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SUPERCRITICAL HOPF BIFURCATION IN DELAY
DIFFERENTIAL EQUATIONS – AN ELEMENTARY PROOF

OF EXCHANGE OF STABILITY

Hamad Talibi Alaoui and Radouane Yafia

Abstract. The local Hopf Bifurcation theorem states that under supercritical
conditions, stability passes from the trivial branch to the bifurcated one. We
give here an “elementary” proof of this result, based on the following steps:
i) reduction to a two-dimensional system via the center manifold technic; ii)
estimation of the distance between solutions of the original and the reduced
equations. Thus there is no reference to the Floquet theory. Incidently, we
obtain an estimate of the stability region.

1. Generalities and the Reduced System

We first recall the Hopf Bifurcation theorem for retarded functional dif-
ferential equations. Consider the system

u̇(t) = Lut + R(α, ut),(1.1)

with the following hypotheses:
(H0) L : C → Rn is a linear continuous operator, R : R×C → Rn is Ck+1,
k ≥ 1, such that R(α, 0) = 0, for all α ∈ R and D2R(α0, 0) = 0, for some
α0 ∈ R; where C = C([−r, 0],Rn), n ∈ N∗, ut(θ) = u(t + θ) for θ ∈ [−r, 0].
(H1) The characteristic equation

∆(λ, α) = 0, with ∆(λ, α) = det (λId− (L + D2R(α, 0))eλ(·)Id)(1.2)

of the linearized equation of equation (1.1) at the equilibrium point 0, has
only roots with a negative real parts for α ≤ α0, and exactly two roots cross
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the imaginary axis at α = α0, at points iν0 and −iν0, with multiplicity 1,
ν0 > 0.

More precisely, if λ(α) is the characteristic root of (1.2), bifurcated from
iν0, we assume that:

(H2)
d

dα
Reλ(α)

∣∣∣
α=α0

> 0.

Denote by (Tα(t))t≥0 the semi group associated with the linearized equa-
tion of (1.1) and by Aα it’s infinitesimal generator. To the continuous branch
of eigenvalues λ(α), we can associate a continuous branch of eigenvectors
a(α) + ib(α).

Let Nα = span{a(α), b(α)} and Φα = (a(α), b(α)). There exists a 2 × 2
matrix B(α) of the following form

B(α) =
(

r(α) β(α)
−β(α) r(α)

)
,

where λ(α) = r(α) + iβ(α) such that AαΦα = ΦαB(α). Using the formal
adjoint theory for FDEs in [5], Nα = {Φα〈Ψα, ϕ〉, ϕ ∈ C} and C can be
decomposed as C = Nα ⊕ Sα, where Ψα = col(e(α), f(α)) is a basis of the
adjoint space N∗

α, such that 〈Ψα, Φα〉 = I (the 2×2 identity matrix) and 〈·, ·〉
is the bilinear form on C∗ × C associated with the adjoint equation of the
linearized equation of (1.1) around 0. Using the decomposition ut = Φαx(t)+
yt, x(t) ∈ R2, yt ∈ Sα in the variation of constants formula introduced in [5],
equation (1.1) reads as





x(t) = eB(α)tx0 +
∫ t

0
eB(α)(t−τ)Ψα(0)F (α, Φαx(τ), yτ )dτ,

yt = Tα(t)y0 +
∫ t

0
d[Kα(t, τ)S ]F (α, Φαx(τ), yτ ),

(1.3)

where F (α,ϕ, ψ) = R(α, ϕ + ψ) − D2R(α, ϕ + ψ), Kα(t, τ)S = Kα(t, τ) −
Φα〈Ψα,Kα(t, τ)〉, Kα(t, τ) =

∫ τ
0 Xα(t+θ−ν)dν, Xα is the n×n fundamental

matrix solution of the linearized equation of (1.1).

Looking for solutions defined on the whole real axis and uniformly boun-
ded on their domain, the second identity in (1.3) can be written starting from
any initial point σ as yt = Tα(t− σ)yσ +

∫ t
σ d[Kα(t, τ)S ]F (α, Φαx(τ), yτ ).

