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A NOTE ON THE APPEARANCE OF CONSECUTIVE
NUMBERS AMONGST THE SET OF WINNING NUMBERS

IN LOTTERY

Konstantinos Drakakis

Abstract. We compute the number of ways in which m integers can be chosen
among the integers 1, . . . , n, so that any 2 consecutive choices are at least k
integers apart. Subsequently, we prove an interesting fact about Lottery: the
winning 6 numbers (out of 49) in the game of the Lottery contain 2 consecutive
numbers with a surprisingly high probability (almost 50%). We also propose an
almost fair casino game based on this fact.

1. Introduction

The game of lottery exists and has been run in many countries (such
as the UK, the US, Germany, France, Ireland, Australia, Austria, Greece,
Spain, etc.) for a number of years. In this game, the player chooses m num-
bers from among the numbers 1, . . . , n > m, the order of the choice being
unimportant and the values of n and m varying from country to country;
the lottery organizers choose publicly m numbers in the same way, and if
they are the same as the ones the player chose, the player wins. Newspapers
usually publish the winning set of numbers, along with (simple) statistics
on the number of times each particular number from 1 to n has appeared
in the winning set, while very sophisticated statistical studies of the lot-
tery outcomes have already appeared in various papers in the mathematical
literature [1, 2, 3].

It is however a slightly different and more elusive statistical observation
that will be of interest to us here. It has been noticed that, in the usual case
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m = 6 and n = 49, at least 2 of the winning numbers are very often “close”
to each other. As 6 out of 49 is not really many, this seems at first to be
paradoxical, if not altogether wrong, and may remind us strongly of another
very similar famous paradox, the Birthday Paradox. In this work we will
prove that this observation is well founded, even if we adopt the strictest
interpretation of numbers being “close”, i.e. that they be consecutive. Our
problem to solve then will be the following:
“What is the probability that, out of m > 0 numbers drawn uniformly ran-
domly from the range 1, . . . , n, where n > m, at least 2 are consecutive, or,
more generally, that no 2 numbers are closer than k integers apart?”

We will calculate this probability in 2 ways below: one quite “mechan-
ical”, by finding a recursion and then solving it by means of generating
functions, and one combinatorial, which will actually yield a more general
result. We will also see that this problem, at least for the usual values m = 6
and n = 49, leads to a novel and unexpected gambling application.

2. First Solution

Let f(n, m) be the number of ways in which m numbers can be chosen
out of 1, . . . , n so that no two are consecutive. For any particular choice, one
of the following will hold:

• Neither 1 nor n is chosen: we have to choose m numbers among
2, . . . , n − 1 and the number of ways this can be accomplished in is
f(n− 2,m).

• 1 and/or n is chosen: the number of ways this can be accomplished
in is, according to the inclusion-exclusion principle, the sum of the
number of ways of choosing 1 and choosing n minus the number of
ways in choosing both. Observe now that 2 cannot be chosen if 1
is, and that n − 1 cannot be chosen if n is. Then, in the first two
cases the number of choices is f(n − 2,m − 1), and in the last one
f(n − 4,m − 2), so that the total number of choices if 1 and/or n is
chosen is 2f(n− 2,m− 1) + f(n− 4,m− 2).

Accordingly, summing both cases:

f(n,m) = f(n− 2,m) + 2f(n− 2,m− 1)− f(n− 4,m− 2).

In addition to the recursive formula above, we need some boundary condi-
tions as well, corresponding to n = 0, 1, 2, 3 and m = 0, 1. They are provided
by the following:
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• We can choose no numbers in only one way: (∀n ≥ 0) f(n, 0) = 1.

• We can choose one number in n ways: (∀n ≥ 0) f(n, 1) = n.

• f(3, 2) = 1.

Let us now write down the generating function for f(n,m):

F (z, w) =
∞∑

n=4

dn/2e∑

m=2

f(n,m)znwm.

