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A SIMPLE ALGORITHM FOR THE CONSTRUCTION OF
LAGRANGE AND HERMITE INTERPOLATING POLYNOMIAL IN

TWO VARIABLES

Milan A. Kovačević

Abstract. A simple algorithm for the construction of the unique Hermite interpolating
polynomial (in the special case, the Lagrange interpolating polynomial) is given. The
interpolation matches preassigned data of function and consecutive derivatives on a set
of points laying on several radial rays. This algorithm is realized in the software package
Mathematica.

1. Introduction

Given a function f , the interpolating problem consists of finding another function
p, belonging to a prescribed finite dimensional space of functions (usually algebraic
polynomials), whose values at prescribed points (interpolating nodes) coincide with
those of f . This problem is referred to as the Lagrange interpolating problem. If
the values of p and some of its derivatives are equal to the corresponding values of
f and its derivatives at the interpolating nodes, we have the Hermite interpolating
problem.

Let Π2
n denote the space of polynomials P of two variables of total degree n,

P (x, y) =
n∑
k=0

k∑
j=0

Cjkx
jyk−j .(1.1)

It is known that dim Π2
n = (n + 1)(n + 2)/2. We consider the case when the

number of interpolating conditions matches the dimension of Π2
n. If there is a unique

solution to an interpolating problem, we say that the problem is poised. Unlike the
polynomial interpolation in one variable, the Hermite or Lagrange interpolation in
several variables is not always poised. For refinements of this result see [6], [11],
[13], [2], [12], [16]. However, the problem of the choice of a particular set of points
so that the interpolating problem is poised, especially if it leads to the construction
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of the interpolating polynomial, remains difficult. Some results connected with this
can be found in [1], [17], [15], [5], [7], [10], [14], [2], [8], [4], [3].

In this paper we choose one of the possible situations which leads us to the poised
the Lagrange and the Hermite interpolation in two variables (see, for example, [7],
[5])and allows us the simple construction of such interpolating polynomials.

In that sense, in Section 2 we consider the construction of the unique Lagrange
interpolating polynomial on a set of interpolating nodes on several radial rays. That
allows us to notice the strategy of constructing the unique Hermite interpolating
polynomial, that is going to be used in Section 3. In Section 4 we give the realiza-
tion of constructing the Hermite interpolating polynomial (in the special case, the
Lagrange interpolating polynomial).

2. Lagrange Interpolation on Radial Rays

Putting y = `x in (1.1), we have

p`(x) = P (x, `x) =
n∑
k=0

k∑
j=0

Cjk`
k−jxk =

n∑
k=0

ak(`)xk,(2.1)

where

ak(`) =
k∑
j=0

Cjk`
k−j (k = 0, 1, . . . , n),(2.2)

i.e.,

a0(`) = C00,(2.3)
a1(`) = C01`+ C11,

a2(`) = C02`
2 + C12`+ C22,

...
an(`) = C0n`

n + C1n`
n−1 + C2n`

n−2 + · · ·+ Cnn.

On the other hand, for the given directions (radial rays)

` := `0, `1, . . . , `n (y = `ix),

we have
f(xj , `ixj) ≡ fj,i (j = 0, 1, . . . , n− i).

Remark 2.1. Notice that the x – coordinates (xj , j = 0, 1, . . . , n−i) of the interpolating
nodes do not necessarily need to be the same for each direction `i (i = 0, 1, . . . , n) but we
have them the same because we want to simplify situation.

Let us pose the Lagrange interpolating problem

P (xj , `ixj) = fj,i(2.4)
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based on distinct points {(xj , `ixj) : j = 0, 1, . . . , n − i} (xm 6= 0, m = 0, 1, . . . , n)
on the given distinct directions `i ∈ R (i = 0, 1, . . . , n).

So, on direction `0 we have n+ 1 nodes, on `1 we have n nodes, . . ., on direction
`n we have only one node. All together, we have (n + 1)(n + 2)/2 interpolating
conditions, which is the same as the number of the coefficients in (1.1).

According to (2.4) and (2.1), for some fixed i (0 ≤ i ≤ n), i.e., direction `i, we
have

n∑
k=0

ak(`i)xkj = fj,i (j = 0, 1, . . . , n− i),

i.e.,
n∑
k=i

ak(`i)xkj = fj,i −
i−1∑
k=0

ak(`i)xkj (j = 0, . . . , n− i),

or, using matrix notation xi0 xi+1
0 · · · xn0

...
xin−i xi+1

n−i · · · xnn−i


 an(`i)

...
an(`i)

 =

 f ′0,i
...

f ′n−i,i

 ,(2.5)

where

f ′j,i = fj,i −
i−1∑
k=0

ak(`i)xkj (j = 0, . . . , n− i)(2.6)

and
−1∑
k=0

= 0.

