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POLYNOMIAL APPROXIMATION ON UNBOUNDED INTERVALS
BY FOURIER SUMS

Giuseppe Mastroianni and Gradimir V. Milovanović

Abstract. For the generalized Freud weight wα,β(x) = |x|αe−|x|
β

, α > −1, β > 1,
on the real line R and a given function f we study the behaviour of the Fourier sum
Sn(wα,β , f) = Sn(wα,β , f ;x) in the weighted space Cu, defined by

Cu =
n
f ∈ C0(R) : (fu)(x) = o(1) for |x| → +∞ or x→ 0

o
and equipped by the norm ‖f‖Cu = ‖fu‖ = sup

x∈R
|(fu)(x)|, where u(x) = |x|γe−|x|

β/2,

γ ≥ 0, β > 1. An analogous result is given for the corresponding problem on the half
line R+.

1. Introduction and Preliminaries

Let wα,β(x) = |x|αe−|x|β , α > −1, β > 1, x ∈ R, be a generalized Freud weight
and {pn(wα,β)} be the corresponding sequence of orthonormal polynomials with
positive leading coefficients, i.e., pn(wα,β ;x) = γnx

n + · · · , γn = γn(wα,β) > 0, and∫
R
pn(wα,β ;x)pn(wα,β ;x)wαdx = δn,m.

These weights and polynomials were introduced and studied in a complete way in
[1]. When β = 2 we obtain the Sonin-Markov polynomials.

The Fourier sum of a function f can be written as

(1.1) Sn(wα,β , f ;x) =
n−1∑
k=0

ckpk(wα,β ;x),

by assuming

ck =
∫

R
f(t)pk(wα,β ; t)wα,β(t) dt < +∞, k = 1, 2, . . . .
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Using the Christofell-Darboux identity it can be written in the form

(1.2) Sn(wα,β , f ;x) =
γn−1

γn

∫
R

pn(x)pn−1(t)− pn(t)pn−1(x)
x− t

f(t)wα,β(t) dt,

where pk(x) = pk(wα,β ;x), k ∈ N0.

Now, we introduce the following space of functions: Let u(x) = |x|γe−|x|β/2,
γ ≥ 0, β > 1, be another generalized Freud weight and C0 = C0(R) the set of all
continuous functions in R. We set

Cu =
{
f ∈ C0(R) : (fu)(x) = o(1) for |x| → +∞ or x→ 0

}
and introduce the norm ‖f‖Cu = ‖fu‖ = sup

x∈R
|(fu)(x)|. In Cu the well-known

Weierstrass theorem holds and, therefore, we study the behaviour of Sn(wα,β , f) =
Sn(wα,β , f ;x) in the weighted space Cu.

Positive constants in this paper are denoted by C, C1, . . ., and they can take
different values even in subsequent formulae. It will always be clear what indices
and variables the constants are independent of. If we use the notation Cp, it means
that this constant always depends on a parameter p. Sometimes, we will write
C 6= C(a, b, . . .) in order to denote that the constant C is independent only of a, b,
. . . , but it can depend on parameters which are not mentioned in the list (a, b, . . .).
If A and B are two expressions depending on certain indices and variables, then we
write

A ∼ B if and only if 0 < C1 ≤
∣∣∣ A
B

∣∣∣≤ C2
uniformly for the indices and variables considered.

Here, we need the so-called Mhaskar-Rakhmanov-Saff number (shortly M-R-S
number) an = an(w), which was independently defined by Rakhmanov [6] and
Mhaskar and Saff [4, 5] for the weight w(x) = exp(−2Q(x)) on R as a positive root
of the equation

n =
2
π

∫ 1

0

antQ
′(ant)√

1− t2
dt.

The functionQ : R→ R is even, convex and of smooth polynomial growth at infinity.
For example, for the Hermite weight e−x

2
, x ∈ R, this number is an =

√
2n. For

the general case wα,β we have an = an(wα,β) = Cn(α, β)n1/β , i.e., an ∼= Cn1/β , for
a sufficiently large n, which is enough in our investigation.

