POLYNOMIAL APPROXIMATION ON UNBOUNDED INTERVALS BY FOURIER SUMS

Giuseppe Mastroianni and Gradimir V. Milovanović

Abstract. For the generalized Freud weight $w_{\alpha, \beta}(x)=|x|^{\alpha} e^{-|x|^{\beta}}, \alpha>-1, \beta>1$, on the real line \mathbb{R} and a given function f we study the behaviour of the Fourier sum $S_{n}\left(w_{\alpha, \beta}, f\right)=S_{n}\left(w_{\alpha, \beta}, f ; x\right)$ in the weighted space C_{u}, defined by

$$
C_{u}=\left\{f \in C^{0}(\mathbb{R}):(f u)(x)=o(1) \text { for }|x| \rightarrow+\infty \text { or } x \rightarrow 0\right\}
$$

and equipped by the norm $\|f\|_{C_{u}}=\|f u\|=\sup _{x \in \mathbb{R}}|(f u)(x)|$, where $u(x)=|x|^{\gamma} e^{-|x|^{\beta} / 2}$, $\gamma \geq 0, \beta>1$. An analogous result is given for the corresponding problem on the half line \mathbb{R}_{+}.

1. Introduction and Preliminaries

Let $w_{\alpha, \beta}(x)=|x|^{\alpha} e^{-|x|^{\beta}}, \alpha>-1, \beta>1, x \in \mathbb{R}$, be a generalized Freud weight and $\left\{p_{n}\left(w_{\alpha, \beta}\right)\right\}$ be the corresponding sequence of orthonormal polynomials with positive leading coefficients, i.e., $p_{n}\left(w_{\alpha, \beta} ; x\right)=\gamma_{n} x^{n}+\cdots, \gamma_{n}=\gamma_{n}\left(w_{\alpha, \beta}\right)>0$, and

$$
\int_{\mathbb{R}} p_{n}\left(w_{\alpha, \beta} ; x\right) p_{n}\left(w_{\alpha, \beta} ; x\right) w_{\alpha} d x=\delta_{n, m}
$$

These weights and polynomials were introduced and studied in a complete way in [1]. When $\beta=2$ we obtain the Sonin-Markov polynomials.

The Fourier sum of a function f can be written as

$$
\begin{equation*}
S_{n}\left(w_{\alpha, \beta}, f ; x\right)=\sum_{k=0}^{n-1} c_{k} p_{k}\left(w_{\alpha, \beta} ; x\right) \tag{1.1}
\end{equation*}
$$

by assuming

$$
c_{k}=\int_{\mathbb{R}} f(t) p_{k}\left(w_{\alpha, \beta} ; t\right) w_{\alpha, \beta}(t) d t<+\infty, \quad k=1,2, \ldots
$$

Received November 8, 2006.
2000 Mathematics Subject Classification. Primary 41A10; Secondary 41A17, 42C10.

Using the Christofell-Darboux identity it can be written in the form

$$
\begin{equation*}
S_{n}\left(w_{\alpha, \beta}, f ; x\right)=\frac{\gamma_{n-1}}{\gamma_{n}} \int_{\mathbb{R}} \frac{p_{n}(x) p_{n-1}(t)-p_{n}(t) p_{n-1}(x)}{x-t} f(t) w_{\alpha, \beta}(t) d t \tag{1.2}
\end{equation*}
$$

where $p_{k}(x)=p_{k}\left(w_{\alpha, \beta} ; x\right), k \in \mathbb{N}_{0}$.
Now, we introduce the following space of functions: Let $u(x)=|x|^{\gamma} e^{-|x|^{\beta} / 2}$, $\gamma \geq 0, \beta>1$, be another generalized Freud weight and $C^{0}=C^{0}(\mathbb{R})$ the set of all continuous functions in \mathbb{R}. We set

$$
C_{u}=\left\{f \in C^{0}(\mathbb{R}):(f u)(x)=o(1) \text { for }|x| \rightarrow+\infty \text { or } x \rightarrow 0\right\}
$$

and introduce the norm $\|f\|_{C_{u}}=\|f u\|=\sup _{x \in \mathbb{R}}|(f u)(x)|$. In C_{u} the well-known Weierstrass theorem holds and, therefore, we study the behaviour of $S_{n}\left(w_{\alpha, \beta}, f\right)=$ $S_{n}\left(w_{\alpha, \beta}, f ; x\right)$ in the weighted space C_{u}.

