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ON THE CONVERGENCE OF THE THIRD ORDER
ROOT-SOLVER∗

M. S. Petković, Lj. D. Petković and S. M. Ilić

Abstract. The construction of computationally verifiable initial conditions that
provide both the guaranteed and fast convergence of a numerical method for
solving nonlinear equations is one of the most important tasks in the field of
iterative processes. A suitable convergence procedure, based partially on Smale’s
“point estimation theory” from 1981, is applied in this paper to a new cubically
convergent derivative free iterative method for the simultaneous approximation of
simple zeros of polynomials. We have stated initial conditions which guarantee
the convergence of this method. These conditions are of significant practical
importance since they depend only on available data: the coefficients of a given
polynomial, its degree n and initial approximations to polynomial zeros.

1. Introduction

Last years a great attention is paid to state computationally verifiable
initial conditions which enable both the guaranteed and fast convergence
of the applied iterative method for solving a nonlinear equation f(z) = 0.
This challenging problem of the theory and practice of iterative processes
is often considered in the literature during the last fifty years, but the re-
sults were rather of theoretical importance; namely, the established initial
conditions depend on unattainable data such as suitable (but unknown) con-
stants, “reasonable good initial approximations” (without a proper estimate
of their accuracy), or even the sought zeros of an equation to be solved.

In general, the construction of computationally verifiable initial condi-
tions is a very difficult problem, even in the case of simple functions such
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as algebraic polynomials. A great progress in this topic was made in 1981
when Stiven Smale [14] developed a concept known as point estimation the-
ory which treats convergence condition using only the information of f at
the initial point z0. Considering a monic polynomial of the form

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 (ai ∈ C)

in the spirit of Smale’s approach, initial conditions should depend only on
the coefficients of P , its degree n and initial approximations z

(0)
1 , . . . , z

(0)
n to

the zeros ζ1, . . . , ζn of P.

For m = 0, 1, . . . and i ∈ In := {1, . . . , n} let

d(m) = min
1≤i,j≤n

i6=j

|z(m)
i − z

(m)
j |

be the minimal distance between approximations obtained in the mth iter-
ation by an iterative root-solvers, and let

W
(m)
i =

P (z(m)
i )

n∏
j=1
j 6=i

(z(m)
i − z

(m)
j )

, w(m) = max
1≤i≤n

|W (m)
i |.

Let us note that W
(m)
i is often called the Weierstrass correction since it ap-

peared in Weierstrass’ work [19]. In [17] D. Wang and Zhao refined Smale’s
result for Newton’s method and applied it to the Weierstrass (or Durand-
Kerner) method for the simultaneous approximation of simple zeros of poly-
nomials. Their procedure led to an initial condition of the form

w(0) ≤ cn · d(0).(1)

The constant cn, which depends only on the polynomial degree n, should
be chosen to be as large as possible, see the discussion in [6], [8] and [13].
A quite different approach given in [5] for the same method, also resulted
in the condition of the form (1). Results which are related to the point
estimation theory and iterative processes for the simultaneous determination
of polynomial zeros were presented in [1, 4, 5, 6, 8, 9, 13, 16, 17, 18] and the
book [7]. Convergence analysis presented in these papers and [7] showed that
the condition (1) is quite suitable for a wide class of simultaneous methods.

In this paper we state initial conditions that guarantee the convergence
of the new cubically convergent iterative method for the simultaneous de-
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termination of simple zeros of the polynomial P,

z
(m+1)
i = z

(m)
i − W

(m)
i

1− P (z(m)
i −W

(m)
i )

P (z(m)
i )

(i ∈ In; m = 0, 1, 2, . . .).(2)

This method was proposed in [12] and the following theorem was proved
therein:

Theorem 1. If z1, . . . , zn are sufficiently close approximations to the zeros
ζ1, . . . , ζn of P, the order of convergence of the iterative method (4) is three.

