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TWO CONJECTURES FOR INTEGRALS WITH OSCILLATORY
INTEGRANDS∗

Gradimir V. Milovanović, Aleksandar S. Cvetković
and Marija P. Stanić

Abstract. We present two conjectures connected with highly oscillatory integrals. A
connection of validity of these conjectures with the existence of certain quadrature rules
is also presented.

1. Introduction

In [4] we considered the following quadrature rule

(1.1)
∫ 1

−1

f(x)dx =
n∑

k=1

σkf(xk) + Rn(f),

where the nodes xk and the weights σk, k = 1, . . . , n, are chosen such that this
quadrature rule is exact on the linear span F2n(ζ) of the following functions xk cos ζx,
xk sin ζx, k = 0, 1, . . . , n − 1, ζ ∈ R. Such quadrature rules were considered firstly
by Ixaru [2] and Ixaru and Paternoster [3], but they have not proved the existence
of such quadrature rules. Numerical method for constructing such quadrature rules
is presented only with antisymmetric nodes in (−1, 1) and symmetric weights for
n ≤ 6 and 0 < ζ < 50.

In [4] the existence question was solved partially. Namely, we proved existence of
such a quadrature rule with all positive (all negative) nodes. The existence question
for the quadrature rule (1.1) which have the both positive and negative nodes is
not solved, yet.
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We give a brief survey of results presented in [4]. For a given n ∈ N and the
set of nodes {x1, . . . , xn} we put x = (x1, . . . , xn) and define the node polynomial
ω(x) = ω(n)(x) by ω(x) =

∏n
k=1(x − xk). For the brevity we introduce, for ν, µ =

1, . . . , n, the following notation

ων(x) =
ω(x)

x− xν
=

∏

k 6=ν

(x− xk), ων,µ(x) =
ω(x)

(x− xν)(x− xµ)
=

∏

k 6=ν,µ

(x− xk),

and `ν(x) = ων(x)/ων(xν), as well as

(1.2) Φν(x) =
∫ 1

−1

ων(x) sin ζ(x− xν)dx, ν = 1, . . . , n.

Suppose we are given mutually different nodes xk, k = 1, . . . , n, of the quadra-
ture rule (1.1). Then the weights can be expressed in the following form (see [4,
Theorem 2.1])

(1.3) σk =
∫ 1

−1

`k(x) cos ζ(x− xk)dx, k = 1, . . . , n.

Let xk, k = 1, . . . , n, be the nodes of the quadrature rule (1.1). Then they
satisfy the following system of equations (see [4, Theorem 2.2])

(1.4)
∫ 1

−1

ων(x) sin ζ(x− xν)dx = 0, ν = 1, . . . , n.

Suppose that x = (x1, . . . , xn) is a solution of the system of equations (1.4).
Under the assumption xk 6= xj , k 6= j, k, j = 1, . . . , n, we have that xk, k = 1, . . . , n,
are the nodes of the quadrature rule (1.1).

Let xν , ν = 1, . . . , n, be the nodes of the quadrature rule (1.1). Then, provided
σν 6= 0, ν = 1, . . . , n, the Jacobian at the solution xν , ν = 1, . . . , n, of the system
(1.4) is non-singular (see [4, Theorem 2.3]).

The system of nonlinear equations (1.4) was the main topic in [4]. In the cases
sin 2ζ ≥ 0 and sin 2ζ ≤ 0 we rewrote the system of equations (1.4) in the following
forms

xν = ΨC
ν (x) =

1
ζ

(
arctan

∫ 1

−1
ων(x) sin ζxdx

∫ 1

−1
ων(x) cos ζxdx

+ kνπ

)
, ν = 1, . . . , n, kν ∈ Z,

and

xν = ΨS
ν (x) =

1
ζ

(
arccot

∫ 1

−1
ων(x) cos ζxdx

∫ 1

−1
ων(x) sin ζxdx

+ kνπ

)
, ν = 1, . . . , n, kν ∈ Z,

respectively.
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Using these transformed systems of nonlinear equations the existence of men-
tioned quadrature rule (1.1) which has the both positive and negative nodes can
be given under two conjectures, one for the case sin 2ζ < 0 and the second one for
sin 2ζ > 0 (more details can be found in [6]). These two conjectures are given in
Section 2.

