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A K-FUNCTIONAL CHARACTERIZATION OF THE SPLINE
APPROXIMATION

Magnolia F. Tilca

Abstract. The purpose of this paper is to identify the spline operator LT (see [R.
DeVore, G. Lorentz: Constructive Approximation. Springer-Verag, Berlin Heidel-
berg, 1993]) as the Draganov-Ivanov operator A defined in [B. Draganov and K.
Ivanov: A new characterization of weighted Peetre K-functionals, Constr. Approx. 21
(2005), 113–148] and to give a new characterization of spline approximation using the
K-functionals.

1. Introduction

Let the linear operators be

LT (f) =
n+r∑
j=1

f(ξj)Nj(1.1)

which maps C(I) onto Sr(T, I) for each given T . Here the notations I, T, Sr(T, I),
Nj , ξj , are as follows: I := [0; 1], T := (tj) consists of n uniform simple knots
0 < tr+1 < · · · < tn+r < 1 with the step size h and auxiliary knots t1 < · · · <
tr−1 < tr := 0 and 1 := tn+r+1 < · · · < tn+2r, also uniform. Because of their good
support, the normalized B-splines Nj , j = 1, . . . , n+r, for Sr(T, I) - the Schoenberg
space on I, which consists of all splines S of order r, with breakpoints contained in
T - are particularly useful for constructing good spline approximants. The points ξj
are selected so as ξj ∈ I ∩ suppNj := I ∩ (tj , tj+r), j = 1, . . . , n+r. The normalized
B-spline functions are the linear combinations of the truncated powers (tj −x)(r−1)

+

and therefore Nj ∈ Sr(T, I).
For later reference we list some known facts about B-splines [1]:

Nj(x) ≥ 0, suppNj = [xj , xj+r], j = 1, . . . , n+ r,

n+r∑
j=1

Nj(x) = 1
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for x ∈ [0, 1].
We will treat the case of continuous functions f with the all r ≥ 0 derivatives

continuous, f ∈ Cr(I).
On the other hand, the operator introduced by Draganov and Ivanov is defined

as follows.

Definition 1.1. (see [4]) Let (X1, Y1, D1), (X2, Y2, D2) be the triples with X1, X2

two Banach spaces, and D1, D2 two differential operators. The linear operator A
maps continuously (X1, Y1, D1) onto (X2, Y2, D2), and writes

A : (X1, Y1, D1) 7−→ (X2, Y2, D2)

if and only if A : X1 → X2 is invertible and together with its inverse A−1 : X2 → X1

satisfies the conditions:

a) ‖Af‖X2
≤ C ‖f‖X1

, for any f ∈ X1,

b) ‖D2Af‖X2
≤ C ‖D1f‖X1

, for any f ∈ Y1 ∩D−1
1 (X1),

c)
∥∥A−1F

∥∥
X1
≤ C ‖F‖X2

, for any F ∈ X2,

d)
∥∥D1A−1F

∥∥
X1
≤ C ‖D2F‖X2

, for any F ∈ Y2 ∩D−1
2 (X2),

e) A
(
Y1 ∩D−1

1 (X1)
)

= Y2 ∩ D−1
2 (X2), where D−1(X) := {g ∈ X/Dg ∈ X} ⊂ X

and C > 0 is a constant independent on f and t.

2. The Spline Operators as Draganov-Ivanov Operators

In this section we propose the following problem.

Problem 2.1. Find the triples (X1, Y1, D1) and (X2, Y2, D2) knowing that there
exists constant C so that the linear operator LT : X1 → X2 from (1.1) maps
continuously (X1, Y1, D1) onto (X2, Y2, D2).

Solution: We will follow three steps to solve this problem. First, we choose
the Banach spaces X1, X2 so that LT be invertible; second, we find the proper
spaces Y1, Y2 and the differential operators D1, D2. Finally, for the chosen triples
(X1, Y1, D1), (X2, Y2, D2) we verify the conditions (a)–(e) from Definition 1.1.

LT is invertible if and only if it is bijection. In order to ensure the injectivity,
we define the equivalence relation f ∼ g as follows

(∀f, g ∈ X1) f ∼ g ⇔ f(ξj) = g(ξj), j = 1, . . . , n+ r.

Thus, the space X1 is the equivalence class Cr(I)/∼ := C̃r(I). This space is a
Banach space with respect to the norm

‖f‖X1
:= max

j=1,...,n+r
|f(ξj)| .
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Using the surjective characterization LT (X1) = X2 it follows X2 := Im(LT ),
where Im(LT ) denotes the image space of the LT operator. It is easy to observe
that ‖LT f‖p < +∞, 1 ≤ p ≤ +∞, thus Im(LT ) ⊂ Lp(I). Here we use the classical
notation Lp(I) for the space of all measurable functions with finite norm

‖f‖p :=
(∫

I

|f |p dx
)1/p

, 0 < p < +∞,

‖f‖p := esssupx∈I |f(x)|, p = +∞.

