
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 22, No. 2 (2007), pp. 175–188

THE METHOD OF THE CHESS SEARCH ALGORITHMS

PARALLELIZATION USING TWO-PROCESSOR DISTRIBUTED

SYSTEM ∗

Vladan V. Vučković

Abstract. This paper is concerned with the realization of the parallel computer chess
application. The asynchronous parallel search algorithm uses two processors connected
via distributed local network. The original solution is implemented and tested in au-
thor’s chess application Axon. The standard approaches of parallelism use dual and
quad server PC machine, which is expensive and rare compared with classical single
processor PC machines. The applied method introduces a new class of simple and effi-
cient algorithm of the parallelization, using standard single processor units connected
via local 100 Mb or 1 Gbit networks. Compared with single processor search algorithms,
the parallel algorithm significantly increases performance in test suites and practical
play.

1. Introduction

The theory of the computer chess has been developing for above 50 years [7],[21].
From the first chess playing machines, which has chess strength of the weak club
player software and hardware components have developed rapidly. Nowadays, one
can play against grandmaster strength chess engine on cheap and commonly used
PC machines. Theoretically, the fundamentals of chess program have three major
segments: move generator, evaluation function and search algorithm. Decision tree
[25] that is the base of search algorithm grows exponentially with factors depending
of position, hash tables, number of pieces on the board If we suppose that on
the first level of the decision tree one has node with normal 40 exists, on the second
level it will be 402 = 1600 nodes, on the third 403 it will be 64000 etc. It is obvious
that number of nodes and processing time depends exponentially of the level –
depth of the search tree. In theory, that effect is called combinational explosion.
On the other hand, the quality of computer play strongly depends on depth of the
decision tree so the effect of the exponential explosion limits the computer chess

Received April 20, 2007.
2000 Mathematics Subject Classification. Primary 91A80; Secondary 68T99, 91A05

∗The author was supported in part by AMD Adriatic.

175

176 Vladan V. Vučković

strength. There are generally two approaches to overcome this problem: Shannon-
type-A (full-width approach) and Shannon-type-B (selective search). The first one
tries to solve the problem by using the simple pruning mechanisms based on Alpha-
Beta technique with idea to decrease maximally the time needed to compute one
single node. This approach benefits maximally of the rapidly increasing speed of the
modern CPU-s and also incorporates standard (cluster) parallelization. The second
approach (Type-B) is concentrate on heuristic pruning based on relatively extensive
portion of knowledge directly programmed into the evaluation or move generator
function. This approach is very depended on the programmer skill and the quality
of the implemented pruning, so the results could be very relative. On today’s level
of knowledge in this area, the best combination is to use near full-width approach in
main searcher, and selective searcher in q-search procedure. The algorithms could
be combined: Alpha-Beta [14], Null Move [3] and PVS (NegaScout).

After using most power single processor techniques, the next step for the in-
creasing of the playing strength is parallelization. This paper has intention to
investigate some un-orthodox methods of parallelization, if the other techniques are
well implemented. The main pruning method is PVS/Alpha-Beta/Null Move and
it is implemented in author’s Axon application with some technical improvements.
The two-processor machines then are connected via 100 MB LAN. The method of
the distributed parallelization is efficient and could be easily upgraded with multi-
processor networks.

In this paper, started with Section 2, we discuss some standard – cluster ap-
proaches in parallelism. In Section 3 the basic principles of the distributed paral-
lelism connected with method provided by the author is presented. In Section 4,
the parallelization of the most important search algorithms is defined. Sections 5
and 6 describe implementation and experiment details of the elaborated method.

2. Standard Approaches in Parallelism

In this Section, a brief overview of the most important chess parallel systems
will be exposed.