For a given θ ∈ (0, 1), by χn we denote the characteristic function of the interval
[−θan, θan], an = an(u), and we state the following result:

Proposition 1.1. For all f ∈ Cu we have

(1.3) ‖(1− χn)fu‖ ≤ C
(
En(f)u + e−An‖fu‖

)
and, consequently,

‖fu‖ ≤ C (‖χnfu‖+ En(f)u) ,
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where

M =
[
n
( θ

1 + θ

)β]
, En(f)u = inf

P∈Pn
‖(f − P )u‖∞,

Pn is the set of all polynomials of degree at most M and the positive constants C
and A are independent of n and f .

Proof. Setting fn := χnf , for each polynomial Pn ∈ Pn we can write

‖(f − fn)u‖∞ = max
|x|≥θan(u)

|(fu)(x)| ≤ ‖(f − Pn)u‖∞ + max
|x|≥θan(u)

|Pn(x)u(x)|.

By “finite-infinite range inequality”(c.f. [3], [1]) and the assumption on M , we get

max
|x|≥θan(u)

|Pn(x)u(x)| ≤ Ce−An‖Pnu‖∞ ≤ Ce
−An

(
‖(f − Pn)u‖∞ + ‖fu‖∞

)
,

where A 6= A(n, f).
Thus,

‖(f − fn)u‖∞ ≤ C
(
‖(f − Pn)u‖∞ + e−An‖fu‖∞

)
, C 6= C(n, f).

Taking the infimum over all Pn ∈ Pn the inequality (1.3) follows. After the standard
computation we get the second inequality.

2. Main Results

For a fixed θ ∈ (0, 1), let χn be the characteristic function of the interval
[−θan, θan], where an = an(u). We state the following result for the Fourier sum
(1.1) on the real line R:

Theorem 2.1. Let wα = |x|αe−|x|β , u(x) = |x|γe−|x|β/2, with α > −1, β > 1,
γ ≥ 0, and we assume that

(2.1) max
{

0,
α

2

}
≤ γ < α

2
+ 1.

Then, for each f ∈ Cu, we have

(2.2) ‖Sn(wα,β , χnf)χnu‖ ≤ C‖(χnf)u‖ log n

and

(2.3) ‖[f − χnSn(wα,β , χnf)]u‖ ≤ C
[
En(f)u(log n) + e−An‖fu‖

]
,

where M =
[
n

(
θ

θ + 1

)β]
∼ n and the constant C is independent of n and f .
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Proof. Taking the M-R-S number an = an(u), and denoting the truncated function
χnf by fn, we consider the weighted Fourier sum u(x)Sn(w, fn;x). According to
(1.2) we have

u(x)Sn(w, fn;x) =
γn−1

γn
u(x)H

(
pn(x)pn−1( · )− pn−1(x)pn( · ), w, fn;x

)
,

where pk = pk(w), k ∈ N0, are orthonormal polynomials with respect to the weight
w and H is the Hilbert transform.

According to a Remez-type inequality we should estimate the previous integrals
for

x ∈ [−θan, θan] \
[
−an
n
,
an
n

]
,

and, because of symmetry, it is enough to consider only the interval [an/n, θan].
We note that

(2.4) |
√
w(x) pn(w;x)| ≤ C

√
an
, |x| ≤ θan.

Thus, let x ∈ [an/n, θan]. Regarding this value of x, we take the following
decomposition

[−θan, θan] =
[
−θan, x−

an
n

]
∪
[
x− an

n
, x+

an
n

]
∪
[
x+

an
n
, θan

]
,

in order to estimate the previous mentioned Hilbert transform. In this way, we have
to estimate three terms in the weighted sum

|u(x)Sn(w, fn;x)| ≤ Canu(x)
∣∣∣H(pn(x)pn−1( · )− pn−1(x)pn( · ), w, fn;x

)∣∣∣
= |Y1(x) + Y2(x) + Y3(x)| ≤ |Y1(x)|+ |Y2(x)|+ |Y3(x)|,

which correspond to the previous decomposition. In this formula we use the fact
that γn/γn−1 ∼ an.