2. Conjectures

Firstly, we consider the case sin 2ζ < 0. Let introduce the following notation

bν = (N − ν + 1)
π

ζ
, ν = 1, . . . , N, N = [ζ/π]

where [t] denotes integer part of t.

We consider the integrals

(2.1) In = sgn(sin ζ)
∫ 1

−1

t

n∏
ν=1

(t2 − b2
ν) sin ζt dt, n = 0, 1, . . . , N.

For ζ > 0 and sin 2ζ < 0 it is easy to see that

I0 = sgn(sin ζ)
∫ 1

−1

t sin ζt dt =
1

| sin ζ|
−ζ sin 2ζ + 2 sin2 ζ

ζ2
> 0.

Based on numerous numerical experiments we can state the following conjecture:

Conjecture 2.1. Suppose that ζ > 0 and sin 2ζ < 0. Then In > 0 for each
n = 1, . . . , N .

Using the well known formula (cf. [1, 1.431, p. 43])

(2.2) sin x = x

+∞∏

k=1

(
1− x2

k2π2

)
,

for x = ζ we obtain a product where the first N factors are negative and all others
are positive. Because of that, we have

sgn(sin ζ) = (−1)N ,

and then

(2.3) In = (−1)N

∫ 1

−1

n∏
ν=1

(t2 − b2
ν)t sin ζt dt, n = 1, . . . , N.
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Replacing (2.2) for x = ζt in (2.3) we obtain

In = 2ζ(−1)N+n

∫ 1

0

t2
n∏

ν=1

(t2−b2
ν)2

N∏

`=1

ζ2

`2π2

N−n∏

`=1

(
`2π2

ζ2
− t2

) +∞∏

`=N+1

(
1− t2ζ2

`2π2

)
dt

(empty product is equal to 1). From the previous formula it is easy to see that
IN > 0.

In these integrals for n = 1, . . . , N − 1, all factors are positive except for the

product
N−n∏
`=1

(
`2π2

ζ2 − t2
)
. This means that integrand changes its sign N − n times

in the interval (0, 1). Let denote integrand by fn(t; ζ), i.e.,

fn(t; ζ) = t2
n∏

ν=1

(t2 − b2
ν)2

N∏

`=1

ζ2

`2π2

N−n∏

`=1

(
`2π2

ζ2
− t2

) +∞∏

`=N+1

(
1− t2ζ2

`2π2

)
.

In Figure 2.1 the graph of function fn(t; ζ), t ∈ (0, 1), for ζ = 100 and n = 1 (left)
and n = 2 (right) is given.

Fig. 2.1: Graph of function fn(t; ζ), t ∈ (0, 1), for ζ = 100, n = 1 (left) and n = 2
(right)

In the numerous numerical experiments we saw that In has the same sign as the
function fn(t; ζ) after the last sign change, i.e., that In > 0, n = 1, . . . , N − 1.

Under condition that Conjecture 2.1 is true it is possible to prove that in the
case when ζ > 0 and sin 2ζ < 0 for all x = (x1, . . . , x2n+1) ∈ Bn, where

(2.4) Bn =
n×

ν=1
([−bν , 0]× [0, bν ])× [−bn+1, bn+1], n < N,

the following inequality

(2.5) sgn(sin ζ)
∫ 1

−1

2n+1∏
ν=1

(t− xν) sin ζt dt > 0

holds. This inequality is of great importance for solving the existence of the quadra-
ture rule (1.1) in general for the case sin 2ζ < 0.
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In order to prove the inequality (2.5) we need some auxiliary results.

Let A : P 7→ R be linear functional on P (P− set of all polynomials). Denote
with σn,k elementary symmetric functions

σn,k = (−1)k
∑

(i1,...,ik)

xi1 . . . xik
, k = 0, 1, . . . , n,

where summation is performed over all combinations, without repetition, of length
k of numbers 1, . . . , n (see [5]). Every polynomial p of degree n with real zeros
x1, . . . , xn can be represented in the following form

p(x) =
n∑

k=0

σn,n−kxk.

We denote the vector of zeros of a polynomial p with x = (x1, . . . , xn) and
consider the following problem: Find

min
x∈C

Ap = min
x∈C

n∑

k=0

σn,n−kAxk,

for a given compact and connected set C ∈ Rn. For that purpose we define the
function Φ in the following way

Φ(x) = Ap, x ∈ C.

Now, our problem is to determine min
x∈C

Φ(x).