Letting σ → −∞, the terms Tα(t − σ)y(σ) approach to 0, while the
integral has a limit, which yields an expression where the projection y0 has
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been eliminated and the system (1.3) has the form:




x(t) = eB(α)tx0 +
∫ t

0
eB(α)(t−τ)Ψα(0)F (α, Φαx(τ), yτ )dτ,

yt =
∫ t

−∞
d[Kα(t, τ)S ]F (α, Φαx(τ), yτ ).

(1.4)

In view of the center manifold theorem (see [5]), there exists a map g(α, ·)
defined from a neighborhood of 0 in Nα into a neighborhood of 0 in Sα such
that yt = g(α, Φαx(t)) is the equation of a local center manifold, for α close
to α0, where g is Ck+1, g(α, 0) = 0 and D2g(α0, 0) = 0. Then the system
(1.4) on the center manifold can be reduced to the following problem

x(t) = eB(α)tx0 +
∫ t

0
eB(α)(t−τ)Ψα(0)F (α, Φαx(τ), g(α, Φαx(τ))dτ,(1.5)

through this transformation:

(x(t), yt) is the solution of (1.4) on the center manifold ⇔ x(t) is the solution
of (1.5) and yt = g(α, Φαx(t)).

In polar coordinates x = (ρ cosφ, ρ sinφ), system (1.5) reads as
{

ρ̇ = r(α)ρ + h1(α, ρ, φ),

φ̇ = β(α) + h2(α, ρ, φ),
(1.6)

where h1(α, ρ, φ) and h2(α, ρ, φ) have the form:

h1(α, ρ, φ) = cosφf1(α, ρ cosφ, ρ sinφ) + sinφf2(α, ρ cosφ, ρ sinφ),

h2(α, ρ, φ) =
1
ρ

[− sinφf1(α, ρ cosφ, ρ sinφ) + cosφf2(α, ρ cosφ, ρ sinφ)] ,

f1, f2 are the components of Ψα(0)F (α, Φαx(t), g(α,Φαx(t))) in R2.

For ρ near to 0, we have φ ' ν0t (in view of the second equation in
(1.6)). Therefore t is diffeomorphic to φ, we can eliminate t between the two
equations in (1.6). We obtain

dρ

dφ
=

r(α)ρ + h1(α, ρ, φ)
β(α) + h2(α, ρ, φ)

.(1.7)

Let ρ(φ, c) be the solution of the last equation with initial data c.
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The periodic solution with initial value c correspond to finding c and α
such that

G(α, c) = 0,(1.8)

where G is the Hopf bifurcation function

G(α, c) =
∫ 2π

0

r(α)ρ(s, c) + h1(α, ρ(s, c), s)
β(α) + h2(α, ρ(s, c), s)

ds.(1.9)

From the Hopf bifurcation theorem (see [2], [3] and [4]), there exists
ε0 > 0, and functions P (ε), ω(ε) and α(ε) (ε ∈ [0, ε0)) sufficiently regular
such that P (ε) is ω(ε)−periodic solution of equation (1.5) for α = α(ε).
Furthermore, ω(0) := ω0 = 2π/ν0, α(0) = α0, α

′
(0) = 0 and the bifurcation

is subcritical if α
′′
(0) < 0, and supercritical if α

′′
(0) > 0.

Now, we introduce the assumption on supercritical Hopf bifurcation:

(H3) α
′′
(0) > 0.

Remark 1.1. a) (H3) means that the bifurcated branch lies in the parameter
region where the trivial solution is unstable, so, we will find out, as is well known
([7]), that the system stabilizes around the nontrivial periodic solutions.
b) (H3) implies that α is increasing along the bifurcated branch, occasionally, we
will use α instead of ε as an independent variable along the branch.

Information about elements of bifurcation (α, ω, P ) are needed here. In
fact, the following classical features will be enough for our purposes (see [8]
and [9]): 




α = α0 + ε2α2 + ε4α4 + · · ·
ω = ω0 + ε2ω2 + ε4ω4 + · · ·
P (ε)(t) = ε

∼
P (t).