Again, the space and the Lp-norm form a Banach space.
We complete the triples (Xi, Yi, Di), i ∈ {1, 2} by taking Sobolev space Y1 =

Y2 := W r
p (I), the set of all functions f : I → R with f (r−1) absolutely continuous

and f (r) ∈ Lp. Also, we choose

D1f :=
1
h

∫ ξj

ξj−1

f ′(x) dx

and D2 := D1, first derivative.
In what follows, there will be analyzed the conditions mentioned in Definition

1.1.
a) The inequality ‖LT f‖p ≤ C ‖f‖X1

is valid for each f ∈ C̃r(I). Indeed,

‖LT f‖p ≤

∫ 1

0

n+r∑
j=1

|f(ξj)| |Nj(x)|

p dx
1/p

≤ ‖f‖X1

∫ 1

0

n+r∑
j=1

|Nj(x)|

p dx
1/p

= ‖f‖X1
,

where we applied the partition of unity property of the normalized B-spline. Fur-
thermore, the value of the constant is C = 1.

b) For 1 ≤ p ≤ +∞, the following inequality holds true

(∀f ∈W r
p (I) ∩D−1

1 (C̃r(I))) ‖D2LT f‖p ≤ C ‖D1f‖X1
.

Taking into account the definition of the differential operators D1, D2, the inequality
which has to be demonstrated becomes ‖(LT f)′‖p ≤ C ‖D1f‖X1

.

In the case of 1 ≤ p < +∞, we apply the result (T.5.9, p. 195) from [5] for
d = 2: Let s(x) =

∑n
i=1 ciNi,r be the spline function, and suppose 1 ≤ d ≤ r. Then

for all x ∈ [xr, xn),

Dd−1
+ s(x) =

n∑
i=d

ci,dNi,r−d+1(x),
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where ci,j are as follows

ci,1 = ci for i = 1, . . . , n,(2.1)

ci,j =

 (r − j + 1)
ci,j−1 − ci−1,j−1

xi+r−j+1 − xi
, xi+r−j+1 − xi > 0,

0, otherwise,

for j = 2, . . . , d and i = 1, . . . , n.
Thus, denoting cj,1 = cj := f(ξj), j = 1, . . . , n + r, for x ∈ [xr, xn+r) the left

side of the inequality becomes

‖(LT f)′‖p =

∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
p

.

Further, using the recurrent relations (2.1) (we have always the case tj+r−1−tj >
0 because of the increasing knots), and taking into consideration the increasing
uniform partition, we have

cj,2 =
r − 1

tj+r−1 − tj
[cj,1 − cj−1,1] =

r − 1
(r − 1)h

[cj,1 − cj−1,1] =
1
h

[f(ξj)− f(ξj−1)] .

Thus, for x ∈ [xr, xr+n)

‖(LT f)′‖p ≤

∫ 1

0

n+r∑
j=2

1
h
|f(ξj)− f(ξj−1)| |Nj,r−1(x)|

p

dx

1/p

≤ C ‖cj,2‖X1

∫ 1

0

n+r∑
j=2

Nj,r−1(x)

p

dx

1/p

= C ‖D1f‖X1
.

Following the same idea, for the second case p = +∞ we obtain

‖(LT f)′‖∞ =

∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
∞

≤ sup
x∈I

n+r∑
j=2

|cj,2| |Nj,r−1(x)|



≤ C ‖cj,2‖X1
sup
x∈I

n+r∑
j=2

|Nj,r−1(x)|

= C ‖D1f‖X1
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for each f ∈W r
p (I) ∩D−1

1 (C̃r(I)).

c) The inequality
∥∥L−1

T F
∥∥
X1
≤ ‖F‖p, where F ∈ Im(LT f) holds true.

Indeed, taking into accout that L−1
T is the invert operator of the LT operator,

we have the relation LT (L−1
T F ) = F = LT f for each f ∈ C̃r(I), so that L−1

T F = f .
The left side of the inequality becomes

∥∥L−1
T F

∥∥
X1

= ‖f‖X1
= maxj=1,...,n+r |f(ξj)|

and the right side becomes ‖F‖p = ‖LT f‖p ≤ C ‖f‖X1
. Because there exists a

constant C ≥ 1 so that ‖f‖X1
≤ C ‖f‖X1

, the required inequality is true, for
1 ≤ p ≤ +infty and for all F ∈ Im(LT f).

d) The inequality
∥∥D1L

−1
T F

∥∥
X1
≤ C ‖F ′‖p holds true for all F ∈ W r

p (I) ∩
D−1

2 (X2).