Lemma 2.1. The function Φ is harmonic on C \ ∂C.

Proof. Every elementary symmetric function is obviously harmonic, i.e., satis-
fies the Laplace’s equation

∆σn,k = 0, k = 0, 1, . . . , n,

where ∆ is the Laplacian. Because Φ is a linear combination of harmonic functions
it is also harmonic.

According to the strong maximum (minimum) principle for the harmonic func-
tions we have the following lemma.

Lemma 2.2. The maximum (minimum) value of Φ on C must occur on ∂C, i.e.,

max
x∈C

(min
x∈C

)Φ(x) = max
x∈∂C

( min
x∈∂C

)Φ(x).

Because of that, our problem is to determine min
x∈∂C

Φ(x).
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Lemma 2.3. If the set Bn is defined with (2.4) then

max
x∈Bn

( min
x∈Bn

)Φ(x)

= max(min)
ki∈{0,1},i=1,...,2n+1

A
n∏

ν=1

(x + bν)1−k2ν−1xk2ν−1(x− bν)1−k2ν xk2ν ×(2.6)

×(x + bn+1)1−k2n+1(x− bn+1)k2n+1 .

Proof. According to Lemma 2.2 we have that

max
x∈Bn

( min
x∈Bn

)Φ(x) = max
x∈∂Bn

( min
x∈∂Bn

)Φ(x),

and all we need to do is to describe ∂Bn. Every point x = (x1, . . . , x2n+1), which
satisfies the following conditions

−bν < x2ν−1 < 0, 0 < x2ν < bν , ν = 1, . . . , n, −bn+1 < x2n+1 < bn+1,

is an interior point for the set Bn.
The point x = (x1, . . . , x2n+1) ∈ ∂Bn if exists an index ν (∈ {1, . . . , n}) such

that x2ν−1 = −bν or x2ν−1 = 0 or if exists ν (∈ {1, . . . , n}) such that x2ν = bν or
x2ν = 0 or if x2n+1 = ±bn+1. Therefore, our max(min) must occur in some of such
boundary point. The function Φ is harmonic. We can choose x1 = −b1 or x1 = 0,
and define the following two functions

Φ−b1
2 (x2, . . . , x2n+1) = Φ(−b1, x2, . . . , x2n+1),

Φ0
2(x2, . . . , x2n+1) = Φ(0, x2, . . . , x2n+1).

Obviously, the function Φ−b1
2 , as well as the function Φ0

2, is also harmonic on

B1
n = [0, b1]×

n×
ν=2

([−bν , 0]× [0, bν ])× [−bn+1, bn+1].

Thus, any of these two functions must achieve max(min) on ∂B1
n. Now, we fix

x2 = 0 or x2 = b1. Continuing in this manner we get the equation (2.6).

We rewrite the equation (2.6) in the following way

(2.7) max
x∈Bn

( min
x∈Bn

)Φ(x) = max
x∈Qn

( min
x∈Qn

)Φ(x),

where Qn ⊂ ∂Bn, such that x = (x1, . . . , x2n+1) ∈ Qn if x2ν−1 ∈ {−bν , 0}, x2ν ∈
{0, bν}, ν = 1, . . . , n, and x2n+1 ∈ {−bn+1, bn+1}.

In the sequel we consider only polynomials p2n+1 with zeros x ∈ Qn for some
nonnegative integer n and we will not explicitly mark that.

According to Lemma 2.3 we have

sgn(sin ζ)
∫ 1

−1

2n+1∏
ν=1

(t− xν) sin ζt dt ≥ min
x∈Qn

sgn(sin ζ)
∫ 1

−1

p2n+1(t) sin ζt dt.
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Therefore, the inequality (2.5) will be true if

(2.8) min
x∈Qn

sgn(sin ζ)
∫ 1

−1

p2n+1(t) sin ζt dt > 0.

Under the condition that Conjecture 2.1 is true, we can prove the following
result.

Theorem 2.1. Let ζ > 0, sin 2ζ < 0, N = [ζ/π], and let all integrals In in (2.1)
be positive. Then, for n ≤ N ,

min
x∈Qn

sgn(sin ζ)
∫ 1

−1

p2n+1(t) sin ζt dt = In.

Proof. First of all we note the following trivial fact

sgn(sin ζ)
∫ 1

−1

n∏
ν=1

(t2 − b2
ν)(t± bn+1) sin ζt dt = In.