(1.10)

Note that the elements of Hopf bifurcation in (1.10) are obtained formally
by inserting Taylor expansions of α, ω, ρ:

α = α(ε) =
∑

αiε
i, ω = ω(ε) =

∑
ωiε

i, ρ = ε(
∑

ρiε
i)

into the equation (1.8) and the integrated form of (1.6), with ρ(0) = ε,
φ(0) = 0, ρ(ω) = ε, φ(ω) = 2π, and equating like powers of ε.
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2. Stability, Asymptotic Stability Along the Branch of
Bifurcation

From now on, we assume all of the hypotheses introduced before: (H0)
through (H3). Our first step is to give (1.4) in another form, by centering it
around yt = g(α, Φαx(t)). We set yt = zt +g(α, Φαx(t)), that is, we consider
(x, z) instead of (x, y). Inserting this into system (1.4), we obtain:





x(t) = eB(α)tx0 +
∫ t

0
eB(α)(t−τ)R1(α, x(τ), zτ )dτ,

zt =
∫ t

−∞
d[Kα(t, τ)S ]R2(α, x(τ), zτ ),

(2.1)

where
R1(α, x(t), zt) = Ψα(0)F (α,Φαx(t), zt + g(α, Φαx(t))),(2.2)

and

R2(α, x(t), zt) = F (α, Φαx(t), zt+g(α,Φαx(t)))−F (α, Φαx(t), g(α, Φαx(t))).

Note that the bifurcating periodic solutions of (2.1) lie on z = 0, that is,
are in fact the same as bifurcating solutions of (1.5). Extending the notations
of Section 1, we denote such solutions by p = (P, 0). We will normalize these
solutions, considering that P (0) = P0 = (ε, 0), ε > 0.

Let (x0, z0) be a data near (P0, 0), with x0 = (c, 0), c > 0.
We will denote by x∗ the solution of (1.5) such that x∗(0) = x0, and by

(x#, z) the solution of (2.1) such that x#(0) = x0, zt=0 = z0, and let
ω∗ = ω∗(α, x0) denotes the first return-time for x∗, that is x∗(ω∗) = (ζ, 0),
ζ > 0 and ω∗ > 0 is the solution of the equation

φ(ω) = 2π;(2.3)

ω# = ω#(α, x0, z0) denotes the first return-time for x#, that is the solution
of the analogous equation of (2.3) resulting from polar coordinates in the
first equation in (2.1).

The main result of the paper is the following one.

Theorem 2.1. Under hypotheses (H0) through (H3), there exists ε1 > 0,
η > 0, K > 0 such that for each ε, 0 < ε < ε1; θ, 0 ≤ θ ≤ 1, the relations
P0 = (ε, 0), |ε− c| ≤ θε2 and ‖z0‖ ≤ ηθε3 imply

i)
∥∥x#(ω#)− P0

∥∥ ≤ θ(ε2 −Kε4); ii) ‖zω#‖ ≤ ηθε3.
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Corollary 2.1. Assume (H0) through (H3). Then the bifurcated orbits of
equation (1.1) for α close enough to α0 are asymptotically stable.

Proof. In view of the transformations considered above, we only have to
prove the same fact for the equation (2.1). Starting with (x0, z0) and θ such
that

|ε− c| ≤ θε2, ‖z0‖ ≤ ηθε3,

denoting by (c1, 0) = x#(ω#), z1
0 = zω# and cj , zj

0 the corresponding terms
after j rotations (cj , 0) = x#(ω#

j ) and φ#(ω#
j ) = 2jπ, we obtain:

∣∣ε− cj
∣∣ ≤ θ(1−Kε2)jε2,

∥∥∥zj
0

∥∥∥ ≤ ηθε3.

Thus (x(t), zt) approaches exponentially the orbit of p.
Theorem 2.1 is a consequence of two intermediate results. We will first

state these as lemmas, and derive the Theorem from them.

Lemma 2.1. Assume the hypotheses of Theorem 2.1. Then there exists
K1 > 0 such that ‖x∗(ω∗)− P0‖ ≤ θ(ε2 −K1ε

4).

Remark 2.1. Lemma 2.1 states the stability result for a two-dimensional system.
There no doubt however that the estimation in Lemma 2.1 is the control estimate
for Theorem 2.1. Precisely, our purpose here is to connect in an elementary way the
result for such systems to the corresponding stability result for higher dimensional
systems.

