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ON CERTAIN VOLTERRA INTEGRAL AND
INTEGRO-DIFFERENTIAL EQUATIONS

B. G. Pachpatte

Abstract. In this paper we study the existence, uniqueness and other properties of
solutions of certain Volterra integral and integrodifferential equations. The well known
Banach fixed point theorem coupled with Bielecki type norm and the integral inequal-
ities with explicit estimates are used to establish the results.

1. Introduction

Consider the Volterra integral and integrodifferential equations of the forms:

x (t) = f

(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
,(1.1)

and

x′ (t) = f

(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
, x (a) = x0,(1.2)

for −∞ < a ≤ t < +∞, where x, f, k are real vectors with n components and
′ denotes the derivative. Let Rn denotes the real n-dimensional Euclidean space
with appropriate norm denoted by | · | and R the set of real numbers. Let I =
[a,+∞) , R+ = [0,+∞) be the given subsets of R and C (S1, S2) denotes the
class of continuous functions from the set S1 to the set S2 and assume that k ∈
C
(
I2 × Rn,Rn

)
for a ≤ s ≤ t < +∞, f ∈ C (I × Rn × Rn,Rn).

Integral and integrodifferential equations arise in a variety of applications and
their study is of great interest. Many authors have studied the equations of the
forms (1.1) and (1.2) and their special and general versions with different view
points, see [1],[3]–[15] and the references given therein. The purpose of this paper
is to study the existence, uniqueness and other properties of solutions of equations
(1.1) and (1.2) under various assumptions on the functions f and k. The main tools
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employed in the analysis are based on the applications of the Banach fixed point
theorem (see [6, 7]) coupled with Bielecki type norm (see [2, 7]) and the integral
inequalities with explicit estimates given in [11] and [12].

2. Existence and uniqueness

By following [7] we first construct the appropriate metric space for our analysis.
Let β > 0 be a constant and consider the space of continuous functions C (I,Rn)
such that sup

t∈I
|x (t)|/eβ(t−a) <∞, and denote this special space by Cβ (I,Rn). We

couple the linear space Cβ (I,Rn) with suitable metric, namely

d∞β (x, y) = sup
t∈I

|x (t)− y (t)|
eβ(t−a) ,

with a norm defined by

|x|∞β = sup
t∈I

|x (t)|
eβ(t−a) .

The above definitions of d∞β and | · |∞β are the variants of Bielecki’s metric and norm
[2].

The following Lemma proved in [7] deals with some important properties of d∞β
and | · |∞β .

Lemma 2.1. If β > 0 is a constant, then:

(i) d∞β is a metric,

(ii) | · |∞β is a norm,

(iii)
(
Cβ (I,Rn) , | · |∞β

)
is a Banach space,

(iv)
(
Cβ (I,Rn) , d∞β

)
is a complete metric space.

We are now ready to present the main results concerning the existence and
uniqueness of solutions of equations (1.1) and (1.2).

Theorem 2.1. Let L > 0, β > 0, M ≥ 0, γ > 1 be constants with β = Lγ.
Suppose that the functions f, k in equation (1.1) satisfy the conditions

|f (t, u, v)− f (t, ū, v̄)| ≤M [|u− ū|+ |v − v̄|] ,(2.1)

|k (t, s, u)− k (t, s, ū)| ≤ L |u− ū| ,(2.2)

and

d1 = sup
t∈I

1
eβ(t−a)

∣∣∣∣∣f
(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣ <∞.
If M (1 + 1/γ) < 1, then the integral equation (1.1) has a unique solution x ∈
Cβ (I,Rn).
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Proof. Consider the following equivalent formulation of equation (1.1), namely

x (t) = f

(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
− f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)
(2.3)

+f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)
,

fot t ∈ I. We will show that (2.3) has a unique solution and thus equation (1.1)
must also have a unique solution. Let x ∈ Cβ (I,Rn) and define the operator T by

(Tx) (t) = f

(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
− f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)
(2.4)

+f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)
.