Positive constants in this paper are denoted by $\mathcal{C}, \mathcal{C}_{1}, \ldots$, and they can take different values even in subsequent formulae. It will always be clear what indices and variables the constants are independent of. If we use the notation \mathcal{C}_{p}, it means that this constant always depends on a parameter p. Sometimes, we will write $\mathcal{C} \neq \mathcal{C}(a, b, \ldots)$ in order to denote that the constant \mathcal{C} is independent only of a, b, \ldots, but it can depend on parameters which are not mentioned in the list (a, b, \ldots). If A and B are two expressions depending on certain indices and variables, then we write

$$
A \sim B \quad \text { if and only if } \quad 0<\mathcal{C}_{1} \leq\left|\frac{A}{B}\right| \leq \mathcal{C}_{2}
$$

uniformly for the indices and variables considered.
Here, we need the so-called Mhaskar-Rakhmanov-Saff number (shortly M-R-S number) $a_{n}=a_{n}(w)$, which was independently defined by Rakhmanov [6] and Mhaskar and Saff $[4,5]$ for the weight $w(x)=\exp (-2 Q(x))$ on \mathbb{R} as a positive root of the equation

$$
n=\frac{2}{\pi} \int_{0}^{1} \frac{a_{n} t Q^{\prime}\left(a_{n} t\right)}{\sqrt{1-t^{2}}} d t
$$

The function $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, convex and of smooth polynomial growth at infinity. For example, for the Hermite weight $e^{-x^{2}}, x \in \mathbb{R}$, this number is $a_{n}=\sqrt{2 n}$. For the general case $w_{\alpha, \beta}$ we have $a_{n}=a_{n}\left(w_{\alpha, \beta}\right)=C_{n}(\alpha, \beta) n^{1 / \beta}$, i.e., $a_{n} \cong C n^{1 / \beta}$, for a sufficiently large n, which is enough in our investigation.

For a given $\theta \in(0,1)$, by χ_{n} we denote the characteristic function of the interval $\left[-\theta a_{n}, \theta a_{n}\right], a_{n}=a_{n}(u)$, and we state the following result:

Proposition 1.1. For all $f \in C_{u}$ we have

$$
\begin{equation*}
\left\|\left(1-\chi_{n}\right) f u\right\| \leq \mathcal{C}\left(E_{n}(f)_{u}+e^{-A n}\|f u\|\right) \tag{1.3}
\end{equation*}
$$

and, consequently,

$$
\|f u\| \leq \mathcal{C}\left(\left\|\chi_{n} f u\right\|+E_{n}(f)_{u}\right)
$$

where

$$
M=\left[n\left(\frac{\theta}{1+\theta}\right)^{\beta}\right], \quad E_{n}(f)_{u}=\inf _{P \in \mathcal{P}_{n}}\|(f-P) u\|_{\infty}
$$

\mathcal{P}_{n} is the set of all polynomials of degree at most M and the positive constants \mathcal{C} and A are independent of n and f.

Proof. Setting $f_{n}:=\chi_{n} f$, for each polynomial $P_{n} \in \mathcal{P}_{n}$ we can write

$$
\left\|\left(f-f_{n}\right) u\right\|_{\infty}=\max _{|x| \geq \theta a_{n}(u)}|(f u)(x)| \leq\left\|\left(f-P_{n}\right) u\right\|_{\infty}+\max _{|x| \geq \theta a_{n}(u)}\left|P_{n}(x) u(x)\right| .
$$

By "finite-infinite range inequality"(c.f. [3], [1]) and the assumption on M, we get

$$
\max _{|x| \geq \theta a_{n}(u)}\left|P_{n}(x) u(x)\right| \leq \mathcal{C} e^{-A n}\left\|P_{n} u\right\|_{\infty} \leq \mathcal{C} e^{-A n}\left(\left\|\left(f-P_{n}\right) u\right\|_{\infty}+\|f u\|_{\infty}\right)
$$

where $A \neq A(n, f)$.
Thus,

$$
\left\|\left(f-f_{n}\right) u\right\|_{\infty} \leq \mathcal{C}\left(\left\|\left(f-P_{n}\right) u\right\|_{\infty}+e^{-A n}\|f u\|_{\infty}\right), \quad \mathcal{C} \neq C(n, f)
$$

Taking the infimum over all $P_{n} \in \mathcal{P}_{n}$ the inequality (1.3) follows. After the standard computation we get the second inequality.