The upper boundary for m is determined by the fact that f(n,m) = 0 if
m ≥ dn/2e+ 1.

By multiplying the recursion formula by znwm, and applying the operator
∞∑

n=4

dn/2e∑
m=2

, we get:

F (n,m) = F1(n,m) + 2F2(n,m)− F3(n,m),

where

F1(n,m) =
∞∑

n=4

dn/2e∑

m=2

f(n− 2,m)znwm,

F2(n,m) =
∞∑

n=4

dn/2e∑

m=2

f(n− 2,m− 1)znwm,

F3(n,m) =
∞∑

n=4

dn/2e∑

m=2

f(n− 4,m− 2)znwm.

For each of the three functions, we get

F1(n,m) =
∞∑

n=2

dn/2e+1∑

m=2

f(n,m)zn+2wm = z2
∞∑

n=2

dn/2e∑

m=2

f(n, m)znwm

= z2



∞∑

n=4

dn/2e∑

m=2

f(n,m)znwm + f(3, 2)z3w2




= z2
[
F (z, w) + z3w2

]
,
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F2(n, m) =
∞∑

n=2

dn/2e+1∑

m=2

f(n,m− 1)zn+2wm =
∞∑

n=2

dn/2e∑

m=1

f(n,m)zn+2wm+1

= wz2
∞∑

n=2

dn/2e∑

m=1

f(n,m)znwm

= wz2



∞∑

n=4

dn/2e∑

m=2

f(n,m)znwm + f(3, 2)z3w2 +
∞∑

n=2

f(n, 1)znw




= z2w

[
F (z, w) + z3w2 + w

∞∑

n=2

nzn

]
,

F3(n,m) =
∞∑

n=0

dn/2e+1∑

m=2

f(n, m− 2)zn+4wm =
∞∑

n=0

dn/2e∑

m=0

f(n,m)zn+4wm+2

= w2z4
∞∑

n=0

dn/2e∑

m=0

f(n,m)znwm

= w2z4



∞∑

n=4

dn/2e∑

m=2

f(n,m)znwm + f(3, 2)z3w2+

∞∑

n=0

f(n, 1)znw +
∞∑

n=0

f(n, 0)zn

]

= z4w2

[
F (z, w) + z3w2 + w

∞∑

n=0

nzn +
∞∑

n=0

zn

]
.

We still need three auxiliary computations:

•
∞∑

n=2

nzn = z

∞∑

n=2

nzn−1 = z

(
z2

1− z

)′
= z2 2− z

(1− z)2
;

•
∞∑

n=0

zn =
1

1− z
;

•
∞∑

n=0

nzn = z
∞∑

n=0

nzn−1 = z

(
1

1− z

)′
=

z

(1− z)2
.
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Putting all of the above together, and after some further algebraic sim-
plifications, we find:

F (z, w) = w2z4 3 + z(z − 3 + w(z − 1)2)
(z − 1)2(1− z − wz2)

.

Of course, this is not the full generating function, as the cases n = 1, 2, 3
and m = 0, 1 are entirely missing; we omitted them in order to avoid to have
to deal with “weird” boundary conditions such as f(−3,−1) etc. But now
we can add them back.

Remember that f(n, 0) = 1, n ≥ 0 and f(n, 1) = n, n ≥ 1; but we have
already carried out the relevant computations as auxiliary computations
above. Therefore:

F(z, w) = F (z, w) + z3w2 +
1

1− z
+

zw

(1− z)2
,

where the first fraction is the generating function for f(n, 0) and the second
for f(n, 1). After some algebraic simplifications, we find:

F(z, w) =
1 + zw

1− z − wz2
=

1 + zw

1− z − wz2
=

1
z

z(1 + zw)
1− z(1 + wz)

=
1
z

∞∑

n=1

[z(1 + wz)]n

=
∞∑

n=1

n∑

m=0

(
n

m

)
zn+m−1wm =

∞∑

m=0

∞∑
n=m

(
n−m + 1

m

)
znwm,

so that

f(n,m) =
(

n−m + 1
m

)
.