Now we shall show that T maps Cβ (I,Rn) into itself. From (2.4) and using the
hypotheses we have

|Tx|∞β = sup
t∈I

|(Tx) (t)|
eβ(t−a)

≤ sup
t∈I

1
eβ(t−a)

∣∣∣∣∣f
(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
− f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣
+ sup

t∈I

1
eβ(t−a)

∣∣∣∣∣f
(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣
≤ d1 + sup

t∈I

1
eβ(t−a)M

[
|x (t)|+

t∫
a

L |x (σ)|dσ

]

= d1 +M

[
sup
t∈I

|x (t)|
eβ(t−a) + L sup

t∈I

1
eβ(t−a)

t∫
a

eβ(σ−a) |x (σ)|
eβ(σ−a) dσ

]

≤ d1 +M

[
|x|∞β + L |x|∞β sup

t∈I

1
eβ(t−a)

t∫
a

eβ(σ−a)dσ

]

= d1 +M |x|∞β

[
1 + L sup t ∈ I 1

eβ(t−a)

(
eβ(t−a) − 1

β

)]
= d1 +M |x|∞β

[
1 +

L

β

]
= d1 + |x|∞β M

(
1 +

1
γ

)
<∞.
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This proves that the operator T maps Cβ (I,Rn) into itself.
Now we verify that the operator T is a contraction map. Let u, v ∈ Cβ (I,Rn).

From (2.4) and using the hypotheses we have

d∞β (Tu, Tv) = sup
t∈I

|(Tu) (t)− (Tv) (t)|
eβ(t−a)

= sup
t∈I

1
eβ(t−a)

∣∣∣∣∣f
(
t, u (t) ,

t∫
a

k (t, σ, u (σ)) dσ

)

−f

(
t, v (t) ,

t∫
a

k (t, σ, v (σ)) dσ

)∣∣∣∣∣
≤ sup

t∈I

1
eβ(t−a)M

[
|u (t)− v (t)|+

t∫
a

L |u (σ)− v (σ)|

]

= M

[
sup
t∈I

|u (t)− v (t)|
eβ(t−a) + sup

t∈I

1
eβ(t−a)L

t∫
a

eβ(σ−a) |u (σ)− v (σ)|
eβ(σ−a) dσ

]

≤ M

[
d∞β (u, v) + Ld∞β (u, v) sup

t∈I

1
eβ(t−a)

t∫
a

eβ(σ−a)dσ

]

= Md∞β (u, v)
[
1 + L sup

t∈I

1
eβ(t−a)

(
eβ(t−a) − 1

β

)]
= Md∞β (u, v)

[
1 +

L

β

]
= M

(
1 +

1
γ

)
d∞β (u, v) .

Since M (1 + 1/γ) < 1, it follows from the Banach fixed point theorem (see [6, 7])
that T has a unique fixed point in Cβ (I,Rn). The fixed point of T is however a
solution of equation (1.1). The proof is complete.

Theorem 2.2. Let L, β,M, γ be as in Theorem 2.1. Suppose that the functions
f, k in equation (1.2) satisfy the conditions (2.1) and (2.2) and

d2 = sup
t∈I

1
eβ(t−a)

∣∣∣∣∣x0 +

t∫
a

f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)
ds

∣∣∣∣∣ <∞.
If M/β (1 + 1/γ) < 1, then the integrodifferential equation (1.2) has a unique solu-
tion x ∈ Cβ (I,Rn).

Proof. Let x ∈ Cβ (I,Rn), and define the operator S by

(Sx) (t) = x0 +

t∫
a

f

(
s, x (s) ,

s∫
a

k (s, σ, x (σ)) dσ

)
ds
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−
t∫
a

f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)
ds+

t∫
a

f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)
ds,

for t ∈ I. The proof that S maps Cβ (I,Rn) into itself and is a contraction map,
can be completed by closely looking at the proof of Theorem 2.1 given above with
suitable modifications. Here we omit the details.

3. Estimates on the solutions

In this section we obtain estimates on the solutions of equations (1.1) and (1.2)
under some suitable assumptions on the functions involved therein.

We need the following versions of the inequalities given in [11, p. 20], (see also
[12, p. 11, Remark 1.2.1], and [12, p. 29]. We shall state them here for completeness.

Lemma 3.1. Let u (t) ∈ C (I,R+), r (t, σ) , ∂∂tr (t, σ) ∈ C (D,R+), where D ={
(t, σ) ∈ I2 : a ≤ σ ≤ t <∞

}
and c ≥ 0 is a constant. If

u (t) ≤ c+

t∫
a

r (t, σ)u (σ) dσ,

for t ∈ I, then

u (t) ≤ c exp

( t∫
a

A (s) ds

)
,

for t ∈ I, where

A (t) = r (t, t) +

t∫
a

∂

∂t
r (t, τ) dτ.