Remark 1. The simultaneous method (2) can be derived from the Newton-secant
method (see Traub [15, p. 184])

φ = z +
u(z)f(z)

f
(
z − u(z)

)− f(z)
, u(z) =

f(z)
f ′(z)

taking z = zi, f ≡ P and substituting Weierstrass’ correction Wi in the above
formula instead of Newton’s correction u(z).

Remark 2. The efficient a posteriori error bound method based on the method (2),
which gives automatically the upper error bound of the obtained approximations,
was proposed in [11].

Remark 3. The method (2) requires less numerical operations than another deriva-
tive free method of the third order, the so-called the Börsch-Supan method [2],

z
(m+1)
i = z

(m)
i − W

(m)
i

1−
n∑

j=1
j 6=i

W
(m)
j

z
(m)
j − z

(m)
i

(i ∈ In; m = 0, 1, . . .).

Considering Theorem 1 we observe that the cubic convergence of the
method (2) is stated under initial conditions that assume “sufficiently close
approximations to the exact zeros,” without any quantitative (and computa-
tionally verifiable) characterization of the closeness of these approximations
to the zeros. To overcome this difficult that appear in the traditional treating
the convergence conditions based on the asymptotical convergence analysis,
in Section 3 we present computationally verifiable initial conditions, which
is of significant practical importance.
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2. Preliminary Results

Most of the iterative methods for the simultaneous approximation of
polynomial zeros can be represented in the form

z
(m+1)
i = z

(m)
i − Ci(z

(m)
1 , . . . , z(m)

n ) (i ∈ In, m = 0, 1, . . .),(3)

where z
(m)
1 , . . . , z

(m)
n are some distinct approximations to the zeros ζi, . . . , ζn

respectively, obtained in the m-th iterative step by the method (3). The
term

C
(m)
i = Ci(z

(m)
1 , . . . , z(m)

n ) (i ∈ In)

is often called the iterative correction or simply the correction.
Let Λ(ζi) be a reasonably close neighborhood of the zero ζi (i ∈ In) of

P. The convergence theorem which will be used in our study of the method
(2) assumes that corrections Ci can be represented in the form

Ci(z1, . . . , zn) =
P (zi)

Fi(z1, . . . , zn)
(i ∈ In),(4)

where the function (z1, . . . , zn) 7→ Fi(z1, . . . , zn) satisfies the following con-
ditions for each i ∈ In :

1◦ Fi(ζ1, . . . , ζn) 6= 0,

2◦ Fi(z1, . . . , zn) 6= 0 for distinct approximations zi ∈ Λ(ζi),
3◦ Fi(z1, . . . , zn) is continuous in Cn.

In the convergence analysis we will use a real function t 7→ g(t) defined
on the open interval (0, 1) by

g(t) =





1 + 2t, 0 < t ≤ 1
2
,

1
1− t

,
1
2

< t < 1.

The following theorem [7, Theorem 5.1] (see, also, [6]) has the main role
in our convergence analysis of the simultaneous method (2).
Theorem 2. Let the iterative method (3) have the correction term of the
form (4) for which the conditions 1◦−3◦ hold, and let z

(0)
1 , . . . , z

(0)
n be distinct

initial approximations to the zeros of P. If there exists a real number β ∈
(0, 1) such that the following two inequalities

(i) |C(m+1)
i | ≤ β|C(m)

i | (m = 0, 1, . . .),
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(ii) |z(0)
i − z

(0)
j | > g(β)

(
|C(0)

i |+ |C(0)
j |

)
(i 6= j, i, j ∈ In),

are valid, then the iterative method (3) is convergent.

Remark 4. The assertions (i) and (ii) are concerned with the monotonicity of the
sequences of corrections

{
C

(m)
i

}
and the disjunctivity of disks

{
z
(0)
1 ; g(β)|C(0)

1 |}, . . . ,
{
z(0)
n ; g(β)|C(0)

n |}

(see (5)), respectively.

The proof of Theorem 2 is similar to that proved in [8], where the function
g is defined in a slightly different manner. For this reason, we omit the proof.

To provide estimates of some complex quantities, in this paper we use
some properties of circular complex interval arithmetic. For more details see
[10, Ch. 1].