2. Main Results

For a fixed $\theta \in(0,1)$, let χ_{n} be the characteristic function of the interval $\left[-\theta a_{n}, \theta a_{n}\right]$, where $a_{n}=a_{n}(u)$. We state the following result for the Fourier sum (1.1) on the real line \mathbb{R} :

Theorem 2.1. Let $w_{\alpha}=|x|^{\alpha} e^{-|x|^{\beta}}, u(x)=|x|^{\gamma} e^{-|x|^{\beta} / 2}$, with $\alpha>-1, \beta>1$, $\gamma \geq 0$, and we assume that

$$
\begin{equation*}
\max \left\{0, \frac{\alpha}{2}\right\} \leq \gamma<\frac{\alpha}{2}+1 \tag{2.1}
\end{equation*}
$$

Then, for each $f \in C_{u}$, we have

$$
\begin{equation*}
\left\|S_{n}\left(w_{\alpha, \beta}, \chi_{n} f\right) \chi_{n} u\right\| \leq \mathcal{C}\left\|\left(\chi_{n} f\right) u\right\| \log n \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left[f-\chi_{n} S_{n}\left(w_{\alpha, \beta}, \chi_{n} f\right)\right] u\right\| \leq \mathcal{C}\left[E_{n}(f)_{u}(\log n)+e^{-A n}\|f u\|\right] \tag{2.3}
\end{equation*}
$$

where $M=\left[n\left(\frac{\theta}{\theta+1}\right)^{\beta}\right] \sim n$ and the constant \mathcal{C} is independent of n and f.

Proof. Taking the M-R-S number $a_{n}=a_{n}(u)$, and denoting the truncated function $\chi_{n} f$ by f_{n}, we consider the weighted Fourier sum $u(x) S_{n}\left(w, f_{n} ; x\right)$. According to (1.2) we have

$$
u(x) S_{n}\left(w, f_{n} ; x\right)=\frac{\gamma_{n-1}}{\gamma_{n}} u(x) H\left(p_{n}(x) p_{n-1}(\cdot)-p_{n-1}(x) p_{n}(\cdot), w, f_{n} ; x\right)
$$

where $p_{k}=p_{k}(w), k \in \mathbb{N}_{0}$, are orthonormal polynomials with respect to the weight w and H is the Hilbert transform.

According to a Remez-type inequality we should estimate the previous integrals for

$$
x \in\left[-\theta a_{n}, \theta a_{n}\right] \backslash\left[-\frac{a_{n}}{n}, \frac{a_{n}}{n}\right],
$$

and, because of symmetry, it is enough to consider only the interval $\left[a_{n} / n, \theta a_{n}\right]$. We note that

$$
\begin{equation*}
\left|\sqrt{w(x)} p_{n}(w ; x)\right| \leq \frac{\mathcal{C}}{\sqrt{a_{n}}}, \quad|x| \leq \theta a_{n} \tag{2.4}
\end{equation*}
$$

Thus, let $x \in\left[a_{n} / n, \theta a_{n}\right]$. Regarding this value of x, we take the following decomposition

$$
\left[-\theta a_{n}, \theta a_{n}\right]=\left[-\theta a_{n}, x-\frac{a_{n}}{n}\right] \cup\left[x-\frac{a_{n}}{n}, x+\frac{a_{n}}{n}\right] \cup\left[x+\frac{a_{n}}{n}, \theta a_{n}\right],
$$

in order to estimate the previous mentioned Hilbert transform. In this way, we have to estimate three terms in the weighted sum

$$
\begin{aligned}
\left|u(x) S_{n}\left(w, f_{n} ; x\right)\right| & \leq \mathcal{C} a_{n} u(x)\left|H\left(p_{n}(x) p_{n-1}(\cdot)-p_{n-1}(x) p_{n}(\cdot), w, f_{n} ; x\right)\right| \\
& =\left|Y_{1}(x)+Y_{2}(x)+Y_{3}(x)\right| \leq\left|Y_{1}(x)\right|+\left|Y_{2}(x)\right|+\left|Y_{3}(x)\right|
\end{aligned}
$$

which correspond to the previous decomposition. In this formula we use the fact that $\gamma_{n} / \gamma_{n-1} \sim a_{n}$.