Lemma 3.2. Let u (t) , p (t) ∈ C (I,R+), r (t, σ) , ∂∂tr (t, σ) ∈ C (D,R+), where D
is as in Lemma 3.1 and c ≥ 0 is a constant. If

u (t) ≤ c+

t∫
a

p (s)

[
u (s) +

s∫
a

r (s, σ)u (σ) dσ

]
ds,

for t ∈ I, then

u (t) ≤ c

[
1 +

t∫
a

p (s) exp

( s∫
a

[p (σ) +A (σ)] dσ

)
ds

]
,

for t ∈ I, where A(t) is as in Lemma 3.1.
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First, we shall give the following theorem concerning the estimate on the solution
of equation (1.1).

Theorem 3.1. Suppose that the functions f, k in equation (1.1) satisfy the condi-
tions

|f (t, u, v)− f (t, ū, v̄)| ≤ N [|u− ū|+ |v − v̄|] ,(3.1)

|k (t, σ, u)− k (t, σ, v)| ≤ r (t, σ) |u− v| ,(3.2)

where 0 ≤ N < 1 is a constant and r (t, σ) , ∂∂tr (t, σ) ∈ C (D,R+), in which D is
as defined in Lemma 3.1. Let

c1 = sup
t∈I

∣∣∣∣∣f
(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣ <∞.
If x (t), t ∈ I, is any solution of equation (1.1), then

|x (t)| ≤
(

c1
1−N

)
exp

( t∫
a

B (s) ds

)
,(3.3)

for t ∈ I, where

B (t) =
N

1−N
A (t) ,(3.4)

in which A(t) is as defined in Lemma 3.1.

Proof. By using the fact that the solution x(t) of equation (1.1) satisfies the
equivalent equation (2.3) and the hypotheses we have

|x (t)| ≤

∣∣∣∣∣f
(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣(3.5)

+

∣∣∣∣∣f
(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
− f

(
t, 0,

t∫
a

k (t, σ, 0) dσ

)∣∣∣∣∣
≤ c1 +N

[
|x (t)|+

t∫
a

r (t, σ) |x (σ)| dσ

]
.

¿From (3.5) and using the assumption 0 ≤ N < 1, we observe that

|x (t)| ≤
(

c1
1−N

)
+

N

1−N

t∫
a

r (t, σ) |x (σ)| dσ.(3.6)

Now an application of Lemma 3.1 to (3.6) yields (3.3).
Next, we shall obtain the estimate on the solution of equation (1.2).
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Theorem 3.2. Suppose that the function f in equation (1.2) satisfies the condition

|f (t, u, v)− f (t, ū, v̄)| ≤ p (t) [|u− ū|+ |v − v̄|] ,(3.7)

where p ∈ C (I,R+) and the function k in equation (1.2) satisfies the condition
(3.2). Let

c2 = sup
t∈I

∣∣∣∣∣x0 +

t∫
a

f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)
ds

∣∣∣∣∣ <∞.
If x (t), t ∈ I, is any solution of equation (1.2), then

|x (t)| ≤ c2

[
1 +

t∫
a

p (s) exp

( s∫
a

[p (σ) +A (σ)] dσ

)
ds

]
,(3.8)

for t ∈ I, where A(t) is as defined in Lemma 3.1.

Proof. Using the fact that x(t) is a solution of equation (1.2) and the hypotheses
we have

|x (t)| ≤

∣∣∣∣∣x0 +

t∫
a

f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)
ds

∣∣∣∣∣(3.9)

+

t∫
a

∣∣∣∣∣f
(
s, x (s) ,

s∫
a

k (s, σ, x (σ)) dσ

)
− f

(
s, 0,

s∫
a

k (s, σ, 0) dσ

)∣∣∣∣∣ds
≤ c2 +

t∫
a

p (s)

[
|x (s)|+

s∫
a

r (s, σ) |x (σ)| dσ

]
ds.

Now an application of Lemma 3.2 to (3.9) yields (3.8).

4. Continuous dependence

In this section we shall deal with the continuous dependence of solutions of
equations (1.1) and (1.2) on the functions involved therein and also the continuous
dependence of solutions of equations of the forms (1.1) and (1.2) on parameters.

Consider the equations (1.1) and (1.2) and the corresponding equations

y (t) = f̄

(
t, y (t) ,

t∫
a

k̄ (t, σ, y (σ)) dσ

)
,(4.1)

and

y′ (t) = f̄

(
t, y (t) ,

t∫
a

k̄ (t, σ, y (σ)) dσ

)
, y (a) = y0,(4.2)
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for t ∈ I, where k̄ ∈ C
(
I2 × Rn,Rn

)
for a ≤ s ≤ t <∞, f̄ ∈ C (I × Rn × Rn,Rn).