A disk Z with center c = midZ and radius r = radZ will be denoted
with Z = {c; r} = {z : |z − c| ≤ r}. If Zk = {ck; rk} (k = 1, 2), then

Z1 ± Z2 := {c1 ± c2; r1 + r2} = {z1 ± z2 : z ∈ Z1, z2 ∈ Z2},
{c1; r1} ∩ {c2; r2} = ∅ ⇔ |c1 − c2| > r1 + r2,(5)
w{c ; r} = {wc ; |w|r} (w ∈ C),
max {0, |midZ| − rad Z} ≤ |z| ≤ |midZ|+ radZ for all z ∈ Z.(6)

The product Z1 · Z2 is defined as in [3]:

Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2}.

In particular, from the last formula one obtains

{c; r}n = {cn; (|c|+ r)n − |c|n}.(7)

If F (Z) ⊇ {f(z) : z ∈ Z} is a circular interval extension of a given
closed complex function f over a disk Z, then

z ∈ Z ⇒ f(z) ∈ F (Z).(8)

We note that all considerations in this paper are given for n ≥ 3 regarding
that algebraic equations of the order ≤ 2 are trivial.
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3. Initial Conditions and Guaranteed Convergence

In this section we apply Theorem 2 and an initial condition of the form
(1) to state the convergence theorem for the simultaneous method (2). To
simplify the denotation, we will omit sometimes the iteration index m and
denote quantities in the subsequent (m + 1)-st iteration by ̂ (“hat”). For
example, the iterative formula (2) is written as follows,

ẑi = zi − Wi

1− qi
(i ∈ In),(9)

where qi = P (zi −Wi)/P (zi).
In our analysis we will use Lagrange’s interpolation formula

P (z) =

(
n∑

j=1

Wj

z − zj
+ 1

)
n∏

j=1

(z − zj)

= Wi

∏

j 6=i

(z − zj) +
n∏

j=1

(z − zj)

(∑

j 6=i

Wj

z − zj
+ 1

)
.(10)

For z = zi −Wi from (10) one obtains

P (zi −Wi) = −Wi

∏

j 6=i

(zi −Wi − zj)
∑

j 6=i

Wj

zi −Wi − zj
.

Taking into account that P (zi) = Wi

∏

j 6=i

(zi − zj), we find

qi =
P (zi −Wi)

P (zi)
= −

∏

j 6=i

(
1− Wi

zi − zj

)∑

j 6=i

Wj

zi −Wi − zj
.(11)

Before establishing the main results, we give some necessary inequalities
in the following lemma.

Lemma 1. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n, and let ẑ1, . . . , ẑn be new respective approxi-
mations obtained by the iterative method (9). If d̂ = min

j 6=i
|ẑi − ẑj | and the

inequality

w := max
1≤i≤n

|Wi| < 2
9(n− 1)

d = cnd(12)

holds, then for i, j ∈ In we have
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(i) |qi| < 0.32; (ii) |Ŵi| < 1
5 |Wi|;

(iii) |Ŵi| < 2
9(n− 1)

d̂ = cnd̂.

Proof. (i) We will often use the inequality (12) written in the form

w

d
<

2
9(n− 1)

= cn ≤ 1
9

(13)

without being cited. Using the definition of w and the minimal distance d,
we find

|zi − zj | ≥ d, |zi −Wi − zj | ≥ |zi − zj | − |Wi| ≥ d− w.(14)

Applying (13) and (14), from (11) we estimate

|qi| ≤
∏

j 6=i

∣∣∣1− Wi

zi − zj

∣∣∣
∑

j 6=i

|Wj |
|zi −Wi − zj | ≤

∏

j 6=i

(
1 +

w

d

)
· (n− 1)w

d− w

< (1 + cn)n−1 (n− 1)cn

1− cn
<

e2/9

9
2 − 1

n−1

≤ e2/9

4
≈ 0.3122 < 0.32.