If then we draw m numbers from the range 1, . . . , n, the probability no
two are consecutive is:

q(n,m) =

(
n−m+1

m

)
(

n
m

) ,

so that the solution to our original problem is:

p(n,m) = 1−
(
n−m+1

m

)
(

n
m

) .

We should note here that a proof of the formula for f(n,m) based on
induction appears in [6].
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3. Second Solution

The second solution, combinatorial in nature, allows us to solve a more
general problem: in how many ways fk(n,m) can we choose m numbers
among the numbers 1, . . . , n so that the minimum distance between any two
of our choices (which we will be calling the distance of our choice) is k > 0?
There is a very simple formula for that.

Imagine we have numbered n balls with the numbers 1, . . . , n, and that
we have chosen the numbers 1 ≤ N1 < . . . < Nm ≤ n. For every number
chosen but the last one, remove the numbers of the k − 1 balls immediately
following it; as for the remaining balls, renumber them consecutively and in
the order they are. We will end up with n− (k − 1)(m− 1) balls numbered
consecutively from 1 to n−(k−1)(m−1), and (k−1)(m−1) blank ones. This
final situation will not depend on the balls we chose originally, although the
exact positioning of the blank balls among the numbered ones will. Notice
finally that the original number of every ball can be recovered: it is the
number of balls preceding it, including itself!

Any valid choice of m numbers in the original numbering will correspond
to a choice of m numbers after renumbering, and vice versa: after we choose
m numbers between 1 and n− (k− 1)(m− 1), we insert blanks as described
above and renumber, getting a valid choice of numbers in the original num-
bering. This correspondence is obviously bijective. Therefore,

fk(n, m) =
(

n− (k − 1)(m− 1)
m

)
, n > m > 1, k ≥ 1.

For k = 2 we recover the result of our first solution, and hence the same
probability p(n, m) of at least two choices being consecutive. We also obtain
the more general formula

pk(n, m) = 1−
(
n−(k−1)(m−1)

m

)
(

n
m

)

for the probability that at least two of the winning numbers have a distance
less than k.

4. Application in Gambling

The probability p(n,m) can actually be quite large, maybe unexpectedly
large: for example, for the usual values n = 49 and m = 6, we find p(49, 6) ≈
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0.495198. Therefore, the observation that the winning six numbers of the
lottery often contain two that are very close is well founded; in almost one
game out of two the winning set of numbers contains 2 consecutive ones!

Moreover, as p(49, 6) is very close to 0.5, the problem we just studied can
be turned into a successful casino game: the player bets ee that 6 numbers
randomly chosen among 1, . . . , 49 will contain at least two consecutive ones.
If this happens, the player gets ee from the house, otherwise the house wins
the player’s money. This game is almost fair, as the player has an almost
50% chance to win; but (s)he actually has slightly less than that, and this
gives the house a profitable advantage! Indeed, the house wins money at the
approximate rate of e 1− 2p(49, 6) ≈ 0.009604 ≈ 1 cent per every e placed
as a bet.

5. A Slight Variant

What would happen, though, if the player suggests that numbers 1 and
n be treated as consecutive as well, namely if we order the numbers on a
ring instead of a line? There should now be fewer possible choices for non-
consecutive numbers. Indeed, let now gk(n,m) be the number of possible
choices of m ≤ n among n > 0 numbers so that the minimum distance
between any two of the chosen ones is k; in other words, among any two
chosen numbers, with the property that no number between them is chosen,
there are at least k− 1 numbers lying between them. Then, we can split the
choices into those in which one number among 1, . . . , k − 1 is chosen, and
those in which this is not the case:

• If one ball among 1, . . . , k − 1 is chosen, then the remaining m − 1
balls can be chosen among n − 2k + 1 balls (we exclude the chosen
ball and the k− 1 adjacent balls on either side); but now, by removing
a block of 2k − 1 balls from the circle, we turn it into a line, so the
total number of choices, for a fixed choice within 1, . . . , k, is fk(n −
2k + 1,m− 1); and since every different choice within 1, . . . , k leads to
different possible choices, the total number of choices in this category
is (k − 1)fk(n− 2k + 1,m− 1).