First, we give an estimate for |Y1(x)|. Because of linearity in the Hilbert trans-
form,

H
(
pn(x)pn−1( · )− pn−1(x)pn( · ), w, fn;x

)
= pn(x)H(pn−1, w, fn;x)

−pn−1(x)H(pn, w, fn;x),

we have |Y1(x)| ≤ |A1(x)|+ |B1(x)|, where

|A1(x)| = Canu(x)|pn(x)|

∣∣∣∣∣∣∣
x−an/n∫
−θan

pn−1(t)fn(t)w(t)
dt

x− t

∣∣∣∣∣∣∣
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and

|B1(x)| = Canu(x)|pn−1(x)|

∣∣∣∣∣∣∣
x−an/n∫
−θan

pn(t)fn(t)w(t)
dt

x− t

∣∣∣∣∣∣∣ .
Using the inequality (2.4), we get

|A1(x)| = C anu(x)√
w(x)

∣∣√w(x)pn(x)
∣∣
∣∣∣∣∣∣∣
x−an/n∫
−θan

(√
w(t) pn−1(t)

)√w(t)
u(t)

(fn(t)u(t))
x− t

dt

∣∣∣∣∣∣∣
≤ C
√
an x

γ−α/2

x−an/n∫
−θan

∣∣√w(t) pn−1(t)
∣∣|t|α/2−γ |fn(t)u(t)| dt

x− t

≤ C
√
an x

γ−α/2 C1√
an
‖fnu‖

x−an/n∫
−θan

|t|α/2−γ dt

x− t

= C‖fnu‖


0∫

−θan

+

x−an/n∫
0

 |t/x|α/2−γ dt

x− t

= C‖fnu‖


θan/x∫
0

ζν

1 + ζ
dζ +

1−an/(nx)∫
0

ζν

1− ζ
dζ

 ,

where ν = α/2− γ ∈ (−1, 0], regarding the conditions (2.1).
Since x ≥ an/n, for the first integral in the last parenthesis { · · · } we have

I(1)
n (x) =

∫ θan/x

0

ζν

1 + ζ
dζ ≤

∫ θn

0

ζν

1 + ζ
dζ.

Evidently, for ν = 0, I(1)
n (x) ≤ C log n.

For ν ∈ (−1, 0), instead of the integral over (0, θn), we consider the integral
over (0,+∞), for which we can calculate its value (eg. by using Cauchy’s residue
theorem), ∫ +∞

0

ζν

1 + ζ
dζ = − π

sin(νπ)
< +∞ (−1 < ν < 0),

such that I(1)
n (x) ≤ C.

Since x ≤ θan, for the second integral in { · · · } we have

I(2)
n (x) =

1−an/(nx)∫
0

ζν

1− ζ
dζ ≤

1−1/(nθ)∫
0

ζν

1− ζ
dζ.
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Evidently, for ν = 0, I(2)
n (x) ≤ C log n.

For ν ∈ (−1, 0), we have

I(2)
n (x) ≤

1−1/(nθ)∫
0

dζ

1− ζ
+

1−1/(nθ)∫
0

ζν − 1
1− ζ

dζ ≤ log(nθ) +

1∫
0

ζν(1− ζ−ν)
1− ζ

dζ.

By the inequality ζ−ν + (1− ζ)−ν ≥ 1, 0 < −ν < 1, we get

I(2)
n (x) ≤ log(nθ) +

1∫
0

ζν

(1− ζ)ν+1
dζ = log(nθ)− π

sin(νπ)
≤ C log n.

Thus, A1(x) ≤ C‖fnu‖ log n. Quite the same estimate holds for |B1(x)|, so that
we have

(2.5) |Y1(x)| ≤ C‖fnu‖ log n.