At the beginning, we prove the assertion for n = 1. Since

I1 = sgn(sin ζ)
∫ 1

−1

(t2 − b2
1)t sin ζt dt,

we consider all other possible cases with respect to values of zeros x1, x2, x3 as
follows. At first

I1,2
1 = sgn(sin ζ)

∫ 1

−1

(t + b1)t(t± b2) sin ζt dt = sgn(sin ζ)
∫ 1

−1

(t3 ± b1b2t) sin ζt dt,

and it is easy to see that I1,2
1 − I1 = b1(b1± b2)I0 > 0 since b1 > b2 > 0 and I0 > 0.

On a similar way, for

I3,4
1 = sgn(sin ζ)

∫ 1

−1

(t− b1)t(t± b2) sin ζt dt = sgn(sin ζ)
∫ 1

−1

(t3 ∓ b1b2t) sin ζt dt,

we have I3,4
1 − I1 = b1(b1 ∓ b2)I0 > 0.

Finally,

I5,6
1 = sgn(sin ζ)

∫ 1

−1

t2(t± b2) sin ζt dt = sgn sin ζ

∫ 1

−1

t3 sin ζt dt,

and I5,6
1 − I1 = b2

1I0 > 0.
Therefore, we have already proved that

min
x∈Q1

sgn(sin ζ)
∫ 1

−1

p3(t) sin ζt dt = I1.
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Next, we prove that if

min
x∈Qn−1

sgn(sin ζ)
∫ 1

−1

p2n−1(t) sin ζt dt = In−1

for some integer 2 ≤ n ≤ N − 1, then

min
x∈Qn

sgn(sin ζ)
∫ 1

−1

p2n+1(t) sin ζt dt = In.

We have three crucial steps in proof. First one is to prove that in case when
we change one symmetric factor t2 − b2

` , 1 ≤ ` ≤ n, in
∏n

ν=1(t
2 − b2

ν) with any
possible nonsymmetric case, as well as the another symmetric case (t2), the obtained
integrals are greater than In. According to possible values of zeros x2`−1, x2` and
x2n+1 it is easy to see that there are six such cases. Let denote the corresponding
integrals with Ii

n, i = 1, . . . , 6, and consider all of them. So, we have

I1,2
n = sgn(sin ζ)

∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)(t + b`)t(t± bn+1) sin ζt dt

= sgn(sin ζ)
∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)(t3 ± b`bn+1t) sin ζt dt,

and

I1,2
n − In = b`(b` ± bn+1) sgn(sin ζ)

∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t sin ζt dt > 0,

because b` > bn+1 > 0 and

sgn(sin ζ)
∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t sin ζt dt ≥ In−1 > 0

(the equality in previous inequality holds for ` = n).
Similarly, one has

I3,4
n = sgn(sin ζ)

∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t(t− b`)(t± bn+1) sin ζt dt

= sgn(sin ζ)
∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)(t3 ∓ b`bn+1t) sin ζt dt,

and, again,

I3,4
n − In = b`(b` ∓ bn+1) sgn(sin ζ)

∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t sin ζt dt > 0.
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Finally,

I5,6
n = sgn(sin ζ)

∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t2(t± bn+1) sin ζt dt

= sgn(sin ζ)
∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t3 sin ζt dt

and

I5,6
n − In = b2

` sgn(sin ζ)
∫ 1

−1

n∏
ν=1
ν 6=`

(t2 − b2
ν)t sin ζt dt ≥ b2

`In−1 > 0.

The second step in this proof is to prove the following assertion: If p2n+1,k(t),
1 < k ≤ n, is a polynomial with k pairs of nonsymmetric zeros and

I
(k)
2n+1 = sgn(sin ζ)

∫ 1

−1

p2n+1,k(t) sin ζt dt

then there exists p2n+1,k−1 such that I
(k)
2n+1 > I

(k−1)
2n+1 .