• If no ball is chosen among 1, . . . , k− 1, then we can just remove them,
turn the circle into a line, and renumber: we need to choose m balls
among the remaining n− k + 1, obeying the distance restrictions, and
this can happen in fk(n− k + 1,m) ways. Therefore,
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gk(n,m) = (k−1)fk(n−2k+1,m−1)+fk(n−k+1,m), n > m > 1, k ≥ 0.

If we define now

pk(n,m) = 1− gk(n,m)(
n
m

) = 1−
(
n−k+1−(k−1)(m−1)

m

)
+

(
n−2k+1−(k−1)(m−2)

m−1

)
(

n
m

)

we find that p2(49, 6) = p(49, 6) ≈ 0.503203. Therefore, if some casino
agreed to play this variant of the game with a player, the player would have
a slight advantage over the house, and the latter would loose money, at a
rate of e 2p(49, 6)− 1 ≈ 0.006406 per e placed as a bet!

Table 5.1 gives the values of pk(49, 6) and pk(49, 6) for k ∈ N∗.

Table 5.1: The probabilities that the winning set of numbers of the standard
Lottery has a minimum distance less than k.

k pk(49, 6) pk(49, 6)
1 0 0
2 0.495198 0.503203
3 0.766686 0.806793
4 0.903824 0.937157
5 0.966031 0.984296
6 0.990375 0.997447
7 0.99806 0.999821
8 0.999785 0.999999
9 0.999994 1

≥ 10 1 1

6. Examples

We now offer 2 examples from actual lotteries, the Austrian Lottery (n =
45, m = 6) and the Greek Lottery (n = 49, m = 6). The results can be
viewed in Table 6., and it is clear that the fit is very good in both cases.
The observed frequencies of the Austrian lottery come from more than 10
years of data (1400 entries in total) [4], while the observed frequencies of the
Greek lottery come from the complete results of the years from 1990 to 2006
(1527 entries in total) [5].
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Table 6.2: A comparison between the observed and the expected frequencies
of occurrence of a given minimal distance in the winning set of lottery num-
bers for the Austrian (left) and the Greek (right) lottery, according to data
sets spanning more than a decade

Distance Observed Expected
1 750 740.2
2 388 380.8
3 169 176.9
4 67 71.6
5 23 23.8
6 2 5.8
7 1 0.8

Distance Observed Expected
1 793 756.2
2 399 414.6
3 203 209.4
4 80 95.0
5 40 37.2
6 7 11.7
7 5 2.6

7. Summary and Conclusion

We counted the number of ways in which m integers can be chosen among
the integers 1, . . . , n, so that any 2 consecutive choices are at least k integers
apart, in the 2 cases where 1 and n are considered non-consecutive (linear
order) or consecutive (ring order). To do so, we followed 2 different methods:
the first was based on generating functions, completely mechanical (what
one might label as “technique before insight”), but restricted to the case
k = 2 only; the second solved the general problem through a combinatorial
argument, and is much shorter and, in our opinion, much clearer.

A natural model for this problem is the winning set of numbers in lottery.
For the particular case n = 49, m = 6, k = 2, we discovered the (probably
surprising and counterintuitive, as in the case of the Birthday Paradox)
result that the probability of finding such a set of numbers is just below
50% if 1 and 49 are considered non-consecutive, and just above 50% if they
are considered consecutive. This leads to the design of an almost fair casino
game, where, depending on whether the former or the latter case holds,
either the house or the player gain a very slight but systematic edge over
the other, respectively.
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