In a similar way we give the corresponding estimate for |Y3(x)| ≤ |A3(x)| +
|B3(x)|, where

|A3(x)| = Canu(x)|pn(x)|

∣∣∣∣∣∣∣
θan∫

x+an/n

pn−1(t)fn(t)w(t)
dt

x− t

∣∣∣∣∣∣∣
and

|B3(x)| = Canu(x)|pn−1(x)|

∣∣∣∣∣∣∣
θan∫

x+an/n

pn(t)fn(t)w(t)
dt

x− t

∣∣∣∣∣∣∣ .
In that case we also obtain

(2.6) |Y3(x)| ≤ C‖fnu‖ log n.

In order to estimate |Y2(x)| we represent it in the form

|Y2(x)| ≤ Canu(x)

∣∣∣∣∣∣∣
x+an/n∫
x−an/n

pn(x)pn−1(t)− pn−1(x)pn(t)
x− t

fn(t)w(t) dt

∣∣∣∣∣∣∣
≤ C

x+an/n∫
x−an/n

∣∣Rn(x, t)
∣∣(fn(t)w(t)

)
dt ≤ C‖fnu‖

x+an/n∫
x−an/n

∣∣Rn(x, t)
∣∣dt,

where ∣∣Rn(x, t)
∣∣ = an

u(x)w(t)
u(t)

∣∣∣∣pn(x)pn−1(t)− pn−1(x)pn(t)
x− t

∣∣∣∣ = U1 + U2,
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with

U1 = an
u(x)w(t)
u(t)

∣∣∣∣pn(x)− pn(t)
x− t

∣∣∣∣ ≤ anu(x)w(t)
u(t)

|p′n(ξ)| |pn−1(t)|

for some ξ such that |ξ − t| < |x− t|, and similarly

U2 ≤ an
u(x)w(t)
u(t)

|p′n−1(η)| |pn(t)|

for some η such that |η − t| < |x− t|.
Using (2.4), the Bernstein inequality and w(ξ) ∼ w(x) ∼ w(t) (cf. [3]) we find

U1 = an
u(x)

√
w(t)

u(t)
√
w(ξ)

∣∣√w(ξ)p′n(ξ)
∣∣ ∣∣√w(t)pn−1(t)

∣∣ ≤ an( C1n
an
√
an

)(
C2√
an

)
≤ Cn
an

,

as well as U2 ≤ Cn/an. Thus,

(2.7) |Y2(x)| ≤ C‖fnu‖.

Finally, according to (2.5)–(2.7) we conclude that

|u(x)Sn(w, fn;x)| ≤ C‖fnu‖ log n,

i.e., (2.2).

In order to estimate the error we have

‖ [f − χnSn(w,χnf)]u‖∞ ≤ ‖(f − χnf)u‖∞ + ‖(f − Sn(w,χnf))χnu‖∞.

By Proposition 1.1, we get

‖(f − χnf)u‖∞ ≤ C
(
En(f)u,∞ + e−An‖fu‖∞

)
,

where C and A are independent of f and n and M =
[
n
(

θ
1+θ

)β]
.

Moreover,

‖(f − Sn(w,χnf))χnu‖∞ ≤ ‖(f − Pn)χnu‖∞

+‖Sn(w, (Pn − f)χn)χnu‖∞ + ‖Sn(w, (1− χn)Pn)χnu‖∞.

By Proposition 1.1 and (2.2) the first two terms on the right side are dominated by
En(f)u log n.

For the last term we observe that for each F ∈ Cu we have

‖Sn(w,F )χnu‖∞ ≤ Cn
1/3(log n)‖Fu‖∞.
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In order to prove this we can repeat the proof of (2.2) recalling that (2.4) is true
for |x| ≤ θan(u), but in [−an, an] the inequality [1]

|pn(w;x)| ≤ C n
1/3

√
an

holds.
Then, we have

‖Sn(w, (1− χn)Pn)χnu‖∞ ≤ Cn1/3(log n) max
[θan(u),+∞)

|Pnu|(x)

≤ Cn1/3(log n)e−An‖Pnu‖∞

≤ Ce−An‖fu‖∞,

using the “finite-infinite range inequality.”