2.1. PC based parallel chess engines. The standard method (SMP) is using
dual or quad PC server machines. This type of parallel machines could be classi-
fied as firmly coupled machines (MIMD) [15]. The connection between processes
(engines) is through the commonly used operative memory, under OS control. Also
some modern processors have embedded parallelization techniques in processor ar-
chitectures. Intel PIV encapsulates multithreading and latest AMD processors have
advanced multicore architectures. The leading PC operating systems (for instance
Windows XP, Linux . . .) also supports multiprocessor hardware. Almost all leading
professional programs (Fritz, Shredder, Juniors) have multithreading or multipro-
cessor abilities. Also some amateurs or private chess engines are also multiprocessor
based (Zappa, Diep, Ikarus, etc.). In some applications the number of processors
are 8, 16, 32 or even 128. The commonly characteristic of those machines is running
on the specialized parallel hardware or PC clusters. Also, communication problems

The Method of the Chess Search Algorithms Parallelization ... 177

– transferring large parts of data among processors became limiting factor. The
most successful parallel chess engines, which running on Internet computer chess
tournaments are dual or quad, so one could say that optimal number of processors
with classic method of parallelization is 2–4.

2.2. PC based parallel chess engines with hardware accelerators. The
most prominent representative of this category is Hydra [4]. The Hydra system
architecture consists of N node Linux cluster. Each node encapsulates dual INTEL
PIV processor with 2 FPGA (VirtexV1000E or upgraded versions) hardware accel-
erators connected via 2 parallel PCI slots. The PC part of searcher handles mail
search tree using NegaScout search algorithm, and the last 3 plys are computed by
the FPGA hardware, completely with quiescence search and all evaluations. For
the parallelization, system uses The Distributed Search Algorithm [5] that dynam-
ically decomposes and allocates the parts of the search tree to the corresponding
processors.

2.3. Non PC based parallel chess machines. The claim for increasing
of the search speed could be satisfied only with parallelization and using of the
specialized hardware accelerators. Following that strategy there are some very
successful and dominant parallel chess machines in the 1980’s like Belle [2], Hitech,
Cray Blitz [9],[10] and Deep Thought [12]. Also some other software techniques
were investigated on academic level. The well-known project is MIT’s parallel chess
program StarSocrates followed by Cilkchess based on MTD(f) search algorithm [23].

Probably, the most outstanding parallel chess machine was developed by the
IBM Company, named IBM Deep Blue [13]. Deep Blue Computer is implemented
as a 32-node IBM RS/6000 SP high-performance computer. Each node has a sin-
gle micro channel card that contains 8 individual VLSI chess processors (specially
designed IC’s for chess computations) [13]. The total processing of the systems uti-
lizes 256 chess processors and can evaluate 200,000,000 positions per second. The
software was coded in C under the IBM AIX system. The system utilizes the MPI
(message passing) method of parallelization that is standard for the IBM SP Par-
allel systems. IBM reports that the Deep Blue system had a parallel efficiency of
around 30%. The IBM Deep Blue machine has successfully wins the match against
the World Chess Champion Garry Kasparov in 1997.

3. The Basic Method for Distributed Parallelization

The recursive Alpha-Beta algorithm [7], [14], [21], also with its upgraded ver-
sions, is highly sequential and depending very much on dynamic values generated
in the search process [11], [14]. The first efforts on Alpha-Beta algorithm paral-
lelization [5, 8, 11, 16, 20, 24] directly leaded to the main problem: the transi-
tion of the very large parts of tree “knowledge” among processors in real time [6].
The early attempt on parallelization was the Principal Variation Splitting (PVS)
[9, 17, 18, 19, 22, 24] algorithm and its modified version Enhanced Principal Vari-
ation Splitting (EPVS) [8], [11]. For two processors, PVS and EPVS speedups was
about 80% and 90% compared to single processor one, according to [8]. Also, the

178 Vladan V. Vučković

interesting approach is using two different engines, one with classic and the other
with only material evaluation (Phoenix [24]). The problem of unused processors
is solved using the Dynamic Tree Splitting Algorithm (DTS) [19]. According to
the researches, the speedups are satisfied up to 16 processors. The fairly obvious
drawback in practice is the need to use very high profile computer systems with ex-
tremely wide memory bandwidth. The most of the research work was implemented
and tested on supercomputers – 4 processor Cray XMP or 8 processor Cray YMP.

The difference between standard two-processor parallelization approach and the
distributed approach is generated by the difference in hardware:

• In standard approach, the hardware is based on two processors using same
motherboard and operative memory, under same OS [1], [21]. Communication
is via shared central memory. Statistically these kinds of machines are only a
few percentages in the full population of PC machines.