The following theorems deal with the continuous dependence of solutions of
equations (1.1) and (1.2) on the functions involved therein.

Theorem 4.1. Suppose that the functions f, k in equation (1.1) satisfy the condi-
tions (3.1) and (3.2). Furthermore suppose that∣∣∣∣∣f

(
t, y (t) ,

t∫
a

k (t, σ, y (σ)) dσ

)
− f̄

(
t, y (t) ,

t∫
a

k̄ (t, σ, y (σ)) dσ

)∣∣∣∣∣ ≤ ε1,
where f, k and f̄ , k̄ are the functions involved in equations (1.1) and (4.1), ε1 > 0
is an arbitrary small constant and y(t) is a solution of equation (4.1). Then the
solution x (t), t ∈ I, of equation (1.1) depends continuously on the functions involved
on the right hand side of equation (1.1).

Proof. Let u (t) = |x (t)− y (t)|, t ∈ I. Using the facts that x(t) and y(t) are
the solutions of equations (1.1) and (4.1) and the hypotheses we have

u (t) ≤

∣∣∣∣∣f
(
t, x (t) ,

t∫
a

k (t, σ, x (σ)) dσ

)
− f

(
t, y (t) ,

t∫
a

k (t, σ, y (σ)) dσ

)∣∣∣∣∣(4.3)

+

∣∣∣∣∣f
(
t, y (t) ,

t∫
a

k (t, σ, y (σ)) dσ

)
− f̄

(
t, y (t) ,

t∫
a

k̄ (t, σ, y (σ)) dσ

)∣∣∣∣∣
≤ ε1 +N

[
u (t) +

t∫
a

r (t, σ)u (σ) dσ

]
.

¿From (4.3) and using the assumption that 0 ≤ N < 1, we observe that

u (t) ≤ ε1
1−N

+
N

1−N

t∫
a

r (t, σ)u (σ) dσ.(4.4)

Now an application of Lemma 3.1 to (4.4) yields

|x (t)− y (t)| ≤
(

ε1
1−N

)
exp

( t∫
a

B (s) ds

)
,(4.5)

where B(t) is defined by (3.4). From (4.5) it follows that the solution of equation
(1.1) depends continuously on the functions involved on the right hand side of
equation (1.1).
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Theorem 4.2. Suppose that the functions f and k in equation (1.2) satisfy the
conditions (3.7) and (3.2). Furthermore suppose that

|x0 − y0|+
t∫
a

∣∣∣∣∣f
(
s, y (s) ,

s∫
a

k (s, σ, y (σ)) dσ

)
−f̄

(
s, y (s) ,

s∫
a

k̄ (s, σ, y (σ)) dσ

)∣∣∣∣∣ds ≤ ε2,
where f, k and f̄ , k̄ are the functions involved in equations (1.2) and (4.2), ε2 > 0
is an arbitrary small constant and y(t) is a solution of equation (4.2). Then the
solution x (t), t ∈ I, of equation (1.2) depends continuously on the functions involved
on the right hand side of equation (1.2).

Proof. Let u (t) = |x (t)− y (t)| , t ∈ I. Using the facts that x(t) and y(t) are
the solutions of equations (1.2) and (4.2) and the hypotheses we have

u (t) ≤ |x0 − y0|(4.6)

+

t∫
a

∣∣∣∣∣f
(
s, x (s) ,

s∫
a

k (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

s∫
a

k (s, σ, y (σ)) dσ

)∣∣∣∣∣ds
+

t∫
a

∣∣∣∣∣f
(
s, y (s) ,

s∫
a

k (s, σ, y (σ)) dσ

)
− f̄

(
s, y (s) ,

s∫
a

k̄ (s, σ, y (σ)) dσ

)∣∣∣∣∣ds
≤ ε2 +

t∫
a

p (s)

[
u (s) +

s∫
a

r (s, σ)u (σ) dσ

]
ds.

Now an application of Lemma 3.2 to (4.6) yields

|x (t)− y (t)| ≤ ε2

[
1 +

t∫
a

p (s) exp

( s∫
a

[p (σ) +A (σ)]dσ

)
ds

]
,(4.7)

for t ∈ I, where A(t) is as defined in Lemma 3.1. From (4.7) it follows that the
solution of equation (1.2) depends continuously on the functions involved on the
right hand side of equation (1.2).