Because L−1
T F = f and F = LT f , the above inequality becomes ‖D1f‖X1

≤
C
∥∥(LT f)′

∥∥
p

for all f ∈W r
p (I) ∩D−1

1 bigl(C̃r(I)
)
. Applying the stable condition of

the B-spline [2]: there exists a positive constant Cr which depends only on r so that
for all i = 1, n+ r,

|ci| ≤ Cr

∥∥∥∥∥∥
∑
j

cjNj,r

∥∥∥∥∥∥
[ti,ti+r]

,

we have: there exists a positive constant Cr−1 so that for all i = 1, . . . , n+ r,

|ci,2| ≤ Cr−1

∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[ti,ti+r]

.(2.2)

Because for every i ∈ {1, . . . , n + r} the inequality (2.2) holds true, there exists a
subscript i ∈ {1, . . . , n+ r} so that

‖ci,2‖X1
≤ Cr−1

∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[ti,ti+r]

.

On the other hand∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[ti,ti+r]

≤ (n+r−1) ‖cj,2‖X1

∥∥∥∥∥∥
n+k∑
j=2

Nj,r−1

∥∥∥∥∥∥
[ti,ti+r]

= (n+r−1) ‖cj,2‖X1

and∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[0,1]

≤ (n+ r − 1) ‖cj,2‖X1

∥∥∥∥∥∥
n+k∑
j=2

Nj,r−1

∥∥∥∥∥∥
[0,1]

= (n+ r − 1) ‖cj,2‖X1
.
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Imposing the condition rh ≤ 1, (ti+r − ti = rh), we have∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[ti,ti+r]

≤

∥∥∥∥∥∥
n+r∑
j=2

cj,2Nj,r−1

∥∥∥∥∥∥
[0,1]

.

e) The last condition (of Definition 1.1)

LT

(
W r
p (I) ∩D−1(C̃r(I))

)
= W r

p (I) ∩D−1(Im(LT f))

is true.
We have found a linear operator A := LT f , so we conclude the notes by the

following result:

Conclusion. Being given the uniform knots 0 < tr+1 < · · · < tr+n < 1 and
auxiliary uniform knots t1 < · · · < tr := 0, 1 := tr+n+1 < · · · < tn+2r, the linear
operator (LT f)(x) =

∑n+r
j=1 f(ξj)Nj(x) maps continuously

(
C̃r(I),W r

p (I), D1

)
onto

(Im(LT f),W r
p (I), D2), for all f ∈ C̃r(I), where ξj ∈ I ∩ suppNj, i.e.,

LT :
(
C̃r(I),W r

p (I), D1

)
7−→

(
Im(LT f),W r

p (I), D2

)
.(2.3)

3. Spline Error Evaluation

In this section we propose the following problem.

Problem 3.1. For a function f : Cr[0, 1]→ R, find an equivalence

E(f, Sr(T, I))p := inf
S∈Sr(T,I)

‖f − Sf‖p ∼ K(Af, η;X,Y,Dα), 1 ≤ p ≤ +∞,

where A is the Draganov-Ivanov operator, Dα the differential operator of order α,
η is a quantity to be determined and X,Y are two spaces (X must to be Banach
space). There are supposed to be given the positive integers n, r, r < n and the finite
set of uniform knots T = (tj)n+r+1

j=r , 0 := tr < tr+1 < · · · < tn+r < tn+r+1 := 1.

First, we will prove the equivalence between E(f, Sr(T, I))p and the modulus of
the smoothness of f of order r in the Lp-norm

ωr(f, η)p := sup
0<t≤η

‖∆r
t (f, ·)‖p .

It is known that a is equivalent with b, a ∼ b, if there are two constants c1, c2 > 0
so that c1a ≤ b ≤ c2a. The right inequality is known as the direct theorem, and the
left one as the inverse theorem. Schumaker proves both of them in [5], [6].
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Theorem 3.1. (T 6.27, [5]) Let 1 ≤ p ≤ +∞. Then there exists a constant C
(depending only on r and n) so that for f ∈ Lp[a, b], E(f, Sr(∆))p ≤ Cωr(f ; ∆)p,
where Sr(∆) is the space of splines of order r with simple knots from ∆ := (tj)n+1

j=0

and ∆ := max
0≤i≤n

(ti+1 − ti).