• In distributed approach, there is a network of single processor standard PC
machines connected via 100 MB or 1Gb LAN. The single machines could be
under different OS. The distributed applications communicate via network
packages (TCPIP, UDP or others). The communication speed is a 100-1000
times slower compared to first category.

Each approach has advantages and shortcomings. The author’s work is con-
nected with the second category. The basic problem in distributed parallelization is
real-time communication among processors because of limited communication chan-
nel. Also, network package communication is slow and could even be hazardous –
if some package does not reach its destination. The aspiration of the work is to
develop solid and stable low rate communication protocol and found the way to
efficiently allocate two-processor load in real time.

The theoretical background of the implemented parallelization method is simple
and it will be explain using basic Alpha—Beta search algorithm. Also, the method
could be applied on other algorithms (PVS, NegaScout, Null-Move) without min-
imal modifications. To demonstrate the solution assume that the current position
is given on the following diagram (Fig. 3.1):

The position is resumed from the grandmaster game - key move is winning Ng6!
for White. Assume that this position is the root for the searching algorithm. When
one analyzes position using Axon Evaluation Tester [25], the list of legal moves is
generated (Table 3.1).

The list of moves is sorted and displayed together with their characteristically
bits (weights.) For the programs that use numerical instead of heuristic move
weights, the procedure is equivalent. The basic rule for parallelization on two ma-
chines is to divide sorted root move list into two sub-lists. The first sub-list contains
move with EVEN indexes in table (0. H4H8, 2. H4F4, 4. E5C4, 6. F2F4, 8. H3G2
...) and the second list includes moves with ODD indexes (1. H3E6, 3. H4G5,
5. E5G4, 7. A1C1, 9. E1E3 . . .). After that, each sub-list is distributed to cor-
responding processor. EVEN list is distributed to first processor and ODD list is

The Method of the Chess Search Algorithms Parallelization ... 179

Table 3.1: Partial list of legal moves generated from Fig.3.1 position with their
weights.

Num. Move Move Weights (Heuristic)

0. H4H8 % . + a . r . p # i t
1. H3E6 % . . c . d . f a q . n p . . t

2. H4F4 . s . . . d . . a . . n p . i t
3. H4G5 . s a . . n p # i t

4. E5C4 . s a . . n p . i .
5. E5G4 . s a . . n . # . .

6. F2F4 . s a . . n . . i t
7. A1C1 . s a . . . p . i t

8. H3G2 . s a . . . p . i t
9. E1E3 . s a . . . p . . t

10. H3F5 . s a # . t
11. E1E2 . s a t

12. A1D1 . s a t
13. E1C1 . s p . i .

14. B2C3 . s p . i .
15. H3G4 . s # . t

16. G3G4 . s # . t
17. G1F1 . s t

18. A3A4 . s t
19. G1H2 . s t

20. G1G2 . s t
21. A1A2 . s t

22. A1B1 . s t
23. F2F3 . s t

24. G1H1 . s
25. E1B1 . s

26. B2C1 . s
27. E1D1 . s

28. E5D3 . s
29. E1F1 . s

30. E5F3 . s
31. H3F1 . s

32. H4H7 . . + . . d . . a . . . p # i t
33. H4F6 . . c . d . f a . r n p # i t

34. E5F7 . . . c a . r n p # i .
35. E5C6 . . . c a . r . p # i .

36. D4D5 m d . f a . . n p # . t
37. H4E4 d . f a . . n p # i t

38. H4H5 d . . a .

39.

180 Vladan V. Vučković

Fig. 3.1: Test position. White is on the move.

distributed to second processor. In the phase of computing, each processor runs
parallel on different set of moves. It is obvious that move lists are complement,
and that each processor computes only 1/2 of move in list. The position best move
must be present in one of two lists. In the last example, the best move 43. E5G6 is
placed in ODD list, so it will be found on second processor. The iterative deeping
procedure will find the best move faster then single processor routine because of
less number of passes through the root node list (22 instead of 44, in the example
above). After the computation, the best move is choosing with the min-max method
– as the move with better final evaluation between two candidates.

The main characteristic of the method is the static character of parallelization.
The root move list is dividing just once, at the start of searching. After that, two
processors work simultaneously and asynchrony, and no need to extensively change
information – eventually a few bytes per second (information about the best move
and evaluation). At the end of searching , generated by the master processor, the
slave processor send final best move and evaluation.