Let (i1, i2, . . . , in) be an arbitrary permutation without repetition of the follow-
ing set {1, 2, . . . , n}. The possible values of I

(k)
2n+1 are

I
(k)
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏

`=1

(t+bi`
)

k∏

ν=k−j+1

(t−biν )tk
n∏

µ=k+1

(t2−b2
iµ

)(t±bn+1) sin ζt dt,

for 0 ≤ j ≤ k (empty product equals to 1 by definition).
Let suppose that 0 < j < k, choose arbitrary indices is, 1 ≤ s ≤ k − j and ir,

k − j + 1 ≤ r ≤ k and consider the following integrals:

I
(k−1),1
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏
`=1
6̀=s

(t + bi`
)

k∏

ν=k−j+1

(t− biν )tk−1(t2 − b2
is

)×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt

and

I
(k−1),2
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏

`=1

(t + bi`
)

k∏
ν=k−j+1

ν 6=r

(t− biν )tk−1(t2 − b2
ir

)×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt.
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Our aim is to prove that one of the differences I
(k)
2n+1− I

(k−1),1
2n+1 or I

(k)
2n+1− I

(k−1),2
2n+1 is

positive. It is easy to see that these differences are equal to the following expressions

I
(k)
2n+1 − I

(k−1),1
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏
`=1
l6=s

(t + bi`
)

k∏

ν=k−j+1

(t− biν )tk−1 ×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1)(t2 + tbis
− t2 + b2

is
) sin ζt dt

= bis
sgn(sin ζ)

∫ 1

−1

k−j∏

`=1

(t + bi`
)

k∏

ν=k−j+1

(t− biν
)tk−1 ×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt

and

I
(k)
2n+1 − I

(k−1),2
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏

`=1

(t + bi`
)

k∏
ν=k−j+1

ν 6=r

(t− biν )tk−1 ×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1)(t2 − tbir − t2 + b2
ir

) sin ζt dt

= −bir sgn(sin ζ)
∫ 1

−1

k−j∏

`=1

(t + bi`
)

k∏

ν=k−j+1

(t− biν )tk−1 ×

×
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt.

Since the obtained integrals on the right hand sides of these differences are the
same and bis , bir > 0, we can conclude that one of considered differences is positive.

In the cases j = 0 and j = k we have the following integrals

I
(k),+
2n+1 = sgn(sin ζ)

∫ 1

−1

k∏

`=1

(t + bi`
)tk

n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt

and

I
(k),−
2n+1 = sgn(sin ζ)

∫ 1

−1

k∏

`=1

(t− bi`
)tk

n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt.

Changing variable t with −t in I
(k),−
2n+1 we obtain

I
(k),−
2n+1 = sgn(sin ζ)

∫ 1

−1

k∏

`=1

(t + bi`
)tk

n∏

µ=k+1

(t2 − b2
iµ

)(t∓ bn+1) sin ζt dt.
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Therefore, we need to prove our assertion for I
(k),+
2n+1 . Now, we prove that obtained

integral I
(k),+
2n+1 for j = 0 is greater than the corresponding integral I

(k)
2n+1 for j = 1.

For this purpose we consider the following difference

sgn(sin ζ)
∫ 1

−1

k∏

`=1

(t + bi`
)tk

n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt

− sgn(sin ζ)
∫ 1

−1

k∏

`=2

(t + bi`
)(t− bi1)t

k
n∏

µ=k+1

(t2 − b2
iµ

)(t± bn+1) sin ζt dt

= 2bi1 sgn(sin ζ)
∫ 1

−1

k∏

`=2

(t + bi`
)(t± bn+1)tk

n∏

µ=k+1

(t2 − b2
iµ

) sin ζt dt.

All we need to prove is that for all 1 < k ≤ n the following inequality

Jk = sgn(sin ζ)
∫ 1

−1

k∏

`=2

(t + bi`
)(t± bn+1)tk

n∏

µ=k+1

(t2 − b2
iµ

) sin ζt dt > 0

holds.
Firstly, we prove that J2 > 0, and then that Jk+1 > Jk holds for all k < n.
Since

