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NEW DISCRETE OSTROWSKI-GRUSS LIKE INEQUALITIES

B. G. Pachpatte

Abstract. The aim of this note is to establish new discrete Ostrowski-Griiss like
inequalities involving two finite sequences and their forward differences by using
the discrete version of the Montdomery identity.

1. Introduction

In 1938 A. M. Ostrowski [7] proved the following remarkable inequality
(see also [6, p. 469]).

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b) whose

derivative f’: (a,b) — R is bounded on (a,b), i.e.,

1l = sup |F(8)] < 4o
te(a,b)

Then

2
[)_3)2] (b— a’)Hf/Hoo’

for all z € [a, b].

Another celebrated inequality proved by G. Griiss [4] in 1935 can be
stated as follows (see also [5, p. 296]).
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Let f,g : [a,b] — R be two integrable functions such that ¢ < f(z) < @,
v < g(z) <T, forall x € [a,b], where ¢, ®, v and I" are real constants. Then

‘a/f dl"(g} /f dw)( - / (x)d:r)

1
<5 (@= )T —7).

During the last few years, a great deal of research work has been de-
voted related to the above inequalities. We refer in particular to the books
of Mitrinovié¢, Pecari¢ and Fink [5, 6], Dragomir and Rassias [3] and also
the papers appeared in RGMIA Research Report Collections. The main ob-
jective of the present note is to establish new discrete Ostrowski-Griiss like
inequalities by using a fairly elementary analysis.

2. Statement of Results

In order to prove our main results we need the following discrete version
of the well known Montgomery identity

1 n n—1 ‘
=1 =1
where {z1} for k = 1,...,n be a finite sequence of real numbers, Ax; =

Tiy1 — x; and

i/n, 1<i<k-1,
(2.2) (ki) =
i/n—1, k<i<n.
For the proof of (2.1) and its further generalizations, see [1].

Our main results are given in the following theorems.

Theorem 2.1. Let {ug}, {vi} for k =1,...,n be two finite sequences of
real numbers such that Jnax. {|Auk|} = A, | Jnax. {|Avk|} = B, where

A, B are nonnegative constants Then the followmg mequalztzes hold:

UKk — 5 [%ZUMLWZU@] <

(2.3) S (104l A + [ug| B] Ho (k)
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and
1 n n 1 n n
(2.4) ULV — - {kauz +ukZUi:| + n2<2 uz) <Z vi> ‘
i=1 i=1 i=1 i=1
< AB{H,(k)}?,
fork=1,...,n, where

n—1
(2.5) Ha(k) = 3 [Dalk )]
i=1

in which Dy, (k, i) is defined by (2.2).

Remark 2.1. By taking vy = 1 and hence Avg, =0 for £k =1,...,n in (2.3) and
by simple calculation, we get

1 n
. - — il <
(2.6) uk ;Uz < Hy(k)  max {|Aug[},
for k =1,...,n. By elementary computation (see [2]]) we have
1[n2—1 n+1)
H,(k)=— k— .
(k) n [ 4 * ( 2 )

In fact, the inequality (2.6) is established by Dragomir [2, Theorem 3.1 ] in a normed
linear space.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Then

n

1
2. (U, < — A Bl H,
(2.7) | Jn (g, vk)| 27,Lk§:_l[|vk| + |ug| B] Hy, (k)
and
AB &
(2.8) | Jn (ugs vi)| < TZ (Hy (K))?,
k=1
where
1 & 1 & 1 &
In (wk, vg) = — > ugoy, — <n Uk> (n Uk>,
k=1 k=1 k=1

and Hy, (k) is given by (2.5).

Remark 2.2. We note that in [10] the present author has established inequalities
similar to those of given above by using somewhat different representation. For
several other discrete inequalities of the Ostrowski-Griiss type we refer the interested
readers to [5, 6, 8, 9].
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3. Proofs of Theorems 2.1 and 2.2

From the hypotheses, we have the following identities (see [1]):

n n—1
1
3.1 - .= D, (k,i) Au
and
1 n n—1
3.2 — =N "ui =5 D, (ki) Av;,
(3:2) Uk ni:1v ; (k,1) Av

for k =1,...,n. Multiplying (3.1) by vy, and (3.2) by u, adding the resulting
identities and rewriting we get

1 n n
(3.3) URVL — on [’Uk Z Ui+ Z Ui]
n i=1 i=1
n—1 n—1

L [vk Z D, (ki) Au;+uy Z D, (k,1) Avl} .
i=1 i=1

)

From (3.3) and using the properties of modulus we have

1 n n

UV — % |:Uk E Ui+uk E Ui]
=1 =1

n—1 n—1

1 . .

< 3 o0 X2 100 )+ ] 3 10 8.0 v
=1 =1

1 i 1

{0kl A+ ] BY S 1D )] = & [l 4 + s B] H (8).

=1

A

IN

This is the required inequality in (2.3).
Multiplying the left sides and right sides of (3.1) and (3.2) we get

@0 LSS (5 (50

1=1 =1

n—1 n—1
= [; Dy (k, z’)Aui] [; Dy (k, i)sz} .
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From (3.4) and using the properties of modulus we have

1 n n 1 n n
ULV — - [UkZu, +ukZ7}i:| + nQ<Zuz> (ZUZ> |
=1 =1

=1

< [Ezj D (k)] 8] [Ezj D (ki 8

n—1 2
< AB [Z |Dy, (kz,i)|] = AB{H, (k)}*,

i=1

which is the desired inequality in (2.4). The proof is complete.

Summing both sides of (3.3) and (3.4) over k£ from 1 to n and rewriting
we get

n n—1 n—1
1
(3:5) Jn (uk, 08) = 5~ > [vk > Dy (kyi) Au; +ug Y Dy (K, 1) Avi] ,

k=1 i=1 i=1
and
1 n n—1 n—1
(3.6) I (ug, vg) = - kzl [; Dy, (k,i) Auz} Lz; D,, (k,1) Avi] .

From (3.5) and (3.6), using the properties of modulus and closely looking
at the proofs of (2.3) and (2.4) we get the required inequalities in (2.7) and
(2.8).
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