The system (2.5) has a unique solution for the coefficients aν(`i) (ν = i, i +
1, . . . , n).

Namely, determinant of the system matrix in (2.5) is the well known modified
Vandermonde determinant (xr ∈ R (ν = 0, 1, . . . , i), i, j ∈ N0)

∆j
i (x0, . . . , xi) =

∣∣∣∣∣∣∣∣∣
xj0 xj+1

0 · · · xj+i0

xj1 xj+1
1 · · · xj+i1

...
xji xj+1

i · · · xj+ii

∣∣∣∣∣∣∣∣∣(2.7)

and

∆j
i (x0, . . . , xi) =

 xj0x
j
1 · · ·x

j
i

∏
0≤k<m<i

(xm − xk), i > 0,

xj0, i = 0.
(2.8)

Since, in (2.5) we have ∆i
n−i(x0, . . . , xn−i) 6= 0, because xm 6= xk (m 6= k) and

xm 6= 0 (m = 0, 1, . . . , n).
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So, solving the system (2.5), we find ai(`i), ai+1(`i), . . . , an(`i). The obtained
values ai+1(`i), . . . , an(`i) will be used later. The value ai(`i), the previously com-
puted values ai(`0), . . . , ai(`i−1) in the case i > 0, alow us to form the system of
linear equations and so, according to (2.2), we have

Cii + · · ·+ C0i`
i
0 = ai(`0),

...
Cii + · · ·+ C0i`

i
i = ai(`i),

i.e.,  1 · · · `i0
...
1 · · · `ii


 Cii

...
C0i

 =

 ai(`0)
...

ai(`i)

 .(2.9)

Since ∆0
i (`0, . . . , `i) 6= 0 for `m 6= `k (m 6= k), the system (2.9) has the unique

solution for the coefficients Cν,i (ν = 0, 1, . . . , i).
Notice that using this procedure we have computed up to now

C00

C01, C11,

...
C0i, C1i, . . . , Cii,

and, consequently (2.2), we have ak(`) (k = 0, 1, . . . , i). Now, it is clear why we
have used the notation as that in (2.5).

We continue the algorithm and so we increase i for one, we solve the system
(2.5) and the system (2.9). All of that we repeat including the case when i is equal
to n. After that we have computed all coefficients of the polynomial (1.1) and we
have proved its uniqueness.

3. Hermite Interpolation on Radial Rays

There is no general agreement in the multivariate case on the definition of “Her-
mite interpolation”. However, it is very common to associate this name to the
problems whose data are function evaluations and derivatives at the same points.

Let us consider the polynomial (1.1) for y = `x,

p`(x) = P (x, `x) =
n∑
k=0

k∑
j=0

Cjk`
k−jxk =

n∑
k=0

ak(`)xk,(3.1)

where ak(`) (k = 0, 1, . . . , n) are defined by (2.2) or (2.3).
In the same manner, let us observe function (x, y) 7→ f(x, y) (for y = `x),

u`(x) = f(x, `x).(3.2)
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Denote by

{(xj , `ixj) : `i ∈ R, xj 6= 0, i = 0, . . . , n, j = 0, 1, . . . ,mi}(3.3)

the set of interpolating nodes (distinct points), where mi+1 is the number of nodes
on the direction `i (i = 0, . . . , n). Let

{fj,i,k : 0 ≤ i ≤ n, 0 ≤ j ≤ mi, 0 ≤ k ≤ k(i)
j − 1}(3.4)

be the given values, where fj,i,k ≡ u(k)
`i

(xj) (see (3.2)) and the integers mi and k(i)
j ,

i = 0, 1, . . . , n, j = 0, . . . ,mi, satisfy

k
(i)
0 + · · ·+ k(i)

mi
= n+ 1− i (i = 0, 1, . . . , n).(3.5)

Now, let us pose the Hermite interpolating problem

p
(k)
`i

(xj) = fj,i,k, 0 ≤ i ≤ n, 0 ≤ j ≤ mi, 0 ≤ k ≤ k(i)
j − 1,(3.6)

where x 7→ p`(x) is defined by (3.1) and {fj,i,k} is defined by (3.4) and (3.5). In
other words, the problem requires interpolation up to (k(i)

j −1)th order derivative at

node (xj , `ixj) or, we can say that we have the multiplicity k(i)
j of xj on the direction

`i. Obviously, when k(i)
j = 1 for each i and j (i = 0, 1, . . . , n, j = 0, 1, . . . , n− i) the

interpolating problem reduces to the Lagrange interpolating problem.
We note that the number of interpolating conditions (3.6) equals dim Π2

n, as
n∑
i=0

(k(i)
0 + · · ·+ k(i)

mi
) =

n∑
i=0

(n+ 1− i) =
(n+ 1)(n+ 2)

2
.