We next consider the following systems of Volterra integral and integrodifferen-
tial equations

z (t) = h

t, z (t) ,

t∫
a

g (t, σ, z (σ)) dσ, µ

 ,(4.8)

z (t) = h

t, z (t) ,

t∫
a

g (t, σ, z (σ)) dσ, µ0

 ,(4.9)

and

z′ (t) = h

t, z (t) ,

t∫
a

g (t, σ, z (σ)) dσ, µ

 , z (a) = z0,(4.10)
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z′ (t) = h

t, z (t) ,

t∫
a

g (t, σ, z (σ)) dσ, µ0

 , z (a) = z0,(4.11)

for t ∈ I, where g ∈ C
(
I2 × Rn,Rn

)
, a ≤ s ≤ t <∞, h ∈ C (I × Rn × Rn × R,Rn).

The following theorems shows the dependency of solutions of equations (4.8),
(4.9) and (4.10), (4.11) on parameters.

Theorem 4.3. Suppose that the functions h, g in equations (4.8), (4.9) satisfy the
conditions

|h (t, u, v, µ)− h (t, ū, v̄, µ)| ≤ N̄ [|u− ū|+ |v − v̄|] ,(4.12)

|h (t, u, v, µ)− h (t, u, v, µ0)| ≤ q (t) |µ− µ0| ,(4.13)

|g (t, σ, u,)− g (t, σ, v)| ≤ r̄ (t, σ) |u− v| ,(4.14)

where 0 ≤ N̄ < 1 is a constant, q ∈ C (I,R+) such that q (t) ≤ Q < ∞, Q is a
constant and r̄ (t, σ) , ∂∂t r̄ (t, σ) ∈ C (D,R+) in which D is defined as in Lemma 3.1.
Let z1 (t) and z2 (t) be the solutions of equations (4.8) and (4.9) respectively. Then

|z1 (t)− z2 (t)| ≤ Q |µ− µ0|
1− N̄

exp

( t∫
a

B̄ (s) ds

)
,(4.15)

for t ∈ I, where

B̄ (t) =
N̄

1− N̄

[
r̄ (t, t) +

t∫
a

∂

∂t
r̄ (t, τ) dτ

]
.

Proof. Let z (t) = |z1 (t)− z2 (t)|, t ∈ I. Using the facts that z1 (t) and z2 (t)
are the solutions of equations (4.8) and (4.9) and hypotheses we have

z (t) ≤

∣∣∣∣∣h
(
t, z1 (t) ,

t∫
a

g (t, σ, z1 (σ)) dσ, µ

)
(4.16)

−h

(
t, z2 (t) ,

t∫
a

g (t, σ, z2 (σ)) dσ, µ

)∣∣∣∣∣
+

∣∣∣∣∣h
(
t, z2 (t) ,

t∫
a

g (t, σ, z2 (σ)) dσ, µ

)

−h

(
t, z2 (t) ,

t∫
a

g (t, σ, z2 (σ)) dσ, µ0

)∣∣∣∣∣
≤ N̄

[
z (t) +

t∫
a

r̄ (t, σ) z (σ) dσ

]
+Q |µ− µ0| .
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¿From (4.16) and using the assumption 0 ≤ N̄ < 1, we observe that

z (t) ≤ Q |µ− µ0|
1− N̄

+
N̄

1− N̄

t∫
a

r̄ (t, σ) z (σ) dσ.(4.17)

Now an application of Lemma 3.1 to (4.17) yields (4.15), which shows the depen-
dency of solutions of equations (4.8) and (4.9) on parameters.

Theorem 4.4. Suppose that the functions h, g in equations (4.10), (4.11) satisfy
the conditions (4.12)–(4.14) with p̄ (t) in place of N̄ in (4.12), where p̄ (t) ∈ C (I,R+)
and the function q(t) in (4.13) be such that

∫ t
a
q (s) ds ≤ Q̄ < ∞, where Q̄ is a

constant. Let z1 (t) and z2 (t) be the solutions of equations (4.10) and (4.11). Then

|z1 (t)− z2 (t)| ≤ (Q |µ− µ0|)

[
1 +

t∫
a

p̄ (s) exp

( s∫
a

[
p̄ (σ) + Ā (σ)

]
dσ

)
ds

]
,

for t ∈ I, where

Ā (t) = r̄ (t, t) +

t∫
a

∂

∂t
r̄ (t, τ) dτ.

The details of the proof follows by closely looking at the proofs of the theorems
given above. We leave it to the reader to fill in where needed.
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