4. The Parallelization of the Basic Search Algorithms

The method of the basic search algorithm parallelization will be described on
standard Alpha-Beta procedure and applied to the PVS and Null-Move procedures.

4.1. Standard AlplhaBeta search algorithm. The following listing shows
the source code of the single processor Alpha-Beta searcher (code is in Pseudo-C):

int AlphaBeta (int depth, int alpha, int beta)

{ if (depth == 0) return Evaluate();

GenerateLegalMoves();

while (MovesLeft())

{

The Method of the Chess Search Algorithms Parallelization ... 181

MakeNextMove();

val = -AlphaBeta(depth-1,-beta,-alpha);

UnmakeMove();

if (val >= beta) return beta;

if (val > alpha) alpha = val;

}

return alpha; }

The searcher passes through the all-legal moves in move-list in each iteration.
The move ordering is very important for the efficiency of the algorithm. If the best
moves are on the leading positions of the list, the number of Alpha-Beta cutoffs is
maximized, so the searching process is more efficient. If root node is processing, we
suppose that variable depth = max depth, so the instruction GenerateLegalMoves()
must be altered with the instruction GenerateSplitedLegalMoves(int processor)
where variable processor identifies processor (0 or 1 the for first or second proces-
sor). Procedure GenerateSplitedLegalMoves then generates legal moves with EVEN
indexes if processor=0, or moves with ODD indexes if processor=1. In that way,
each processor uses the same search procedures with different input parameters.
The new procedure could be defined as:

GenerateSplitedLegalMoves (int processor);

{ int index=0;

While(AllLegalMoves())

{ if (index mod 2)=processor GenerateLegalMov;

index++;

} }

4.2. Parallel Alpha-Beta search algorithm. The method of parallelization
of Alpha-Beta is concern with splitting the move list in two different parts, processed
by each of two processors in system. The body of the search procedure differs only
in one program line :

int ParallelAlphaBeta (int depth, int alpha, int beta, int processor, int max depth)

{ if (depth == 0) return Evaluate();

if (depth=max depth)

then GenerateSplitedLegalMoves (processor);

else GenerateLegalMoves();

while (MovesLeft()) {

MakeNextMove();

val = -ParallelAlphaBeta(depth-1,-beta,-alpha, processor, max depth);

182 Vladan V. Vučković

UnmakeMove();

if (val >= beta) return beta;

if (val > alpha) alpha = val;

}

return alpha; }

Each processor runs the same Alpha-Beta search procedure with different input
parameter for processor: For instance, if one calls searcher at depth (ply) 12, the
calling commands will be:

• Master : Call with command: ParallelAlphaBeta (12,-infinite,+infinite,0,12)

• Slave : Call with command: ParallelAlphaBeta (12,-infinite,+infinite,1,12)

4.3. Parallel principal variation and null-move search algorithm. With
analogue to the Alpha-Beta procedure, the parallelization of the PVS and Null-Move
could be performed altering the GenerateLegalMoves() command with conditional

command:

if (depth=max depth)

then GenerateSplitedLegalMoves (processor);

else GenerateLegalMoves();

4.4. The generalization of the parallel algorithm. The described algo-
rithm could be easily generalized to the N (N>2) processor system. Instead of
parameter 2 for list dividing, one can introduce variable number of processors as
the parameter. The generalized profile of the GenerateSplitedLegalMoves could be:

GenralizedGenerateSplitedLegalMoves (int processor, int number of processors);

{ int index=0;

While(AllLegalMoves())

{ if (index mod number of processors)=processor GenerateLegalMov;

index++;

} }

In extreme situation, if the number of processors in system is equal to the number
of root list moves (for instance 44 processors for the example Fig. 1), each processor
calculates only one legal move and one extra ply at the same amount of time could
be achieved, compared with single processor searcher.