Lemma 2.2. Assume the hypotheses of Theorem 2.1 and fix

ω1 > max(ω0, ω
∗, ω#).

Then there exists K2 > 0, such that:

i)
∥∥x#(t)− P (t)

∥∥ ≤ θK2ε
2, 0 ≤ t ≤ ω1;

ii) ‖zt‖ ≤ θε3K2η, 0 ≤ t ≤ ω1;

iii)
∥∥x#(t)− x∗(t)

∥∥ ≤ θK2ε
4η, 0 ≤ t ≤ ω1.

Proof of Lemma 2.1. In polar coordinates, let (ρ, φ) corresponding to the
ω−periodic solution P (of (1.6)) guaranteed by Hopf Bifurcation theorem
and (ρ∗, φ∗) corresponding to x∗ with ρ(0) = ε and ρ∗(0) = c.

From (1.9) we obtain ‖x∗(ω∗)− P0‖ = |ρ∗(2π)− ε| = |c− ε + G(α, c)|.
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On one hand,

G(α, c) = G(α, ε) + (c− ε)DcG(α, ε) +
1
2
(c− ε)2D2

ccG(α, ε + ν(c− ε)),

for some ν ∈ [0, 1].

In view of (1.8), G(α, ε) = 0. By differentiation with respect to ε (with
α = α(ε)), we obtain

DcG(α, ε) = −α′(ε)DαG(α, ε) = −εα′(ε)Dα

∼
G (α, ε),

where

∼
G (α, ε) =





1
ε
G(α, ε), for ε 6= 0,

DcG(α, 0), for ε = 0.

Setting

K(c, ε) =
α′(ε)

ε
Dα

∼
G (α, ε)− 1

2ε2
(c− ε)D2

ccG(α, ε + ν(c− ε)),

we have G(α, c) = −(c− ε)ε2K(c, ε). Our next task is to look at lim
c→0
ε→0

K(c, ε).

Claim 2.1. lim
c→0
ε→0

K(c, ε) =
α′′(0)2πr′(α0)

ω0
> 0.

Proof. In view of (1.10) and the hypotheses of Theorem 2.1 we have
α′(ε) = O(ε) and c− ε = O(ε2). Moreover, by (1.9), we have:

α′(ε)
ε

Dα

∼
G (α, ε) → α′′(0)

2πr′(α0)
ω0

as ε → 0

(because for c = 0 the corresponding solution ρ = 0 and hi = o(ρ), i = 1, 2).

Using the Taylor expansion of h1 and h2 in terms of ρ, we have

h1(α, ρ, s) = ρ2C3(α, s) + ρ3C4(α, s) + · · ·

h2(α, ρ, s) = ρD3(α, s) + ρ2D4(α, s) + · · ·

where Cj and Dj are polynomials of degree j with respect to cos(s), sin(s).
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Substituting these expansions for h1 and h2 in the integral expression of
(1.7) we obtain

ρ∗(φ) = c +
1

β(α)

∫ φ

0

[
r(α)ρ∗ +

(
C3 −D′

3r(α)
)
(ρ∗)2(2.4)

+
(
C4 − C3D

′
3 + r(α)

(
(D′

3)
2 −D′

4

))
(ρ∗)3 + · · ·

]
ds,

where for each j, D′
j = Dj/β(α).

In view of (2.4), we have

D2
ccG(α, c) =

1
β(α)

∫ 2π

0

[
r(α)D2

ccρ
∗ +

(
C3 −D′

3r(α)
)
D2

cc(ρ
∗)2

+
(
C4 − C3D

′
3 + r(α)

(
(D′

3)
2 −D′

4

))
D2

cc(ρ
∗)3 + · · ·

]
ds.

From (2.4) once again, we can deduce that

lim
c→0
ε→0

Dcρ
∗ = 1; lim

c→0
ε→0

D2
cc(ρ

∗)2 = 2, lim
c→0
ε→0

D2
cc(ρ

∗)j = 0 for j ≥ 3

(since r(α0) = 0 and lim
c→0
ε→0

ρ∗ = 0).