First, we give an estimate for $\left|Y_{1}(x)\right|$. Because of linearity in the Hilbert transform,

$$
\begin{aligned}
H\left(p_{n}(x) p_{n-1}(\cdot)-p_{n-1}(x) p_{n}(\cdot), w, f_{n} ; x\right)=p_{n}(x) & H\left(p_{n-1}, w, f_{n} ; x\right) \\
& -p_{n-1}(x) H\left(p_{n}, w, f_{n} ; x\right)
\end{aligned}
$$

we have $\left|Y_{1}(x)\right| \leq\left|A_{1}(x)\right|+\left|B_{1}(x)\right|$, where

$$
\left|A_{1}(x)\right|=\mathcal{C} a_{n} u(x)\left|p_{n}(x)\right|\left|\int_{-\theta a_{n}}^{x-a_{n} / n} p_{n-1}(t) f_{n}(t) w(t) \frac{d t}{x-t}\right|
$$

and

$$
\left|B_{1}(x)\right|=\mathcal{C} a_{n} u(x)\left|p_{n-1}(x)\right|\left|\int_{-\theta a_{n}}^{x-a_{n} / n} p_{n}(t) f_{n}(t) w(t) \frac{d t}{x-t}\right|
$$

Using the inequality (2.4), we get

$$
\begin{aligned}
\left|A_{1}(x)\right| & \left.=\mathcal{C} \frac{a_{n} u(x)}{\sqrt{w(x)}}\left|\sqrt{w(x)} p_{n}(x)\right| \int_{-\theta a_{n}}^{x-a_{n} / n}\left(\sqrt{w(t)} p_{n-1}(t)\right) \frac{\sqrt{w(t)}}{u(t)} \frac{\left(f_{n}(t) u(t)\right)}{x-t} d t \right\rvert\, \\
& \leq \mathcal{C} \sqrt{a_{n}} x^{\gamma-\alpha / 2} \int_{-\theta a_{n}}^{x-a_{n} / n}\left|\sqrt{w(t)} p_{n-1}(t)\right||t|^{\alpha / 2-\gamma}\left|f_{n}(t) u(t)\right| \frac{d t}{x-t} \\
& \leq \mathcal{C} \sqrt{a_{n}} x^{\gamma-\alpha / 2} \frac{\mathcal{C}_{1}}{\sqrt{a_{n}}}\left\|f_{n} u\right\| \int_{-\theta a_{n}}^{x-a_{n} / n}|t|^{\alpha / 2-\gamma} \frac{d t}{x-t} \\
& =\mathcal{C}\left\|f_{n} u\right\|\left\{\int_{-\theta a_{n}}^{0}+\int_{0}^{x-a_{n} / n}\right\}|t / x|^{\alpha / 2-\gamma} \frac{d t}{x-t} \\
& =\mathcal{C}\left\|f_{n} u\right\|\left\{\begin{array}{l}
\theta a_{n} / x \\
\left.\int_{0}^{\nu} \frac{\zeta^{\nu}}{1+\zeta} d \zeta+\int_{0}^{1-a_{n} /(n x)} \frac{\zeta^{\nu}}{1-\zeta} d \zeta\right\}
\end{array}\right\}
\end{aligned}
$$

where $\nu=\alpha / 2-\gamma \in(-1,0]$, regarding the conditions (2.1).
Since $x \geq a_{n} / n$, for the first integral in the last parenthesis $\{\cdots\}$ we have

$$
I_{n}^{(1)}(x)=\int_{0}^{\theta a_{n} / x} \frac{\zeta^{\nu}}{1+\zeta} d \zeta \leq \int_{0}^{\theta n} \frac{\zeta^{\nu}}{1+\zeta} d \zeta
$$