The Method of the Chess Search Algorithms Parallelization ... 183

5. Single Processor Unit – AXON engine

In the following sections, some of the implementation details will be presented.
The practical parallel system is developed around the author’s single processor
system Axon. The program, running on the Athlon 2200+ PC machine, develops
+2500 Elo rating – plays with the strength of the intermaster chess player. The
Axon single processor unit is the solid base for researching of the parallel system.
Of course, the playing strength of the single processor unit could be increased
using the hardware acceleration (overclocking) or the advanced processor, but with
limited hardware resources the parallelization is the only way to increase calculation
power. For the experiment dual processor machine (Parallel Axon) was developed.
Structure of the parallel Axon chess machine is simple, using standard master-slave
approach for the similar dual processor organizations. Master computer organizes all
functions like the single processor unit: interface, opening tablebase management,
PGN management, support functions. . . In the phase of calculation, the slave
engine that is equipped only with endgame tablebases, resumes the half of the
root moves list and simultaneously calculates the other half of the decision tree.
Two machines communicate in real time via 100Mbit standard LAN network using
short messages with the frequencies 2-3Hz. The information, which is transferred
through the communication channel, is enough to synchronize two computers. Two
best moves, derived from the both computers are compared, and the best of them
is play on the chessboard against the opponent. The acceleration compared with
the single processor unit is gained due to the divided move lists processed by the
both computers.

5.1. Implementation details. The standard author’s version of chess pro-
gram Axon was modified, using relatively simply method of parallelization. The
experimental parallel system uses two PC computers connected via local 100 MB
network. The program was parallelized using master-slave methodology. Two iden-
tical programs compute different branches of the decision tree. Also, human oper-
ator has control only on the master machine where is possible to change position
using standard Windows GUI interface. In the phase of computing, master gen-
erates small packages of data using distributed connection. The package contains
current position, flags, game history and list of moves for the processing on the slave
unit. The key problem is how to split the total list of moves, to achieve optimal
ballast of the processor strength in this multiprocessor environment. The presump-
tion is that the speed, measured by the Axon Benchmark 4 hardware test, must be
approximately equal.

6. Experiment and Test Results

To determine the factor of parallel efficiency of the new method, the experi-
ment was carried out. The standard EPD test was used (yazgac.epd). Otherwise
the EPD tests are commonly used as the benchmark tests for computer chess algo-
rithms. They provide serious of test chess positions with key moves. The experiment
consisted of 3 phases. First, test was performed on single processors on ply 7 for

184 Vladan V. Vučković

each position. For the experiment, the PC with AMD Sempron 2600+ processor/
256 Mb Ram/ 50 Mb Hash was used. After that, the same experiment was per-
formed on two machines working parallel, also with same hardware. The goal of
the experiment was to represent the acceleration of the best move searching on
parallel machine compared to single-processor one. The experimental date could
be systematized in Table 1. Each position from the EPD test is represented with
the corresponding number of nodes generated on ply 7. Each raw in table contains
data collected from the Master and Slave processor, and also control number of
nodes generated by the single processor. Bolded data remarks best choice of two
processors. Node saving column is calculated as:

Node saving(%) = (single number of nodes-min number of nodes) /
single number of nodes (%)

Time saving is in direct correspondence with node saving, because of constant
NPS factor.

The results indicate that parallel system found key move faster - in less number
of nodes for every test position. The percentage of node saving is very dependent
of the analyzed position. For the yazgac.epd test suite, the savings are in range
0.58%-91.3%. The average note saving percentage for all the 33 positions is 25.5%.
The theoretical reasons for these empiric conclusions are connected with the fact
that the search tree is divided in two separate branches, and the information could
not be transferred between two processors.

Fig. 6.1: Diagram shows result distribution with single and dual, master-slave
configuration.

Normally, on single processor or SMP machines that information is commonly
delivered through the memory using transposition tables or history hash tables.
Each sub-tree contains less elements then full tree, which is also dependent on
position. For instance, in raw 30, total tree search on key move Re4 for the single
processor holds 40308515 positions. The second (slave) processor, which founds the

The Method of the Chess Search Algorithms Parallelization ... 185

Table 6.1: Table shows number of positions generated with single and dual system
on depth 7.