Therefore, we may conclude that

lim
c→0
ε→0

D2
ccG(α, c) =

1
β(α0)

∫ 2π

0
C3(α0, s)D2

cc(ρ
∗)2

∣∣∣
ε=0
c=0

ds

=
2

β(α0)

∫ 2π

0
C3(α0, s)ds = 0

(since C3 is a polynomial in (cos(s), sin(s)) of degree 3).
Coming back to K, this yields the result.
By continuity property of K, we may deduce that

(∗∗) K(c, ε) ≥ K1 > 0,

for (c, ε) in a neighborhood of (0, 0) and some K1 > 0. We may conclude
the proof of Lemma 2.1: taking ε1 small enough, we can assert that for each
pair (c, ε) satisfying the requirements stated in Theorem 2.1, condition (∗∗)
holds.
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Therefore, we have ‖x∗(ω∗)− P0‖ ≤ |c− ε| (1 − ε2K1). This complete
the proof of Lemma 2.1.

Proof of Lemma 2.2. According to (1.5) and the first equation of (2.1),
we have

x#(t)− P (t) = eB(α)t(x0 − P0)(2.5)

+
∫ t

0
eB(α)(t−τ)

[
R1(α, x#(τ), zτ )−R1(α, P (τ), 0)

]
dτ,

∥∥∥R1(α, x#(τ), zτ )−R1(α, P (τ), 0)
∥∥∥(2.6)

≤
∥∥∥R1(α, x#(τ), zτ )−R1(α, x#(τ), 0)

∥∥∥
+

∥∥∥R1(α, x#(τ), 0)−R1(α, P (τ), 0)
∥∥∥ ,

∥∥∥R1(α, x#(τ), zτ )−R1(α, x#(τ), 0)
∥∥∥ ≤

∥∥∥D3R1(α, x#(τ), µzτ )
∥∥∥ ‖zτ‖ ,(2.7)

and
∥∥∥R1(α, x#(τ), 0)−R1(α, P (τ), 0)

∥∥∥(2.8)

≤
∥∥∥D2R1(α, P (τ) + ν(x#(τ)− P (τ)), 0)

∥∥∥
∥∥∥x#(τ)− P (τ)

∥∥∥

for some µ, ν ∈ [0, 1].
From the hypotheses of Theorem 2.1, if ε → 0 then (x0, z0) → (0, 0) and

lim
ε→0

x#(t) = 0, lim
ε→0

zt = 0. Therefore, x#(t) = o(1), zt = o(1) as ε → 0 and

{
D3R1(α, x#(t), µzt) = o(1),

D2R1(α, P (t) + ν(x#(t)− P (t)), 0) = o(1).
(2.9)

According to (2.5) through (2.9), with 0 ≤ t ≤ ω1, we obtain

‖x#(t)−P (t)‖≤ M1

{
‖x0 − P0‖+o(1) max

0≤τ≤t
‖x#(τ)− P (τ)‖+o(1) max

0≤τ≤t
‖zτ‖

}

with M1 = max
0≤t≤ω1

‖eB(α)t‖. We conclude that

‖x#(t)− P (t)‖ ≤ M

{
‖x0 − P0‖+ o(1) max

0≤τ≤t
‖zτ‖

}
,(2.10)
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where M > 0 is a constant.

The second equation in (2.1) gives

‖zt‖ ≤ ‖Tα(t)z0‖+
∫ t

0

∥∥∥d[Kα(t, τ)S ]R2(α, x#(τ), zτ )
∥∥∥ .

∥∥∥R2(α, x#(τ), zτ )
∥∥∥ =

∥∥∥R2(α, x#(τ), zτ )−R2(α, x#(τ), 0)
∥∥∥

≤
∥∥∥D3R2(α, x#(τ), µzτ )

∥∥∥ ‖zτ‖ .

Then ‖zt‖ ≤ N1

{
‖z0‖+ o(1) max

0≤τ≤t
‖zτ‖

}
, where N1 = max

0≤t≤ω1

‖Tα(t)‖, and

we deduce
‖zt‖ ≤ N ‖z0‖ .(2.11)

With the estimate given in Theorem 2.1, (2.10) and (2.11) lead to i) and
ii) of Lemma 2.2.

