $(\operatorname{Im}(L_T f), W_p^r(I), D_2)$, for all $f \in \tilde{C}^r(I)$, where $\xi_j \in I \cap \operatorname{supp} N_j$, i.e.,

(2.3)
$$L_T: \left(\tilde{C}^r(I), W_p^r(I), D_1\right) \longmapsto \left(\operatorname{Im}(L_T f), W_p^r(I), D_2\right).$$

3. Spline Error Evaluation

In this section we propose the following problem.

Problem 3.1. For a function $f: C^r[0,1] \to \mathbb{R}$, find an equivalence

$$E(f, S_r(T, I))_p := \inf_{S \in S_r(T, I)} \|f - Sf\|_p \sim K(\mathbb{A}f, \eta; X, Y, D^{\alpha}), \quad 1 \le p \le +\infty,$$

where A is the Draganov-Ivanov operator, D^{α} the differential operator of order α , η is a quantity to be determined and X, Y are two spaces (X must to be Banach space). There are supposed to be given the positive integers n, r, r < n and the finite set of uniform knots $T = (t_j)_{j=r}^{n+r+1}, 0 := t_r < t_{r+1} < \cdots < t_{n+r} < t_{n+r+1} := 1$.

First, we will prove the equivalence between $E(f, S_r(T, I))_p$ and the modulus of the smoothness of f of order r in the L_p -norm

$$\omega_r(f,\eta)_p := \sup_{0 < t \le \eta} \left\| \Delta_t^r(f,\cdot) \right\|_p.$$

It is known that a is equivalent with b, $a \sim b$, if there are two constants $c_1, c_2 > 0$ so that $c_1a \leq b \leq c_2a$. The right inequality is known as the direct theorem, and the left one as the inverse theorem. Schumaker proves both of them in [5], [6].

Theorem 3.1. (T 6.27, [5]) Let $1 \le p \le +\infty$. Then there exists a constant C (depending only on r and n) so that for $f \in L_p[a, b]$, $E(f, S_r(\Delta))_p \le C\omega_r(f; \overline{\Delta})_p$, where $S_r(\Delta)$ is the space of splines of order r with simple knots from $\Delta := (t_j)_{j=0}^{n+1}$ and $\overline{\Delta} := \max_{0 \le i \le n} (t_{i+1} - t_i)$.

Identifying [a,b] := [0,1] = I, $\Delta := T$ and $S_r(\Delta) := S_r(T,I)$ and taking into account the uniform mesh $(\overline{\Delta} = \max_{r \leq i \leq n+r} (t_{i+1} - t_i) = \frac{1}{n+1})$, we have

(3.1)
$$E(f, S_r(T, I))_p \le \omega_r (f, (n+1)^{-1})_p.$$

Theorem 3.2. ([5], [6]) Let $0 \le m \le r$, $1 \le p \le +\infty$, $1 \le q \le +\infty$. There is a constant C > 0 (depending on r, m, p) so that for any partition Δ of [a, b] there exists a function $f \in W_q^m[a, b]$ with $\|f\|_{W_{\alpha}^m[a, b]} = 1$ and

$$E(f, PP_r(\Delta))_p \ge C(\overline{\Delta})^{m+1/p-1/q} \omega_{r-m}(f^{(m)}, \overline{\Delta})_q,$$

where $PP_r(\Delta)$ is the space of piecewise polynomials of order r associated to the partition Δ .

We consider the particular case p = q. Because $S_r(T, I) \subset PP_r(T)$ ($\Delta := T$), the lower bounds for $PP_r(T)$ will automatically produce lower bounds for all spline spaces $S_r(T, I)$ ([5], p. 210). It remains to prove the inequality

$$\omega_{r-m}(f^{(m)}, (n+1)^{-1})_p \ge \omega_r(f, (n+1)^{-1}),$$

for $f \in W_p^m(I)$.

Indeed, by using the relation (7.13), Chap. 2, from [3] we have

$$\omega_k(f^{(r)}, t)_p \ge t^{-r} \omega_{r+k}(f, t)_p,$$

for $t \ge 0, 1 \le p \le +\infty, f \in L_p(I)$, with our notation we have

$$\omega_{r-m}(f^{(m)}, (n+1)^{-1})_p \ge ((n+1)^{-1})^{-m}\omega_{m+r-m}(f, (n+1)^{-1})_p$$

or

$$\omega_{r-m}(f^{(m)}, (n+1)^{-1})_p \ge (n+1)^m \omega_r(f, (n+1)^{-1})_p.$$

Thus, the inverse theorem is

(3.2)
$$E(f, S_r(T, I))_p \ge C((n+1)^{-1})^m \omega_{r-m}(f^{(m)}, (n+1)^{-1})$$
$$\ge C(n+1)^{-m}(n+1)^m \omega_r(f, (n+1)^{-1})_p = C\omega_r(f, (n+1)^{-1})_p$$

Because $W_p^m(I)$ is a subspace of the space $L_p(I)$, from (3.1) and (3.2) we can conclude the next proposition.