Identifying [a, b] := [0, 1] = I, ∆ := T and Sr(∆) := Sr(T, I) and taking into
account the uniform mesh (∆ = max

r≤i≤n+r
(ti+1 − ti) = 1

n+1 ), we have

E(f, Sr(T, I))p ≤ ωr(f, (n+ 1)−1)p.(3.1)

Theorem 3.2. ([5], [6]) Let 0 ≤ m ≤ r, 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞. There is
a constant C > 0 (depending on r,m, p) so that for any partition ∆ of [a, b] there
exists a function f ∈Wm

q [a, b] with ‖f‖Wm
q [a,b] = 1 and

E(f, PPr(∆))p ≥ C(∆)m+1/p−1/qωr−m(f (m),∆)q,

where PPr(∆) is the space of piecewise polynomials of order r associated to the
partition ∆.

We consider the particular case p = q. Because Sr(T, I) ⊂ PPr(T ) (∆ := T ),
the lower bounds for PPr(T ) will automatically produce lower bounds for all spline
spaces Sr(T, I) ([5], p. 210). It remains to prove the inequality

ωr−m(f (m), (n+ 1)−1)p ≥ ωr(f, (n+ 1)−1),

for f ∈Wm
p (I).

Indeed, by using the relation (7.13), Chap. 2, from [3] we have

ωk(f (r), t)p ≥ t−rωr+k(f, t)p,

for t ≥ 0, 1 ≤ p ≤ +∞, f ∈ Lp(I), with our notation we have

ωr−m(f (m), (n+ 1)−1)p ≥ ((n+ 1)−1)−mωm+r−m(f, (n+ 1)−1)p

or
ωr−m(f (m), (n+ 1)−1)p ≥ (n+ 1)mωr(f, (n+ 1)−1)p.

Thus, the inverse theorem is

E(f, Sr(T, I))p ≥ C((n+ 1)−1)mωr−m(f (m), (n+ 1)−1)(3.2)

≥ C(n+ 1)−m(n+ 1)mωr(f, (n+ 1)−1)p = Cωr(f, (n+ 1)−1)p.

Because Wm
p (I) is a subspace of the space Lp(I), from (3.1) and (3.2) we can

conclude the next proposition.
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Proposition 3.1. There exists a function f ∈ Wm
p (I) with 0 ≤ m ≤ r, 1 ≤ p ≤

+∞ and the constant C > 0 so that the equivalence holds true

E(f, Sr(T, I))p ∼ ωr(f, (n+ 1)−1)p.(3.3)

The next step is to apply the Johnson result to the equivalence (3.3).

Theorem 3.3. (Johnson) For m ≥ 0, 1 ≤ p ≤ +∞ and Banach spaces Lp(I),Wm
p (I)

the following equivalence holds true

K(f, tm;Lp,Wm
p ) ∼ ωm(f, t)p,

where

K(f, tm;Lp,Wm
p ) = inf

{
‖f − g‖p + tm

∥∥∥g(m)
∥∥∥
p

: g ∈Wm
p

}
is the Peetre K-functional

Thus, we have:

Proposition 3.2. There exists a function f ∈Wm
p (I) so that

E(f, Sr(T, I))p ∼ K(f, (n+ 1)−m;Lp,Wm
p ).(3.4)

Now, from (2.3) and the following Draganov-Ivanov proposition:

Proposition 3.3. (Proposition 2.1, [4]) Let the linear operator A maps continu-
ously (X1, Y1, D1) onto (X2, Y2, D2). Then, for every f ∈ X1 and t > 0, we have
K(f, t;X1, Y1, D1) ∼ K(Af, t;X2, Y2, D2).

we obtain the following result:

Proposition 3.4. For every f ∈ C̃r(I), I = [0, 1] and uniform partition T , for
t > 0 and 1 ≤ p ≤ +∞ the equivalence holds true

K(f, t; C̃r,W r
p , D1) ∼ K(LT f, t; Im(Ltf),W r

p , D2),(3.5)

with D1f := 1
h

∫ ξj

ξj−1
f ′(x) dx and D2 := D1.

Finally, by combining (3.4) (in which we take the particular case m := r) and
(3.5), by denoting the space of all classes of equivalence of the functions f ∈W r

p (I)
with W̃ r

p (I) and knowing that C̃r(I) ⊂ Cr(I), Im(Ltf) ⊂ Lp(I), W r
p (I) ⊂ Lp(I)

we can give the final result.

Theorem 3.4. For 1 ≤ p ≤ +∞, r ∈ N there exists a function f ∈ W̃ r
p (I) so that

the equivalence takes place

E(f, Sr(T, I))p ∼ K(LT f, (n+ 1)−r; Im(Ltf),W r
p , D2),(3.6)

with D1, D2 defined in Proposition 3.4.

The above result (3.6) shows a new characterization of spline approximation
from Peettre K-functional’s point of view because the last one is applied not to the
function f , but to the spline operator LT .
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