Now, from (1.5) and the first equation in (2.1), we obtain:
∥∥∥x#(t)− x∗(t)

∥∥∥(2.12)

≤
∫ t

0

∥∥∥eB(α)(t−τ)(R1(α, x#(τ), zτ )−R1(α, x∗(τ), 0))
∥∥∥ dτ.

∥∥∥R1(α, x#(τ), zτ )−R1(α, x∗(τ), 0)
∥∥∥ ≤

∥∥∥D3R1(α, x#(τ), µzτ )
∥∥∥ ‖zτ‖

+
∥∥∥D2R1(α, x∗(τ) + ν(x#(τ)− x∗(τ)), 0)

∥∥∥
∥∥∥x#(τ)− x∗(τ)

∥∥∥

for some µ, ν ∈ [0, 1].

Finally, from (2.9), there exists K ′ > 0 such that
∥∥∥R1(α, x#(τ), zτ )−R1(α, x∗(τ), 0)

∥∥∥

≤ K ′ε
[

max
0≤τ≤t

∥∥∥x#(τ)− x∗(τ)
∥∥∥ + max

0≤τ≤t
‖zτ‖

]

with a constant K
′
> 0, and from (2.12), we obtain

∥∥∥x#(t)− x∗(t)
∥∥∥ ≤ εK ′′ max

0≤τ≤t
‖zτ‖ (with K ′′ > 0),
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which, together with ii), gives iii).
Proof of Theorem 2.1. i) In inequality

‖x#(ω#)− P0‖ ≤ ‖x#(ω#)− x∗(ω#)‖+ ‖x∗(ω#)− x∗(ω∗)‖(2.13)

+‖x∗(ω∗)− P0‖

the first and the third addend on the right hand side can be estimated using
Lemma 2.1 and Lemma 2.2, respectively. In order to estimate the second
addend, we need to evaluate

∣∣ω# − ω∗
∣∣.

Claim 2.2.
∣∣ω∗ − ω#

∣∣ ≤ ηθK ′′′ε3.

Proof. Near the bifurcation point, equation (1.5) varies more slowly in
magnitude than in direction. This is a classical observation, best perceived
in polar coordinates representation: d

dtφ ' β(α0); d
dtρ = o(ρ). So, for some

ε0 > 0, C, C ′, C ′′ > 0 we have:

C ‖x0‖ ≤ ‖x∗(t)‖ ≤ C ′ ‖x0‖ ,

∣∣∣∣
d

dt
φ

∣∣∣∣ ≥ C ′′,(2.14)

for 0 ≤ t ≤ ω1, 0 ≤ ε ≤ ε0.
Define ψ = angle(x#(ω#), x∗(ω#)) = angle(x∗(ω∗), x∗(ω#)) = φ∗(ω#).

Using Lemma 2.2 iii) and (2.14), we have

|tanψ| = tanφ∗(ω#) ' ‖x∗(ω#)− x#(ω#)‖
‖x∗(ω∗)‖ ≤ θK2ε

3η

C
.

On the other hand |tanψ| ' φ∗(ω#) ≥ C ′′ ∣∣ω∗ − ω#
∣∣. This yields the desired

estimate:
∣∣ω∗ − ω#

∣∣ ≤ ηθK ′′′ε3.
The second addend of (2.13) can now be estimated using

∥∥∥x∗(ω#)− x∗(ω∗)
∥∥∥ ≤ sup

0<t<ω1

∥∥∥∥
dx∗(t)

dt

∥∥∥∥
∣∣∣ω∗ − ω#

∣∣∣ .

From equation (2.2) we have ‖R1(α, x, 0)‖ = o(x), and from the proof of

Claim 2.2 we have,
∥∥∥∥
dx∗(t)

dt

∥∥∥∥ ≤ C ′C ′′′ε, for some constant C ′′′.

Thus, in view of the claim 2.2, we obtain
∥∥∥x∗(ω#)− x∗(ω∗)

∥∥∥ ≤ ηθε4K4.
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To reach the conclusion of i) in Theorem 2.1, choose η small enough for
K2η < K1/4 (Lemma 2.1 and Lemma 2.2) and K4η < K1/4; define K =
K1/2, and replace addend of right hand side of (2.13) by their corresponding
estimates. From Lemma 2.2 we conclude ii).
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