APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS DEFINED BY FINITE SUM

Ovidiu T. Pop

Abstract

In this paper we start from a class of linear and positive operators defined by finite sum. We consider the associated GBS operators and we give an approximation of B-continuous and B-differentiable functions by these operators. Through particular cases, we obtain statement verified by the GBS operators of Bernstein, Stancu, Schurer and Schurer-Stancu type.

1. Introduction

In this section, we recall some notions and results which we will use in this article.

In the following, let X and Y be real intervals. A function $f: X \times Y$ is called B-continuous function in $\left(x_{0}, y_{0}\right) \in X \times Y$ if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=0 .
$$

Here $\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=f(x, y)-f\left(x_{0}, y\right)-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right)$ denotes a so-called mixed difference of f.

The definition of B-continuity was introduced by K. Bögel in the paper [9] and [10].

A function $f: X \times Y \rightarrow \mathbb{R}$ is called B-differentiable function in $\left(x_{0}, y_{0}\right) \in X \times Y$ if it exists and if the limit is finite

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}=\frac{\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]}{\left(x-x_{0}\right)\left(y-y_{0}\right)} .
$$

Received October 25, 2005.
2000 Mathematics Subject Classification. 41A10, 41A25, 41A35, 41A36, 41A63.

This limit is named the B-differential of f in the point $\left(x_{0}, y_{0}\right)$ and is noted by $D_{B} f\left(x_{0}, y_{0}\right)$.

The function $f: X \times Y \rightarrow \mathbb{R}$ is B-bounded on $X \times Y$ if there exists $K>0$ such that

$$
|\Delta f[(x, y),(s, t)]| \leq K
$$

for any $(x, y),(s, t) \in X \times Y$.
We shall use the function sets

$$
B(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f \text { bounded on } X \times Y\}
$$

with the usual sup-norm $\|\cdot\|_{\infty}$,

$$
B_{b}(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f B \text {-bounded on } X \times Y\}
$$

and we set $\|f\|_{B}=\sup _{(x, y),(s, t) \in X \times Y}|\Delta f[(x, y),(s, t)]|$ where $f \in B_{b}(X \times Y)$,

$$
C_{b}(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f B \text {-continuous on } X \times Y\}
$$

and

$$
D_{b}(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f B \text {-differentiable on } X \times Y\}
$$

Let $f \in B_{b}(X \times Y)$. The function $\omega_{\text {mixed }}(f ; \cdot, \cdot):[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)=\sup \left\{|\Delta f[(x, y),(s, t)]|| | x-s\left|\leq \delta_{1},|y-t| \leq \delta_{2}\right\}\right. \tag{1.1}
\end{equation*}
$$

for any $\left(\delta_{1}, \delta_{2}\right) \in[0, \infty) \times[0, \infty)$ is called the mixed modulus of smoothness.
For other information, see the following papers: [1], [3], [15] and [19].
Let the functions test $e_{i j}: X \times Y \rightarrow \mathbb{R}, e_{i j}(x, y)=x^{i} y^{j}$ for any $(x, y) \in$ $X \times Y$, where $i, j \in \mathbb{N}$.

The inequality of Corollary 5 from [4], in the condition of (1.2), becomes (1.3) inequality. The (1.4) inequality is demonstrated in [17].

Theorem 1.1. Let $L: C_{b}(X \times Y) \rightarrow B(X \times Y)$ be a linear positive operator and $U L: C_{b}(X \times Y) \rightarrow B(X \times Y)$ the associated $G B S$ operator. Supposing that the operator L has the property

$$
\begin{equation*}
\left(L(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y)=\left(L(\cdot-x)^{2 i}\right)(x, y)\left(L(*-y)^{2 j}\right)(x, y) \tag{1.2}
\end{equation*}
$$

for any $(x, y) \in X \times Y$ and any $i, j \in\{1,2\}$, where "." and "*" stand for the first and second variable.
(i) For any $f \in C_{b}(X \times Y)$, any $(x, y) \in X \times Y$ and any $\delta_{1}, \delta_{2}>0$, we have

$$
\begin{align*}
& |f(x, y)-(U L f)(x, y)| \leq|f(x, y)|\left|1-\left(L e_{00}\right)(x, y)\right| \tag{1.3}\\
& +\left[\left(L e_{00}\right)(x, y)+\delta_{1}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)}+\delta_{2}^{-1} \sqrt{\left(L(*-y)^{2}\right)(x, y)}\right. \\
& \left.\quad+\delta_{1}^{-1} \delta_{2}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)}\right] \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right) .
\end{align*}
$$