J2 = sgn(sin ζ)
∫ 1

−1

(t + bi2)(t± bn+1)t2
n∏

µ=3

(t2 − b2
iµ

) sin ζt dt

= sgn(sin ζ)
∫ 1

−1

(t2 + (bi2 ± bn+1)t± bi2bn+1)t2
n∏

µ=3

(t2 − b2
iµ

) sin ζt dt

= (bi2 ± bn+1) sgn(sin ζ)
∫ 1

−1

n∏
µ=3

(t2 − b2
iµ

)t3 sin ζt dt > 0,

because of bi2 ± bn+1 > 0 and

sgn(sin ζ)
∫ 1

−1

n∏
µ=3

(t2 − b2
iµ

)t3 sin ζt dt > In−1 > 0,

we get

Jk+1 − Jk = sgn(sin ζ)
∫ 1

−1

k+1∏

`=2

(t + bi`
)(t± bn+1)tk+1

n∏

µ=k+2

(t2 − b2
iµ

) sin ζt dt

− sgn(sin ζ)
∫ 1

−1

k∏

`=2

(t + bi`
)(t± bn+1)tk

n∏

µ=k+1

(t2 − b2
iµ

) sin ζt dt

= bik+1 sgn(sin ζ)
∫ 1

−1

k+1∏

`=2

(t + bi`
)(t± bn+1)tk

n∏

µ=k+2

(t2 − b2
iµ

) sin ζt dt > 0,
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because of bik+1 > 0 and

sgn(sin ζ)
∫ 1

−1

k+1∏

`=2

(t + bi`
)(t± bn+1)tk

n∏

µ=k+2

(t2 − b2
iµ

) sin ζt dt > In−1 > 0.

Therefore, our assertion has been proved completely.

The third step is to prove that the integrals obtained when some of k symmetric
factors, 2 < k ≤ n, in the product

∏n
ν=1(t

2 − b2
ν) are changed with the another

symmetric factors (i.e., with t2), and some of them are changed with nonsymmetric
factors, are greater than In. So, we have to consider the following integrals

I
(k),0
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏

`=p+1

(t + bi`
)

k∏

ν=k−j+q+1

(t− biν )tk−p−q
n∏

µ=k+1

(t2 − b2
iµ

)×

×t2(p+q)(t± bn+1) sin ζt dt

for all 0 ≤ j ≤ k and for all 0 ≤ p ≤ k − j and 0 ≤ q ≤ j such that p2 + q2 6= 0.

Let s be an arbitrary number satisfying 1 ≤ s ≤ p or k − j + 1 ≤ s ≤ k − j + q.
If we change t2 in the previous integrals with t2 − b2

is
we get

I
(k−1),0
2n+1 = sgn(sin ζ)

∫ 1

−1

k−j∏

`=p+1

(t + bi`
)

k∏

ν=k−j+q+1

(t− biν )tk−p−q
n∏

µ=k+1

(t2 − b2
iµ

)×

×t2(p+q)−2(t2 − b2
is

)(t± bn+1) sin ζt dt.

It is easy to see that

I
(k),0
2n+1 − I

(k−1),0
2n+1 = b2

is
sgn(sin ζ)

∫ 1

−1

k−j∏

`=p+1

(t + bi`
)

k∏

ν=k−j+q+1

(t− biν )tk−p−q ×

×
n∏

µ=k+1

(t2 − b2
iµ

)t2(p+q)−2(t± bn+1) sin ζt dt > 0,

because the integral on the right hand side is greater than In−1. According to the
first step (integrals I5,6

n for k = 1) the inequality I
(k),0
2n+1 > In holds.

With these three steps the statement of this theorem is proved.

Thus, the inequality (2.5) is a direct corollary of Theorem 2.1 and Conjecture 2.1.

Now, we can consider the case sin 2ζ > 0. Introducing the notation

aν =
(

N − ν +
1
2

)
π

ζ
, ν = 1, . . . , N, N = [ζ/π],
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and

IC
n = sgn(sin ζ)

∫ 1

−1

n∏
ν=1

(t2 − a2
ν) cos ζt dt, n = 0, 1, . . . , N,

it is easy to see that

IC
0 = sgn(sin ζ)

∫ 1

−1

cos ζt dt =
2| sin ζ|

ζ
> 0.

According to the numerous numerical experiments we can state the second con-
jecture.

Conjecture 2.2. Suppose that ζ > 0 and sin 2ζ > 0. Then IC
n > 0 for each

n = 1, . . . , N .

Analogously as in the case sin 2ζ < 0, under condition that Conjecture 2.2
is true it is possible to prove that in case when ζ > 0 and sin 2ζ > 0 for all
x = (x1, . . . , x2n) ∈ An, where

An =
n×

ν=1
([−aν , 0]× [0, aν ]) , n = 1, . . . , N,

the following inequality

sgn(sin ζ)
∫ 1

−1

2n∏
ν=1

(t− xν) cos ζt dt > 0

holds.
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6. M. Stanić: Generalized quadrature formulas of Gaussian type. Ph. D. Thesis,
University of Kragujevac, Kragujevac, 2007 (in Serbian).
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