M. Tilca

Proposition 3.1. There exists a function $f \in W_p^m(I)$ with $0 \le m \le r$, $1 \le p \le +\infty$ and the constant C > 0 so that the equivalence holds true

(3.3)
$$E(f, S_r(T, I))_p \sim \omega_r(f, (n+1)^{-1})_p$$

The next step is to apply the Johnson result to the equivalence (3.3).

Theorem 3.3. (Johnson) For $m \ge 0, 1 \le p \le +\infty$ and Banach spaces $L_p(I), W_p^m(I)$ the following equivalence holds true

$$K(f, t^m; L_p, W_p^m) \sim \omega_m(f, t)_p$$

where

$$K(f, t^{m}; L_{p}, W_{p}^{m}) = \inf \left\{ \left\| f - g \right\|_{p} + t^{m} \left\| g^{(m)} \right\|_{p} : g \in W_{p}^{m} \right\}$$

is the Peetre K-functional

Thus, we have:

Proposition 3.2. There exists a function $f \in W_p^m(I)$ so that

(3.4)
$$E(f, S_r(T, I))_p \sim K(f, (n+1)^{-m}; L_p, W_p^m).$$

Now, from (2.3) and the following Draganov-Ivanov proposition:

Proposition 3.3. (Proposition 2.1, [4]) Let the linear operator \mathbb{A} maps continuously (X_1, Y_1, D_1) onto (X_2, Y_2, D_2) . Then, for every $f \in X_1$ and t > 0, we have $K(f, t; X_1, Y_1, D_1) \sim K(\mathbb{A}f, t; X_2, Y_2, D_2)$.

we obtain the following result:

Proposition 3.4. For every $f \in \tilde{C}^r(I)$, I = [0,1] and uniform partition T, for t > 0 and $1 \le p \le +\infty$ the equivalence holds true

(3.5)
$$K(f,t;\tilde{C}^{r},W_{p}^{r},D_{1}) \sim K(L_{T}f,t;\mathrm{Im}(L_{t}f),W_{p}^{r},D_{2}),$$

with $D_1 f := \frac{1}{h} \int_{\xi_{j-1}}^{\xi_j} f'(x) \, dx$ and $D_2 := D^1$.

Finally, by combining (3.4) (in which we take the particular case m := r) and (3.5), by denoting the space of all classes of equivalence of the functions $f \in W_p^r(I)$ with $\tilde{W}_p^r(I)$ and knowing that $\tilde{C}^r(I) \subset C^r(I)$, $\operatorname{Im}(L_t f) \subset L_p(I)$, $W_p^r(I) \subset L_p(I)$ we can give the final result.

Theorem 3.4. For $1 \le p \le +\infty$, $r \in \mathbb{N}$ there exists a function $f \in \tilde{W}_p^r(I)$ so that the equivalence takes place

(3.6)
$$E(f, S_r(T, I))_p \sim K(L_T f, (n+1)^{-r}; \operatorname{Im}(L_t f), W_p^r, D_2),$$

with D_1, D_2 defined in Proposition 3.4.

The above result (3.6) shows a new characterization of spline approximation from Peettre K-functional's point of view because the last one is applied not to the function f, but to the spline operator L_T .

20

REFERENCES

- 1. C. DE BOOR: On calculating with B-spline, J. Approx. Theory 6 (1972), 50-62.
- C. DE BOOR: The quasi-interpolant as a tool in elementary polynomial spline theory. In: Approximation Theory (G.G. Lorentz et al., eds.), Academic Press, New York, 1973, pp. 269–276.
- 3. R. DEVORE, G. LORENTZ: Constructive Approximation. Springer-Verag, Berlin Heidelberg, 1993.
- B. DRAGANOV and K. IVANOV: A new characterization of weighted Peetre Kfunctionals, Constr. Approx. 21 (2005), 113–148.
- 5. L. SCHUMAKER: Spline Functions Basic Theory. New York, 1980.
- L. SCHUMAKER: Lower Bounds For Spline Approximation. Banach Center Publ. 4 (Z. Ciesieleski, ed.), 1979, pp. 213–223.

University Titu Maiorescu Faculty of Information Sciences and Technology 187, Văcărești Ave., sector 1 040051, Bucharest, Romania magnolia.tilca@utm.ro