Num. Single Nodes Master Nodes Slave Nodes Savings

1 Bh7 728249 Bh7 717922 bxc3 596521 1.4 %
2 Rxg7 1466745 Rxg7 759523 Qd3 1512966 48.2 %
3 Rd4 1525525 Be7 1031013 Rd4 1469002 3.7 %
4 Nc5 1564616 Nxf6 10863177 Nc5 1555512 0.58 %
5 Bd6 2597391 Bd6 1388059 Rf1 1381623 46.6 %
6 Rc1 276446 Rf4 497102 Rc1 201065 27.2 %
7 Qd8 84001 Qd3 9823036 Qd8 56237 33.1 %
8 Qc7 10527566 Qc7 9189599 Bxf7 2148993 12.7 %
9 Qxg6 4963938 Qh3 5771366 Qxg6 3760483 24.2 %
10 Nh4 16605243 Nh4 15273693 Bg5 25709788 8 %
11 Ne5 3689251 Rh8 12246408 Ne5 2188589 40.7 %
12 O-O-O 37440614 O-O-O 32279825 Qa4 32454430 13.8 %
13 Qxh3 2050870 dxc4 19446143 Qxh3 1711382 16.6 %
14 Nxb8 1115403 Nxb8 1032344 Qd3 1335819 7.4 %
15 Bxg7 14547957 Bxg7 6283498 Bg5 10789489 56.8 %
16 a4 23997961 a4 22423349 h4 15604024 6.56 %
17 f5 2159123 f5 2076168 Nxd5 1212576 3.8 %
18 Qxg5 2690807 e5 12102548 Qxg5 2382803 11.4 %
19 Nc4 1466950 Nb5 3312836 Nc4 839488 42.8 %
20 Nc3 10621431 Nc3 7965793 Ra5 13809770 25 %
21 Kc3 346605 Kc3 196995 Kc2 177727 43.2 %
22 Bxe2 2965166 Rh2 2151353 Bxe2 1580737 46.7 %
23 h7 724166 h7 487909 Bc6 5719170 32.6 %
24 Rxh3 2243812 Rxh3 2138494 Rg3 7257178 4.7 %
25 c4 4190791 c4 2969132 h4 4569494 29.2 %
26 Rxd7 2520953 Rxd7 2032580 Bg3 25238813 19.4 %
27 Qxc6 14345697 Ne1 12422980 Qxc6 1243715 91.3 %
28 Kh2 7423320 Kh2 5258905 Qxa7 3803816 29.2 %
29 Rxf4 2872671 Qxf4 527141 Rxf4 2754258 4.1 %
30 Re4 40308515 Qh5 14897082 Re4 28140075 30.2 %
31 cxb5 4005703 cxb5 2622334 Rd1 3001105 34.5 %
32 Re1 8435525 Re1 5680953 Rd1 11814379 32.5 %
33 Qe2 2447903 Qe2 2128323 Rf3 2928657 13.1 %

186 Vladan V. Vučković

right solution, processed only 28140075 nodes, that is 69.8% of full tree, and the
saving factor is 30.2%. Experiment data could also be presented with diagram (Fig.
6.1):

In all test positions min(master nodes,slave nodes)<single nodes, dual system
achieves better test results compared to the single processor one.

7. Conclusion

This paper is concerned with the parallelization of the basic search algorithms.
The modifications of the existent search algorithms are simple and they could be
altered to single or multiprocessor mode, according to the available hardware. The
applied method of parallelization differs from the standard SMP solutions because
it has no need to use dual or quad machines. Instead, system uses affable single
processor PC configuration, connected via standard LAN networks. The basic vari-
ant uses two-processor configuration but it will be easily expanded to N processors
using generalized method described in Section 4.4. There is no need to develop
special SMP code; the chess strength increasing is being achieved using available
software and hardware components The software component is developed around
the author’s Axon I chess engine. The EPD test performed in this paper proves
that parallel machine finds key moves faster in every case compared to the sin-
gle processor one. In practical testing or playing mode dual machine reacts more
rapidly then the single one, which is very important in low time control computer
tournaments.

The future work will be directed in experiments with several processors, up to
16 machines LAN connected.

R E F ER E N CE S

1. S. Akl, D. Barnard and R. Doran: The Design, Analysis and Implementation
of a Parallel Alpha-Beta Algorithm, IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-4, (2), (1982) 192-203.