The algorithm for the computation of the interpolating polynomial coefficients
in (3.1) for the Hermite interpolating problem (3.6) we give along.

As first we put i = 0, i.e., ` := `0, in (3.6). Then we have k(0)
0 + · · ·+k

(0)
m0 = n+1

conditions of Hermite type for the polynomial x 7→ p`0(x). It is known that the
Hermite or Lagrange interpolating problem in one variable (the polynomial case)
has the unique solution. So, we can compute ak(`0), k = 0, 1, . . . , n. According to
(2.3) we find C00 (a0(`0) = C00) and memorize a1(`0), . . . , an(`0).

Now we put i = 1, (` := `1) in (3.6). Then we have k
(1)
0 + · · · + k

(1)
m1 = n

conditions for the polynomial x 7→ p`1(x) and another one which is dictated by the
previously found value of C00, i.e., a0(`1) = C00. So, we can say, again, that we have
n + 1 conditions of Hermite type for the polynomial x 7→ p`1(x) if the previously
found coefficient a0(`1) of the polynomial x 7→ p`1(x) is simulated by the condition
p`1(0) = C00. (For this reason we have imputed conditions xj 6= 0, j = 0, 1, . . ., in
(3.3).) Solving the constituted Hermite or Lagrange interpolating problem in one
variable we can compute ak(`1), k = 1 . . . , n. According to (2.3), we obtain the
system

C11 + C01`0 = a1(`0),
C11 + C01`1 = a1(`1),
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i.e., (2.9) for i = 1, which has the unique solution C01, C11 (due to ∆0
1(`0, `1) 6= 0

(see(2.7) and (2.8)). We memorize the values a2(`1), . . . , an(`1) because we will use
them later.

Now we put i = 2, (` := `2) in (3.6). Then we have k(2)
0 + · · · + k

(2)
m2 = n − 1

conditions for the polynomial x 7→ p`2(x) and another two conditions which are
dictated by the previously found values of C00, and C01, C11, i.e., the previously
found values of a0(`2) = C00 and a1(`2) = C01`2 + C11. So, we can say, again,
that we have n+ 1 conditions of Hermite type for the polynomial x 7→ p`2(x) if the
previously found coefficients a0(`2) and a1(`2) of the polynomial x 7→ p`2(x) are
simulated by the conditions p`2(0) = C00, p`2(0)′ = 1!(C01`2 + C11). Solving the
constituted Hermite interpolating problem in one variable we can compute ak(`2),
k = 2 . . . , n. According to (2.32.3), we have the system

C22 + C12`0 + C02`
2
0 = a2(`0),

C22 + C12`1 + C02`
2
1 = a2(`1),

C22 + C12`2 + C02`
2
2 = a2(`2),

i.e., (2.9) for i = 2, which has a unique solution C02, C12, C22 (due to ∆0
2(`0, `1, `2) 6=

0 (see(2.7) and (2.8)). We memorize the values a3(`2), . . . , an(`2) because we will
use them later.

Continuing the procedure for i = 3, . . . , n we find all coefficients of the polyno-
mial (1.1) and, of course, we proved its uniqueness (due to the uniqueness of the
Hermite or Lagrange interpolating polynomial in one variable).

4. Implementation and Numerical Examples

Using the procedure explained in Section 3., we developed a program in the
software package Mathematica for the construction of the Hermite or Lagrange
interpolating polynomial.

The input data in presented program in Appendix A are:
– f [x , y ] – the function that have to be interpolated;
– n – the total degree of the interpolating polynomial;
– the interpolating nodes are on the radial rays y = `x, where ` is an element

of the table `v, consisting of n + 1 elements and x is an element of the table xv,
consisting of jj elements, i.e., `v = {`0, `1, . . . , `n} and xv = {x0, x1, . . . , xjj};

– r – the table of the multiplicities of interpolating nodes, where r[[i, j]] is the
multiplicity of the node (xv[[j]], lv[[i]]∗xv[[j]]) and r[[i, 1]]+r[[i, 2]]+ · · ·+r[[i, j]] =
n+ 2− i (i = 1, . . . , n+ 1).

The output data are:
– pol[x , y ] – interpolating polynomial.