(ii) By (i) of Lemma 1 we find

|ẑi − zi| = |Wi|
|1− qi| ≤

|Wi|
1− |qi| < 1.5|Wi| < d

3(n− 1)
,(15)

|ẑi − zj | ≥ |zi − zj | − |ẑi − zi| > d− d

3(n− 1)
=

n− 4/3
n− 1

d,(16)

|ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | > d− 2d

3(n− 1)
=

n− 5/3
n− 1

d.(17)

From the iterative formula (9) we have

Wi

ẑi − zi
= qi − 1

so that, using (11), we obtain

n∑

j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+

∑

j 6=i

Wj

ẑi − zj
+ 1 = qi +

∑

j 6=i

Wj

ẑi − zj

= −
∏

j 6=i

(
1− Wi

zi − zj

) ∑

j 6=i

Wj

zi −Wi − zj
+

∑

j 6=i

Wj

ẑi − zj
.(18)
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Since
0 <

|Wi|
|zi − zj | ≤

w

d
< cn,

it follows
Wi

zi − zj
∈ {0; cn}.

Applying circular arithmetic operations (Section 2), (7) and (8), we find

−
∏

j 6=i

(
1− Wi

zi − zj

)
∈ −

∏

j 6=i

(1− {0; cn}) = −{1; cn}n−1

⊂ −
{

1; (1 + cn)n−1 − 1
}

=
{
−1;

(
1 +

2
9(n− 1)

)n−1
− 1

}

⊂
{
−1; e2/9 − 1

}
⊂ {−1; 0.25}.

Using this inclusion we return into (18) and obtain

n∑

j=1

Wj

ẑi − zj
+ 1 ∈ {−1; 0.25}

∑

j 6=i

Wj

zi −Wi − zj
+

∑

j 6=i

Wj

ẑi − zj

=
{∑

j 6=i

Wj

( 1
ẑi − zj

− 1
zi −Wi − zj

)
; 0.25

∑

j 6=i

|Wj |
|zi −Wi − zj |

}

⊂
{

ηi;
0.25(n− 1)w

d− w

}
⊂

{
ηi;

1
16

}
=: Zi,

where

midZi = ηi = (zi −Wi − ẑi)
∑

j 6=i

Wj

(ẑi − zj)(zi −Wi − zj)
, radZi =

1
16

.

By (i) of Lemma 1 we estimate

|zi −Wi − ẑi| =
∣∣∣ Wi

1− qi
−Wi

∣∣∣ = |Wi| |qi|
1− |qi| < |Wi| 0.32

1− 0.32
< 0.5w.(19)

According to (13), (16) and (19) we find the upper bound of |ηi|,

|ηi| ≤ |zi −Wi − ẑi|
∑

j 6=i

|Wj |
|ẑi − zj ||zi −Wi − zj | < 0.5w

(n− 1)w
n− 4/3
n− 1

d · (d− w)

<
0.5(n− 1)2c2

n

(n− 4/3)(1− cn)
<

1
60

.
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Using (6) and the above bounds we estimate
∣∣∣∣∣

n∑

j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ < |midZi|+ radZi <
1
60

+
1
16

<
2
25

.(20)

Furthermore, by the inequalities (15) and (17) we obtain

∏

j 6=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣ ≤
∏

j 6=i

(
1+

|ẑj − zj |
|ẑi − ẑj |

)
<

∏

j 6=i

(
1+

1
3(n−1)d

n−5/3
n−1 d

)
=

(
1+

1
3(n− 5/3)

)n−1
.

The sequence defined by un =
(
1+ 1

3(n−5/3)

)n−1
is monotonically decreasing

so that un ≤ u3 = 1.5625, and whence

∏

j 6=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣ < 1.5625.(21)

From (10) we obtain for z = ẑi

P (ẑi) = (ẑi − zi)
( n∑

j=1

Wi

ẑi − zj
+ 1

)∏

j 6=i

(ẑi − zj)

so that, after dividing by
∏

j 6=i(ẑi − ẑj), we find

Ŵi = (ẑi − zi)
( n∑

j=1

Wi

ẑi − zj
+ 1

)∏

j 6=i

ẑi − zj

ẑi − ẑj
.