Evidently, for $\nu=0, I_{n}^{(1)}(x) \leq \mathcal{C} \log n$.
For $\nu \in(-1,0)$, instead of the integral over $(0, \theta n)$, we consider the integral over $(0,+\infty)$, for which we can calculate its value (eg. by using Cauchy's residue theorem),

$$
\int_{0}^{+\infty} \frac{\zeta^{\nu}}{1+\zeta} d \zeta=-\frac{\pi}{\sin (\nu \pi)}<+\infty \quad(-1<\nu<0)
$$

such that $I_{n}^{(1)}(x) \leq \mathcal{C}$.
Since $x \leq \theta a_{n}$, for the second integral in $\{\cdots\}$ we have

$$
I_{n}^{(2)}(x)=\int_{0}^{1-a_{n} /(n x)} \frac{\zeta^{\nu}}{1-\zeta} d \zeta \leq \int_{0}^{1-1 /(n \theta)} \frac{\zeta^{\nu}}{1-\zeta} d \zeta
$$

Evidently, for $\nu=0, I_{n}^{(2)}(x) \leq \mathcal{C} \log n$.
For $\nu \in(-1,0)$, we have

$$
I_{n}^{(2)}(x) \leq \int_{0}^{1-1 /(n \theta)} \frac{d \zeta}{1-\zeta}+\int_{0}^{1-1 /(n \theta)} \frac{\zeta^{\nu}-1}{1-\zeta} d \zeta \leq \log (n \theta)+\int_{0}^{1} \frac{\zeta^{\nu}\left(1-\zeta^{-\nu}\right)}{1-\zeta} d \zeta
$$

By the inequality $\zeta^{-\nu}+(1-\zeta)^{-\nu} \geq 1,0<-\nu<1$, we get

$$
I_{n}^{(2)}(x) \leq \log (n \theta)+\int_{0}^{1} \frac{\zeta^{\nu}}{(1-\zeta)^{\nu+1}} d \zeta=\log (n \theta)-\frac{\pi}{\sin (\nu \pi)} \leq \mathcal{C} \log n
$$

Thus, $A_{1}(x) \leq \mathcal{C}\left\|f_{n} u\right\| \log n$. Quite the same estimate holds for $\left|B_{1}(x)\right|$, so that we have

$$
\begin{equation*}
\left|Y_{1}(x)\right| \leq \mathcal{C}\left\|f_{n} u\right\| \log n \tag{2.5}
\end{equation*}
$$

In a similar way we give the corresponding estimate for $\left|Y_{3}(x)\right| \leq\left|A_{3}(x)\right|+$ $\left|B_{3}(x)\right|$, where

$$
\left|A_{3}(x)\right|=\mathcal{C} a_{n} u(x)\left|p_{n}(x)\right|\left|\int_{x+a_{n} / n}^{\theta a_{n}} p_{n-1}(t) f_{n}(t) w(t) \frac{d t}{x-t}\right|
$$

and

$$
\left|B_{3}(x)\right|=\mathcal{C} a_{n} u(x)\left|p_{n-1}(x)\right|\left|\int_{x+a_{n} / n}^{\theta a_{n}} p_{n}(t) f_{n}(t) w(t) \frac{d t}{x-t}\right|
$$

In that case we also obtain

$$
\begin{equation*}
\left|Y_{3}(x)\right| \leq \mathcal{C}\left\|f_{n} u\right\| \log n \tag{2.6}
\end{equation*}
$$