(ii) For any $f \in D_{b}(X \times Y)$ with $D_{B} f \in B(X \times Y)$, any $(x, y) \in X \times Y$ and any $\delta_{1}, \delta_{2}>0$, we have

$$
\begin{align*}
\mid f(x, y) & -(U L f)(x, y)\left|\leq\left|f(x, y) \| 1-\left(L e_{00}\right)(x, y)\right|\right. \tag{1.4}\\
& +3\left\|D_{B} f\right\|_{\infty} \sqrt{\left(L(\cdot-x)^{2}(x, y)\left(L(*-y)^{2}\right)(x, y)\right.} \\
& +\left[\sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)}\right. \\
& +\delta_{1}^{-1} \sqrt{\left(L(\cdot-x)^{4}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)} \\
& +\delta_{2}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{4}\right)(x, y)} \\
& \left.+\delta_{1}^{-1} \delta_{2}^{-1}\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)\right] \omega_{\text {mixed }}\left(D_{B} f ; \delta_{1}, \delta_{2}\right) .
\end{align*}
$$

The following Korovkin type theorem for convergence of B-continuous functions is due to C. Badea, I. Badea and H. H. Gonska (see [2]).

Theorem 1.2. Let $\left(L_{m, n}\right)_{m, n \geq 1}$ be a sequence of linear positive bivariate operators, $L_{m, n}: C_{b}([a, b] \times[c, d]) \rightarrow B([a, b] \times[c, d]), m, n \in \mathbb{N}, m \neq 0$ and $n \neq 0$. If
(i) $\left(L_{m, n} e_{00}\right)(x, y)=1$,
(ii) $\left(L_{m, n} e_{10}\right)(x, y)=x+u_{m, n}(x, y)$,
(iii) $\left(L_{m, n} e_{01}\right)(x, y)=y+v_{m, n}(x, y)$,
(iv) $\left(L_{m, n}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}+w_{m, n}(x, y)$
for any $(x, y) \in[a, b] \times[c, d]$, any non zero natural number m, n and
(v) $\lim _{m, n \rightarrow \infty} u_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} v_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} w_{m, n}(x, y)=0$ uniformly on $[a, b] \times[c, d]$, then the sequence $\left(U L_{m, n}\right)_{m, n \geq 1}$ converge to f, uniformly on $[a, b] \times[c, d]$ for any function $f \in C_{b}([a, b] \times[c, d])$.

2. Preliminaries

Let $I, J, K \subset \mathbb{R}$ intervals, $J \subset K$ and $I \cap J \neq \varnothing$. For any non zero natural number m, we consider the sequence of nodes $\left(\left(x_{m, k}\right)_{k=\overline{0, m}}\right)_{m \geq 1}$ such that $x_{m, k} \in I \cap J, k \in\{0,1, \ldots, m\}$ and the functions $p_{m, k}^{*}: K \rightarrow \mathbb{R}$ with the property that $p_{m, k}^{*}(x) \geq 0$ for any $x \in J$ and $k \in\{0,1, \ldots, m\}$.

Definition 2.1. Let m be a non zero natural number. Define the operator $L_{m}^{*}: E(I) \rightarrow F(K)$ by

$$
\begin{equation*}
\left(L_{m}^{*} f\right)(x)=\sum_{k=0}^{m} p_{m, k}^{*}(x) f\left(x_{m, k}\right) \tag{2.1}
\end{equation*}
$$

for any function $f \in E(I)$ and any $x \in K$, where $E(I)$ and $F(K)$ are subsets of the set of real function defined on I, respectively on K.