At the end of this section we give an important consequence of the previous
theorem. Namely, we consider a generalized Laguerre weight wα(x) := wα,β(x) =
xαe−x

β

, α > −1, β > 1/2, for x > 0 and the corresponding sequence of orthonor-
mal polynomials {pn(wα)} with the positive leading coefficients. For a continuous
function f in (0,+∞) (f ∈ C0(0,+∞)) we can write its Fourier sum in the system
pn(wα) as

Sn(wα, f ;x) =
n−1∑
k=0

ckpk(wα;x), ck =
∫ +∞

0

f(t)pk(wα; t)wα(t) dt.

If u(x) = xγe−x
β/2, γ ≥ 0, is another generalized Laguerre weight, we introduce

the space of functions

Cu =
{
f ∈ C0(0,+∞) : (fu)(x) = o(1) for x→ 0+ or x→ +∞

}
equipped with the norm ‖f‖Cu = ‖fu‖ = sup

x≥0
|(fu)(x)| and we study the behaviour

of Sn(wα, f) in Cu.

First, we observe that with W (x) = |x|2α+1e−x
2β

, we have an = an(wα) =
a2
2n(W ) ∼ n1/β (cf. [3]).

Let χ∗n be the corresponding characteristic function of the interval [0, θan], where
θ ∈ (0, 1). Now, we consider the sequence {χ∗nSn(wα, χ∗nf)} in Cu.

Denoting by EM (f)u = inf
PM∈PM

‖(f−PM )u‖, the error of the best approximation,

we can prove the following result:

Theorem 2.2. Let wα(x) = xαe−x
β

, x > 0, α > −1, β > 1/2, and u(x) =
xγe−x

β/2, γ ≥ 0, and assume the conditions

max
{

0,
α

2
+

1
4

}
≤ γ < α

2
+

3
4
.
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Then, for all f ∈ Cu, we have

‖χ∗nSn(wα, χ∗nf)u‖ ≤ ‖fχ∗nu‖(log n)

and
‖[f − χ∗nSn(wα, χ∗nf)]u‖ ≤ C[EM (f)u(log n) + e−An‖fu‖],

where M =
[
n
(

θ
1+θ

)β]
, and A and C are positive constants independent of n and f .

Proof. We set F (x) = f(x2) σ(x) = |x|2γe−|x|2β/2, x ∈ R, and denote by χ̃n
the characteristic function of the interval An := [−θ̃a2n(W ), θ̃a2n(W )] for some
θ̃ ∈ (0, 1). Then, by Theorem 2.1 with 2α+ 1 instead of α and 2γ instead of γ, we
have

‖χ̃nS2n(W, χ̃nF )σ‖ ≤ C‖χ̃nFσ‖(log n)

if the parameters α and γ satisfy the condition

max
{

0,
α

2
+

1
4

}
≤ γ < α

2
+

3
4
.

Now we have

sup
x∈An

∣∣F (x)|x|2γe−|x|
2β/2

∣∣ = sup
x∈[0,θa2

2n(W )]

|f(x)xγe−x
β/2| = ‖fuχ∗n‖,

since an(wα) = a2
2n(W ) and θ = θ̃2 ∈ (0, 1).

We also have S2n(W, χ̃nF ;x) = Sn(wα, χ∗nf ;x2), for which

‖S2n(W, χ̃nF )χ̃nU‖ = ‖Sn(wα, χ∗nf)χ∗nu‖

and the first part of the theorem follows.
The error estimate follows in a similar way.
Finally, we observe that the conditions on the weights are independent on the

parameter β and an interesting special case is β = 1 (generalized Laguerre sys-
tems).
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