In order to estimate $\left|Y_{2}(x)\right|$ we represent it in the form

$$
\begin{aligned}
\left|Y_{2}(x)\right| & \left.\leq \mathcal{C} a_{n} u(x) \int_{x-a_{n} / n}^{x+a_{n} / n} \frac{p_{n}(x) p_{n-1}(t)-p_{n-1}(x) p_{n}(t)}{x-t} f_{n}(t) w(t) d t \right\rvert\, \\
& \leq \mathcal{C} \int_{x-a_{n} / n}^{x+a_{n} / n}\left|R_{n}(x, t)\right|\left(f_{n}(t) w(t)\right) d t \leq \mathcal{C}\left\|f_{n} u\right\| \int_{x-a_{n} / n}^{x+a_{n} / n}\left|R_{n}(x, t)\right| d t,
\end{aligned}
$$

where

$$
\left|R_{n}(x, t)\right|=a_{n} \frac{u(x) w(t)}{u(t)}\left|\frac{p_{n}(x) p_{n-1}(t)-p_{n-1}(x) p_{n}(t)}{x-t}\right|=U_{1}+U_{2}
$$

with

$$
U_{1}=a_{n} \frac{u(x) w(t)}{u(t)}\left|\frac{p_{n}(x)-p_{n}(t)}{x-t}\right| \leq a_{n} \frac{u(x) w(t)}{u(t)}\left|p_{n}^{\prime}(\xi)\right|\left|p_{n-1}(t)\right|
$$

for some ξ such that $|\xi-t|<|x-t|$, and similarly

$$
U_{2} \leq a_{n} \frac{u(x) w(t)}{u(t)}\left|p_{n-1}^{\prime}(\eta)\right|\left|p_{n}(t)\right|
$$

for some η such that $|\eta-t|<|x-t|$.
Using (2.4), the Bernstein inequality and $w(\xi) \sim w(x) \sim w(t)$ (cf. [3]) we find $U_{1}=a_{n} \frac{u(x) \sqrt{w(t)}}{u(t) \sqrt{w(\xi)}}\left|\sqrt{w(\xi)} p_{n}^{\prime}(\xi)\right|\left|\sqrt{w(t)} p_{n-1}(t)\right| \leq a_{n}\left(\frac{\mathcal{C}_{1} n}{a_{n} \sqrt{a_{n}}}\right)\left(\frac{\mathcal{C}_{2}}{\sqrt{a_{n}}}\right) \leq \frac{\mathcal{C} n}{a_{n}}$, as well as $U_{2} \leq \mathcal{C} n / a_{n}$. Thus,

$$
\begin{equation*}
\left|Y_{2}(x)\right| \leq \mathcal{C}\left\|f_{n} u\right\| . \tag{2.7}
\end{equation*}
$$

Finally, according to (2.5)-(2.7) we conclude that

$$
\left|u(x) S_{n}\left(w, f_{n} ; x\right)\right| \leq \mathcal{C}\left\|f_{n} u\right\| \log n
$$

i.e., (2.2).

In order to estimate the error we have

$$
\left\|\left[f-\chi_{n} S_{n}\left(w, \chi_{n} f\right)\right] u\right\|_{\infty} \leq\left\|\left(f-\chi_{n} f\right) u\right\|_{\infty}+\left\|\left(f-S_{n}\left(w, \chi_{n} f\right)\right) \chi_{n} u\right\|_{\infty}
$$

By Proposition 1.1, we get

$$
\left\|\left(f-\chi_{n} f\right) u\right\|_{\infty} \leq \mathcal{C}\left(E_{n}(f)_{u, \infty}+e^{-A n}\|f u\|_{\infty}\right)
$$

where \mathcal{C} and A are independent of f and n and $M=\left[n\left(\frac{\theta}{1+\theta}\right)^{\beta}\right]$.
Moreover,

$$
\begin{aligned}
& \left\|\left(f-S_{n}\left(w, \chi_{n} f\right)\right) \chi_{n} u\right\|_{\infty} \leq\left\|\left(f-P_{n}\right) \chi_{n} u\right\|_{\infty} \\
& \quad+\left\|S_{n}\left(w,\left(P_{n}-f\right) \chi_{n}\right) \chi_{n} u\right\|_{\infty}+\left\|S_{n}\left(w,\left(1-\chi_{n}\right) P_{n}\right) \chi_{n} u\right\|_{\infty}
\end{aligned}
$$

By Proposition 1.1 and (2.2) the first two terms on the right side are dominated by $E_{n}(f)_{u} \log n$.