Proposition 2.1. The operator $\left(L_{m}^{*}\right)_{m \geq 1}$ are linear and positive on $E(I \cap J)$.

Proof. The proof follows immediately.
In the following, we suppose that for any function $f \in C(I)$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m}^{*} f\right)(x)=f(x) \tag{2.2}
\end{equation*}
$$

uniformly on $I \cap J$ and

$$
\begin{equation*}
\left(L_{m}^{*} e_{0}\right)(x)=1 \tag{2.3}
\end{equation*}
$$

for any $x \in K$ and any non zero natural number m.
Definition 2.2. Let m and n be non zero natural numbers. The operator $L_{m, n}^{*}: E(I \times I) \rightarrow F(K \times K)$ defined for any function $f \in E(I \times I)$ and any $(x, y) \in K \times K$ by

$$
\begin{equation*}
\left(L_{m, n}^{*} f\right)(x, y)=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{*}(x) p_{n, j}^{*}(y) f\left(x_{m, k}, y_{n, j}\right) \tag{2.4}
\end{equation*}
$$

is named the bivariate operator of L^{*} type.

Proposition 2.2. The operator $\left(L_{m, n}^{*}\right)_{m, n \geq 1}$ are linear and positive on $E[(I \times I) \cap(J \times J)]$.

Proof. The proof follows immediately.
Definition 2.3. Let m and n be a non zero natural numbers. The operator $U L_{m, n}^{*}: E(I \times I) \rightarrow F(K \times K)$ defined for any function $f \in E(I \times I)$ and any $(x, y) \in K \times K$ by
(2.5) $\left(U L_{m, n}^{*} f\right)(x, y)$

$$
=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{*}(x) p_{n, j}^{*}(y)\left[f\left(x_{m, k}, y\right)+f\left(x, x_{n, j}\right)-f\left(x_{m, k}, x_{n, j}\right)\right]
$$

is named GBS operator of L^{*} type.

3. Main Results

Lemma 3.1. For any non zero natural numbers m, n and any $(x, y) \in$ $K \times K$

$$
\begin{equation*}
\left(L_{m, n}^{*}(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y)=\left(L_{m}^{*}(\cdot-x)^{2 i}\right)(x)\left(L_{n}^{*}(*-y)^{2 j}\right)(y) \tag{3.1}
\end{equation*}
$$

takes place.

Proof. We have

$$
\begin{aligned}
&\left(L_{m, n}^{*}(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y) \\
&=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{*}(x) p_{n, j}^{*}(y)\left(x_{m, k}-x\right)^{2 i}\left(x_{n, j}-y\right)^{2 j} \\
&=\sum_{k=0}^{m} p_{m, k}^{*}(x)\left(x_{m, k}-x\right)^{2 i} \sum_{j=0}^{n} p_{n, j}^{*}(y)\left(x_{n, j}-y\right)^{2 j} \\
&=1\left(L_{m}^{*}(\cdot-x)^{2 i}\right)(x)\left(L_{n}^{*}(*-y)^{2 j}\right)(y)
\end{aligned}
$$

so (3.1) takes place.
Lemma 3.2. The operators $\left(L_{m, n}^{*}\right)_{m, n \geq 1}$ verify

$$
\begin{align*}
& \left(L_{m, n}^{*} e_{00}\right)(x, y)=1 \tag{3.2}\\
& \left(L_{m, n}^{*} e_{10}\right)(x, y)=x+u_{m, n}(x, y) \tag{3.3}\\
& \left(L_{m, n}^{*} e_{01}\right)(x, y)=y+v_{m, n}(x, y) \tag{3.4}\\
& \left(L_{m, n}^{*}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}+w_{m, n}(x, y) \tag{3.5}
\end{align*}
$$

for any $(x, y) \in(I \times I) \cap(J \times J)$, any non zero natural numbers m, n and

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} u_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} v_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} w_{m, n}(x, y)=0 \tag{3.6}
\end{equation*}
$$

uniformly on $(I \times I) \cap(J \times J)$.