2. J. H. Condon and K. Thompson: Belle Chess Hardware, Advances in Computer
Chess III, Pergamon Press, (1972) 44-54.

3. C. Donninger: Null move and Deep Search: selective-search heuristics for obtuse
chess programs ICCA Journal, Vol. 16, No. 3, (1993) 137-143.

4. C. Donninger and U. Lorenz: The Chess Monster Hydra, Univesitat Pader-
born, Faculty of Computer Science, Electrical Engineering and Mathematics,
Paderborn, Germany, www.hydrachess.com, 2004.

5. R. Feldmann, B. Monieni, P. Mysliwietz and O. Vornberger: Distributed
game tree search, in Parallel algorithms for machine intelligence and pattern recog-
nition, 1990.

6. R. Finkel and J. Fishburn: Parallelism in Alpha-Beta Search, Artificial Intel-
ligence (1982) 89-106.

The Method of the Chess Search Algorithms Parallelization ... 187

7. P.W. Fray: An introduction to Computer Chess. Chess Skill in Man and Ma-
chine, Texts and monographs in computer science, Springer-Verlag, New York,
N.Y. , 1977.

8. R. Hyatt: A High-Performance Parallel Algorithm to Search Depth-First Game
Trees, Ph.D. Dissertation, University of Alabama at Birmingham, 1988.

9. R. Hyatt, A. Gower and H. Nelson: Cray Blitz, Advances in Computer Chess
4, Pergammon Press (1986) 8-18.

10. R. Hyatt, H. Nelson and A. Gower: Cray Blitz - 1984 Chess Champion,
Telematics and Informatics (2) (4), Pergammon Press Ltd. (1986) 299-305.

11. R. Hyatt, B. Suter and H. Nelson: A Parallel Alpha/Beta Tree Searching
Algorithm, Parallel Computing 10 (1989) 299-308.

12. F.H. Hsu, T.S. Anatharaman, M. Campbell and A. Nowatzyk: Deep
Thought, Computers, Chess and Cognition, chapter 5, Springer Verlag (1990)
55-78.

13. F.H. Hsu: IBM’s Deep Blue Chess Grandmaster Chips, IEEE Micro 19(2), (1999)
70-80.

14. D. Knuth and R. Moore: An Analysis of Alpha-Beta Pruning, Artificial Intel-
ligence 6 (1975) 293-326.

15. B. Kuszmaul: Synchronized MIMD Computing, Ph.D. Thesis, MIT, 1994.

16. T. Marsland and M. Campbell: Parallel Search of Strongly Ordered Game
Trees, ACM Computing Surveys (4) (1982) 533-551.

17. T. Marsland and M. Campbell: Methods for Parallel Search of Game Trees,
Proceedings of the 1981 International Joint Conference on Artificial Intelligence,
1981.

18. T. Marsland, M. Campbell and A. Rivera: Parallel Search of Game Trees,
Technical Report TR 80-7, Computing Science Department, University of Alberta,
Edmonton, 1980.

19. T. Marsland, M. Olafsson and J. Schaeffer: Multiprocessor Tree-Search
Experiments, Advances in Computer Chess 4, Pergammon Press (1986) 37-51.

20. T. Marsland and F. Popowich: Parallel Game-tree Search, IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-7, (1985) 442-452.

21. T. Marsland and J. Schaeffer: Computers, Chess and Cognition, Springer-
Verlag, 1990.

22. M. Newborn: A Parallel Search Chess Program, Proceedings, ACM Annual Con-
ference, (1985), 272-277.

23. A. Plaat: MDF(f) A Minmax Algorithm faster the NegaScout, Vrije Uni-
versiteit, Mathematics and Computer Science, Amsterdam The Netherlands
http://theory.lcs.mit.edu/∼plaat/mtdf.html, 1997.

24. J. Schaeffer: Distributed game-tree search, Journal of Parallel and Distributed
Computing 6 (2) (1989), 90-114.

25. V. Vučković: Decision Trees and Search Strategies in Chess Problem Solving Ap-
plications, Proceedings of the Workshop on Computational Intelligence: Theory
and Applications, University of Nis, (2001) 141-159.

188 Vladan V. Vučković

Faculty of Electronic Engineering

Computer Department

P.O. Box 73

18000 Nǐs, Serbia

vld@elfak.ni.ac.yu