For the last term we observe that for each $F \in C_{u}$ we have

$$
\left\|S_{n}(w, F) \chi_{n} u\right\|_{\infty} \leq \mathcal{C} n^{1 / 3}(\log n)\|F u\|_{\infty} .
$$

In order to prove this we can repeat the proof of (2.2) recalling that (2.4) is true for $|x| \leq \theta a_{n}(u)$, but in $\left[-a_{n}, a_{n}\right]$ the inequality [1]

$$
\left|p_{n}(w ; x)\right| \leq \mathcal{C} \frac{n^{1 / 3}}{\sqrt{a_{n}}}
$$

holds.
Then, we have

$$
\begin{aligned}
\left\|S_{n}\left(w,\left(1-\chi_{n}\right) P_{n}\right) \chi_{n} u\right\|_{\infty} & \leq \mathcal{C} n^{1 / 3}(\log n) \max _{\left[\theta a_{n}(u),+\infty\right)}\left|P_{n} u\right|(x) \\
& \leq \mathcal{C} n^{1 / 3}(\log n) e^{-A n}\left\|P_{n} u\right\|_{\infty} \\
& \leq \mathcal{C} e^{-A n}\|f u\|_{\infty}
\end{aligned}
$$

using the "finite-infinite range inequality."
At the end of this section we give an important consequence of the previous theorem. Namely, we consider a generalized Laguerre weight $w_{\alpha}(x):=w_{\alpha, \beta}(x)=$ $x^{\alpha} e^{-x^{\beta}}, \alpha>-1, \beta>1 / 2$, for $x>0$ and the corresponding sequence of orthonormal polynomials $\left\{p_{n}\left(w_{\alpha}\right)\right\}$ with the positive leading coefficients. For a continuous function f in $(0,+\infty)\left(f \in C^{0}(0,+\infty)\right)$ we can write its Fourier sum in the system $p_{n}\left(w_{\alpha}\right)$ as

$$
S_{n}\left(w_{\alpha}, f ; x\right)=\sum_{k=0}^{n-1} c_{k} p_{k}\left(w_{\alpha} ; x\right), \quad c_{k}=\int_{0}^{+\infty} f(t) p_{k}\left(w_{\alpha} ; t\right) w_{\alpha}(t) d t
$$

If $u(x)=x^{\gamma} e^{-x^{\beta} / 2}, \gamma \geq 0$, is another generalized Laguerre weight, we introduce the space of functions

$$
C_{u}=\left\{f \in C^{0}(0,+\infty):(f u)(x)=o(1) \text { for } x \rightarrow 0^{+} \text {or } x \rightarrow+\infty\right\}
$$

equipped with the norm $\|f\|_{C_{u}}=\|f u\|=\sup _{x \geq 0}|(f u)(x)|$ and we study the behaviour of $S_{n}\left(w_{\alpha}, f\right)$ in C_{u}.

First, we observe that with $W(x)=|x|^{2 \alpha+1} e^{-x^{2 \beta}}$, we have $a_{n}=a_{n}\left(w_{\alpha}\right)=$ $a_{2 n}^{2}(W) \sim n^{1 / \beta}$ (cf. [3]).

Let χ_{n}^{*} be the corresponding characteristic function of the interval $\left[0, \theta a_{n}\right]$, where $\theta \in(0,1)$. Now, we consider the sequence $\left\{\chi_{n}^{*} S_{n}\left(w_{\alpha}, \chi_{n}^{*} f\right)\right\}$ in C_{u}.

Denoting by $E_{M}(f)_{u}=\inf _{P_{M} \in \mathcal{P}_{M}}\left\|\left(f-P_{M}\right) u\right\|$, the error of the best approximation, we can prove the following result:
Theorem 2.2. Let $w_{\alpha}(x)=x^{\alpha} e^{-x^{\beta}}, x>0, \alpha>-1, \beta>1 / 2$, and $u(x)=$ $x^{\gamma} e^{-x^{\beta} / 2}, \gamma \geq 0$, and assume the conditions

$$
\max \left\{0, \frac{\alpha}{2}+\frac{1}{4}\right\} \leq \gamma<\frac{\alpha}{2}+\frac{3}{4}
$$