Starting from the last relation and using the estimates (15), (20) and (21),
we obtain

|Ŵi| = |ẑi − zi|
∣∣∣

n∑

j=1

Wi

ẑi − zj
+ 1

∣∣∣
∏

j 6=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣ < 1.5|Wi| · 2
25
· 1.5625 <

1
5
|Wi|,

which proves (ii) of Lemma 1.
We make use of (ii) of Lemma 1, (13) and (17) to get

|Ŵi| < 1
5
|Wi| < 1

5
· 2d

9(n− 1)
<

2
45(n− 1)

· n− 1
n− 5/3

d̂ <
2

9(n− 1)
d̂.

Therefore, we have proved the implication

w

d
< cn ⇒ ŵ

d̂
< cn,
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which completes the proof of the assertion (iii) of Lemma 1. ¤
Using Lemma 1 and Theorem 2 we establish the convergence theorem

for the iterative method (2).

Theorem 3. The iterative method (2) is convergent under the condition

w(0) <
2

9(n− 1)
d(0).(22)

Proof. From (2) we observe that corrections C
(m)
i are given by

C
(m)
i =

W
(m)
i

1− P (z(m)
i −W

(m)
i )

P (z(m)
i )

=
W

(m)
i

1− q
(m)
i

.(23)

Let us note that these corrections have the required form Ci =
P (zi)

F (z1, . . . , zn)
with

F (z1, . . . , zn) = (1− qi)
∏

j 6=i

(zi − zj).(24)

To prove the convergence of the method (2), we will show that the as-
sertion (i) of Theorem 2 holds in this particular case. Therefore, we should
prove that the sequences {C(m)

i } (i ∈ In), given by (23), are monotonically
decreasing. Starting from (23) and omitting iteration indices we obtain by
(15) (which holds under the condition (22))

|Ci| = |ẑi − zi| < 1.5|Wi|.(25)

In Lemma 1 (assertion (iii)) we have proved the implication

w

d
< cn ⇒ ŵ

d̂
< cn.

In a similar way we prove by induction that the initial condition (22) implies
w(m) < cnd(m) for each m = 1, 2, . . . . Hence, by (ii) of Lemma 1 we get

|W (m+1)
i | < 1

5
|W (m)

i | (i ∈ In, m = 0, 1, . . .).

Taking into consideration this inequalities and the inequalities (12) and (24),
we find

|Ĉi|<1.5|Ŵi|< 3
10
|Wi|= 3

10

∣∣∣ Wi

1− qi

∣∣∣|1− qi|= 3
10
|Ci||1− qi|< 3

10
|Ci|(1+0.32),



On the Convergence of the Third Order Root-Solver 101

whence
|Ĉi| < 0.4|Ci|.(26)

Using the same argumentation we prove by induction that |C(m+1)
i | <

0.4|C(m)
i | is valid for each i ∈ In and m = 0, 1, . . . . Therefore, the sequences

{C(m)
i } (i ∈ In) given by (23) are monotonically decreasing, which completes

the first part of the theorem (see the assertion (i) of Theorem 2.).
Let us prove now the assertion (ii) of Theorem 2. From (26) we see

that β = 0.4 ∈ (0, 0.5) and calculate g(β) = g(0.4) = 1.8 using formula
g(β) = 1 + 2β. By (22) and (25) we find

|z(0)
i − z

(0)
j | ≥ d(0) >

9
2
(n− 1)w(0) >

9(n− 1)
2

· |C
(0)
i |

1.5
= 3(n− 1)|C(0)

i |.

Hence, it follows

|z(0)
i − z

(0)
j | > 3(n− 1)

2

(
|C(0)

i |+ |C(0)
j |

)
> g(0.4)

(
|C(0)

i |+ |C(0)
j |

)

since 3(n− 1)/2 > g(0.4) = 1.8 for every n ≥ 3.

Finally, since
∏

j 6=i

(zi − zj) 6= 0 and |qi| < 0.32 < 1,

it follows from (24) that F never takes the value 0. Therefore, the iterative
method (2) is well defined. ¤
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