The program calculates the necessary derivatives up to the third order maxi-
mum, i.e., 0 ≤ r[[i, j]] ≤ 4. If we take r[[i, j]] = 1 (i = 1, . . . , n+1, j = 1, . . . , n+2−i)
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and the other elements of the table r equal zero, we obtain the Lagrange interpo-
lating polynomial.

In order to illustrate the program we took a polynomial of the third total degree
as a function that needs to be interpolated, i.e., f [x , y ] = 5 + 3y + 7x + 1/2y2 +
xy + 1/4x2 + 1/3y3 + 2xy2 + 3x2y + 4x3. Since we took that the total degree of
the interpolating polynomial in the program is equal to 3, we must expect the same
function for the interpolating polynomial because of its uniqueness. Taking

`v = {1, 2, 3, 4},
xv = {1/2, 1},

r =


4 0
2 1
2 0
1 0


for the Hermite case, and

`v = {1, 2, 3, 4},
xv = {1/2, 1, 2, 5/2},

r =


1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0


for the Lagrange case, our expectations are realized. Namely, we obtain

pol[x, y] = 5 + 7x+
x2

4
+ 4x3 + 3y + xy + 3x2y +

y2

2
+ 2xy2 +

y3

3
.

Appendix A.

(* Hermite interpolation of the function (x,y)->fun[x ,y ] *)

fun[x ,y ]:=5 + 3*y + 7*x +1/2*y^2 + x*y +

1/4*x^2+1/3*y^3+2*x*y^2+3*x^2*y+4*x^3

(* n - degree of the Hermite interpolating polynomial *)

n=3

(* The interpolating nodes are on the radial rays y=l*x, where *)

(* l is an element of the table lv, *)

(* consisting of n+1 elements, and *)

(* x is an element of the table xv, *)

(* consisting of jj (<=n+1) elements) *)

lv={1,2,3,4}
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xv={1,-1,2,-2}
jj=Dimensions[xv][[1]]

r=Table[0,{k,1,n+1},{kk,1,jj}]
(* r - table of the multiplicity of interpolating nodes where *)

(* r[[i,j]] is the multiplicity *)

(* of the node (xv[[j]],lv[i]]*xv[[j]]) *)

(* and r[[i,1]]+r[[i,2]]+...+r[[i,jj]]=n+2-i (i=1,...,n+1) *)

r[[1,1]]=4

r[[2,1]]=2

r[[2,2]]=1

r[[3,1]]=2

r[[4,1]]=1

(* end of input data *)

fun1[x ,l ]=D[fun[x,l*x],x]

fun2[x ,l ]=D[fun1[x,l],x]

fun3[x ,l ]=D[fun2[x,l],x]

ul[x ,l ,k ]=Which[k==0,fun[x,l*x],k==1,fun1[x,l],

k==2,fun2[x,l], k==3,fun3[x,l]]

a=Table[0,{k,1,n+1},{kk,1,n+1}]
c=a

Do[

number=0;

Do[

If[r[[i+1,j]]!=0,number=number+1],

{j,1,jj}];
If[i==0, Goto[downi0]];

vek=Table[0,{k,1,number+1}];
vek1=Table[0,{k,1,i}];
Do[

vek1[[ip]]=(ip-1)!*Sum[c[[k,ip]]*(lv[[i+1]]^(ip-k)),{k,1,ip}],
{ip,1,i}];
vek[[1]]={0,vek1};
ii=2;

Clear[vek1];

Goto[jump];

Label[downi0];

ii=1;
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vek=Table[0,{k,1,number}];
Label[jump];

Do[

ki=r[[i+1,j]];

vek[[ii]]=Table[ul[xv[[j]],lv[[i+1]],k],{k,0,ki-1}];
vek[[ii]]={xv[[j]],vek[[ii]]};
ii=ii+1,

{j,1,number}];
p[x]=InterpolatingPolynomial[vek,x];

Do[

a[[i+1,k]]=Coefficient[p[x],x,k-1],

{k,1,n+1}];
ll=Table[0,{k,1,i+1},{kk,1,i+1}];
f=Table[0,{k,1,i+1}];
Do[

Do[

ll[[k,kk]]=lv[[k]]^(i-kk+1),

{kk,1,i+1}];
f[[k]]=a[[k,i+1]],

{k,1,i+1}];
v = LinearSolve[ll,f];

Do[

c[[k,i+1]]=v[[k]],

{k,1,i+1}];
Clear[ll,f,v,vek],

{i,0,n}];
Print["Interpolating polynomial: pol[x,y]="]

pol[x ,y ]=Sum[c[[j+1,k+1]]*x^j*y^(k-j),{k,0,n},{j,0,k}]
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