Then, for all $f \in C_{u}$, we have

$$
\left\|\chi_{n}^{*} S_{n}\left(w_{\alpha}, \chi_{n}^{*} f\right) u\right\| \leq\left\|f \chi_{n}^{*} u\right\|(\log n)
$$

and

$$
\left\|\left[f-\chi_{n}^{*} S_{n}\left(w_{\alpha}, \chi_{n}^{*} f\right)\right] u\right\| \leq \mathcal{C}\left[E_{M}(f)_{u}(\log n)+e^{-A n}\|f u\|\right],
$$

where $M=\left[n\left(\frac{\theta}{1+\theta}\right)^{\beta}\right]$, and A and \mathcal{C} are positive constants independent of n and f.
Proof. We set $F(x)=f\left(x^{2}\right) \sigma(x)=|x|^{2 \gamma} e^{-|x|^{2 \beta} / 2}, x \in \mathbb{R}$, and denote by $\widetilde{\chi}_{n}$ the characteristic function of the interval $A_{n}:=\left[-\widetilde{\theta} a_{2 n}(W), \widetilde{\theta} a_{2 n}(W)\right]$ for some $\widetilde{\theta} \in(0,1)$. Then, by Theorem 2.1 with $2 \alpha+1$ instead of α and 2γ instead of γ, we have

$$
\left\|\widetilde{\chi}_{n} S_{2 n}\left(W, \widetilde{\chi}_{n} F\right) \sigma\right\| \leq \mathcal{C}\left\|\widetilde{\chi}_{n} F \sigma\right\|(\log n)
$$

if the parameters α and γ satisfy the condition

$$
\max \left\{0, \frac{\alpha}{2}+\frac{1}{4}\right\} \leq \gamma<\frac{\alpha}{2}+\frac{3}{4}
$$

Now we have

$$
\left.\sup _{x \in A_{n}}|F(x)| x\right|^{2 \gamma} e^{-|x|^{2 \beta} / 2}\left|=\sup _{x \in\left[0, \theta a_{2 n}^{2}(W)\right]}\right| f(x) x^{\gamma} e^{-x^{\beta} / 2} \mid=\left\|f u \chi_{n}^{*}\right\|,
$$

since $a_{n}\left(w_{\alpha}\right)=a_{2 n}^{2}(W)$ and $\theta=\widetilde{\theta}^{2} \in(0,1)$.
We also have $S_{2 n}\left(W, \widetilde{\chi}_{n} F ; x\right)=S_{n}\left(w_{\alpha}, \chi_{n}^{*} f ; x^{2}\right)$, for which

$$
\left\|S_{2 n}\left(W, \widetilde{\chi}_{n} F\right) \widetilde{\chi}_{n} U\right\|=\left\|S_{n}\left(w_{\alpha}, \chi_{n}^{*} f\right) \chi_{n}^{*} u\right\|
$$

and the first part of the theorem follows.
The error estimate follows in a similar way.
Finally, we observe that the conditions on the weights are independent on the parameter β and an interesting special case is $\beta=1$ (generalized Laguerre systems).

REFERENCES

1. T. Kasuga and R. SakaI: Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (2003), 13-53.
2. G. Mastroianni: Polynomial inequalities, functional spaces and best approximation on the real semiaxis with Laguerre weights, In: Orthogonal Polynomials, Approximation Theory and Harmonic Analysis (Inzel, 2000), Electron. Trans. Numer. Anal. 14 (2002), 125-134.
3. G. Mastroianni and J. Szabados: Polynomial approximation on the real semiaxis with generalized Laguerre weights. Stud. Univ. Babeş-Bolyai Math. 52 (2007), no. 4, (2007), 105-128.
4. H. N. Mhaskar and E. B. Saff: Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc. 285 (1984), 203-234.
5. H. N. Mhaskar and E. B. Saff: Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
6. E. A. Rakhmanov: On asymptotic properties of polynomials orthogonal on the real axis. Mat. Sbornik 119 (161) (1982), 163-203 (Russian) [Engl. transl. Math. USSR Sb. 47 (1984), 155-193].

Dipartimento di Matematica
Università della Basilicata
Via dell'Ateneo Lucano 10
85100 Potenza, Italy
giuseppe.mastroianni@unibas.it

University of Niš
Faculty of Electronic Engineering
Department of Mathematics
P.O. Box 73

18000 Niš, Serbia
grade@junis.ni.ac.yu