Proof. Applying Lemma 3.1, we have

$$
\left(L_{m, n}^{*} e_{00}\right)(x, y)=\left(L_{m}^{*} e_{0}\right)(x)\left(L_{n}^{*} e_{0}\right)(y)
$$

and taking (2.1) into account, it results (3.2). From (2.2), by BohmanKorovkin theorem, it results that the functions $u_{m}, w_{m}: I \cap J \rightarrow \mathbb{R}$ exist such that

$$
\begin{align*}
& \left(L_{m}^{*} e_{1}\right)(x)=x+u_{m}(x) \tag{3.7}\\
& \left(L_{m}^{*} e_{2}\right)(x)=x^{2}+w_{m}(x) \tag{3.8}
\end{align*}
$$

for any $x \in I \cap J$, any non zero natural number m and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{m}(x)=\lim _{m \rightarrow \infty} w_{m}(x)=0 \tag{3.9}
\end{equation*}
$$

uniform on $I \cap J$.
For $(x, y) \in(I \times I) \cap(J \times J), m, n \in \mathbb{N}, m \neq 0, n \neq 0$ and taking Lemma 3.1 and (2.3) into account, we have

$$
\left(L_{m, n}^{*} e_{10}\right)(x, y)=\left(L_{m}^{*} e_{1}\right)(x)\left(L_{n}^{*} e_{0}\right)(y)=\left(L_{m}^{*} e_{1}\right)(x)
$$

¿From (3.7) considering $u_{m, n}(x, y)=u_{m}(x)$, we obtain (3.3). Similarly follows (3.4). We have

$$
\begin{aligned}
\left(L_{m, n}^{*}\left(e_{20}+e_{02}\right)\right)(x, y) & =\left(L_{m, n}^{*} e_{20}\right)(x, y)+\left(L_{m, n}^{*} e_{02}\right)(x, y) \\
& =\left(L_{m}^{*} e_{2}\right)(x)\left(L_{n}^{*} e_{0}\right)(y)+\left(L_{m}^{*} e_{0}\right)(x)\left(L_{n}^{*} e_{2}\right)(y) \\
& =x^{2}+y^{2}+w_{m, n}(x, y)
\end{aligned}
$$

when, taking (3.8) into account and $w_{m, n}(x, y)=w_{m}(x)+w_{n}(y)$.
Thus, the relations (3.2)-(3.5) take place and from the definition of the functions $u_{m, n}, v_{m, n}$ and $w_{m, n}$, it results that the relation (3.6) holds.

Theorem 3.1. The sequence $\left(U L_{m, n}^{*} f\right)_{m, n \geq 1}$ converges uniformly to the function f on $(I \times I) \cap(J \times J)$, for any $f \in C_{b}[(I \times I) \cap(J \times J)]$.

Proof. It results from Lemma 3.2 and Theorem 1.2.
For the operators constructed in this sections, we note

$$
\delta_{m}(x)=\sqrt{\left(L_{m}^{*} \varphi_{x}^{2}\right)(x)}, \quad \delta_{m, x}=\sqrt{\left(L_{m}^{*} \varphi_{x}^{4}\right)(x)}
$$

where $x \in I \cap J, m \in \mathbb{N}, m \neq 0$ and $\varphi_{x}: I \rightarrow \mathbb{R}, \varphi_{x}(t)=|t-x|$, for any $t \in I$. Then, taking Lemma 3.1 into account, the Theorem 1.1 becomes:

Theorem 3.2. (i) For any function $f \in C_{b}(I \times I)$, any $(x, y) \in(I \times I) \cap$ $(J \times J)$, any non zero natural number m, n, we have

$$
\begin{align*}
\left|f(x, y)-\left(U L_{m, n}^{*} f\right)(x, y)\right| \leq(1 & +\delta_{1}^{-1} \delta_{m}(x)+\delta_{2}^{-1} \delta_{n}(y) \tag{3.10}\\
& \left.+\delta_{1}^{-1} \delta_{2}^{-1} \delta_{m}(x) \delta_{n}(y)\right) \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)
\end{align*}
$$

for any $\delta_{1}, \delta_{2}>0$ and

$$
\begin{equation*}
\left|f(x, y)-\left(U L_{m, n}^{*} f\right)(x, y)\right| \leq 4 \omega_{\text {mixed }}\left(f ; \delta_{m}(x), \delta_{n}(y)\right) . \tag{3.11}
\end{equation*}
$$

(ii) For any function $f \in D_{b} \in(I \times I)$ with $D_{B} f \in B(I \times I)$, any $(x, y) \in(I \times I) \cap(J \times J)$, any non zero natural number m, n, any $\delta_{1}, \delta_{2}>0$, we have

$$
\begin{align*}
& \left|f(x, y)-\left(U L^{*} f\right)(x, y)\right| \leq 3\left\|D_{B} f\right\|_{\infty} \delta_{m}(x) \delta_{n}(y) \tag{3.12}\\
& +\left[\delta_{m}(x) \delta_{n}(y)+\delta_{1}^{-1} \delta_{m, x} \delta_{n}(y)+\delta_{2}^{-1} \delta_{m}(x) \delta_{n, y}\right. \\
& \\
& \left.+\quad \delta_{1}^{-1} \delta_{2}^{-1} \delta_{m}^{2}(x) \delta_{n}^{2}(y)\right] \omega_{\operatorname{mixed}}\left(D_{B} f ; \delta_{1}, \delta_{2}\right)
\end{align*}
$$

In the following, we give examples of GBS operators associated, which verify Theorem 3.1 and Theorem 3.2. In these applications, we consider $p_{m, k}^{*}=p_{m, k}$, where $p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k}, m \in \mathbb{N}, m \neq 0, k \in$ $\{0,1, \ldots, m\}, x \in[0,1]$ and $E(I)=C(I), F(K)=C(K)$.

Application 1. If $I=J=K=[0,1], x_{m, k}=\frac{k}{m}$ for $m \in \mathbb{N}, m \neq 0$, $k \in\{0,1, \ldots, m\}$, then we obtain the Bernstein operators $\left(B_{m}\right)_{m \geq 1}$.

Application 2. Let $\alpha \geq 0$ and $\beta \in \mathbb{R}$. If $I=\left[0, \mu^{(\alpha, \beta)}\right], J=K=[0,1]$, $x_{m, k}=\frac{k+\alpha}{m+\beta}, m \in \mathbb{N}, m \geq m_{0}, k \in\{0,1, \ldots, m\}$, then we obtain the Stancu operators $\left(P_{m}^{(\alpha, \beta)}\right)_{m \geq m_{0}}$ (see [16] or [17]).

Application 3. Let p be a natural number. If $I=[0,1+p], J=K=[0,1]$, $p_{m, k}^{*}=\widetilde{p}_{m, k}=p_{m+p, k}, x_{m, k}=\frac{k}{m}, m \in \mathbb{N}, m \neq 0, k \in\{0,1, \ldots, m+p\}$, then we obtain the Schurer operators $\left(\widetilde{B}_{m, p}\right)_{m \geq 1}$ (see [7]).

Application 4. Let p be a natural number and $0 \leq \alpha \leq \beta$. If $I=[0,1+p]$, $J=K=[0,1], p_{m, k}^{*}=\widetilde{p}_{m, k}, x_{m, k}=\frac{k+\alpha}{m+\beta}, m \in \mathbb{N}, m \neq 0, k \in$ $\{0,1, \ldots, m+p\}$, then we obtain the Schurer-Stancu operators $\left(S_{m, p}^{(\alpha, \beta)}\right)_{m \geq 1}$ (see [5]).

Application 5. In this application we consider $I=J=K=[0, \infty)$, $E(I)=F(K)=C_{B}([0, \infty)), p_{m, k}^{*}(x)=(1+x)^{-m}\binom{m}{k} x^{k}, x \in[0, \infty)$ and $x_{m, k}=\frac{k}{m+1-k}, m \in \mathbb{N}, m \neq 0, k \in\{0,1, \ldots, m\}$. Then we obtain the Bleimann, Butzer and Hahn operators $\left(L_{m}\right)_{m \geq 1}$ (see [8]).

REFERENCES

1. I. Badea: Modul de continuitate în sens Bögel şi unele aplicaţii în aproximarea printr-un operator Bernstein. Studia Univ. "Babeş-Bolyai", Ser. Math.-Mech. 18(2) (1973), 69-78 (in Romanian).
2. C. Badea, I. Badea and H. H. Gonska: A test function theorem and approximation by pseudopolynomials. Bull. Australl. Math. Soc. 34 (1986), 53-64.
3. C. Badea, I. Badea, C. Cottin and H. H. Gonska: Notes on the degree of approximation of B-continuous and B-differentiable functions. J. Approx. Theory Appl. 4 (1988), 95-108.
4. C. Badea and C. Cottin: Korovkin-type theorems for generalized Boolean sum operators. Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary) (1990), 51-67.
5. D. BĂRBOSU: GBS operators of Schurer-Stancu type. Annales of Univ. of Craiova, Math. Comp. Sci. Ser. 31 (2003), 1-7.
6. D. BĂrbosu: GBS operators of Bernstein-Schurer (to appear în Mathematica, Cluj-Napoca).
7. D. Bărbosu: Bernstein-Schurer bivariate operators. Rev. Anal. Numer. Théor. Approx. 33, No. 2 (2004), 157-161.
8. B. Bleimann, P. L. Butzer and L. Hahn: A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 42 (1980), 255-262.
9. K. BöGEL: Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math. 170 (1934), 197-217.
10. K. BöGEL: Über mehrdimensionale Differentiation, Integration und beschränkte Variation. J. Reine Angew. Math. 173 (1935), 5-29.
11. K. Bögel: Über mehrdimensionale Differentiation. Jahresber. Deutsch. Mat-Verein (2), 65 (1962), 45-71.
12. M. M. Derriennic: Sur l'approximation des fonctions intégrables sur $[0,1]$ par des polynômes de Bernstein modifiés. J. Approx. Theory 31 (1981), 325-343.
13. J. L. Durrmeyer: Une formule d'inversion de transformée de Laplace: Application à la theorie des moments. Thèse de 3e cycle, Faculté de Sciences de l'Université de Paris, 1967.
14. M. Nicolescu: Contribuţii la o analiză de tip hiperbolic a planului. Şt. Cerc. Mat. III, 1-2 (1952), 7-51 (in Romanian).
15. M. Nicolescu: Analiză matematică, II. Editura Didactică şi Pedagogică, Bucureşti, 1980 (Romanian).
16. O. T. Pop: New properties of the Bernstein-Stancu operators. Anal. Univ. Oradea, Fasc. Matematica, Tom XI (2004), 51-60.
17. O. T. Pop: Approximation of B-differentiable functions by $G B S$ operators. Anal. Univ. Oradea, Fasc. Matematica, Tom XIV (2007), 15-31.
18. D. D. Stancu: Asupra unei generalizări a polinoamelor lui Bernstein. Studia Univ. Babeş-Bolyai, Ser. Math.-Phys. 14 (1969), 31-45 (in Romanian).
19. D. D. Stancu, Gh. Coman, O. Agratini, and R. Trîmbiţaş: Analiză numerică şi teoria aproximării, I. Presa Universitară Clujeană, ClujNapoca (2001) (in Romanian).

National College "Mihai Eminescu"
5 Mihai Eminescu Street
Satu Mare 440014, Romania

Vest University "Vasile Goldiş" of Arad
Branch of Satu Mare
26 Mihai Viteazul Street
Satu Mare 440030, Romania

