
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. 21 (2006), 87–92

SYSTOLIC MATRIX VECTOR ITERATIONS∗

E. I. Milovanović, M. P. Bekakos,
I. Ž. Milovanović, T. Z. Mirković

Abstract. In this paper we consider computation of iterative process of the form
~x(t) = A · ~x(t−1), where A = (aik) is n× n dense matrix on unidirectional linear
systolic array.

1. Introduction

We consider the systolic implementation of iterative method defined by

~x(t) = A~x(t−1), t = 1, 2, . . . , m,(1.1)

where A = (aik) is a dense square matrix of order n× n,

~x(0) = [x(0)
1 x

(0)
2 . . . x(0)

n ]T

is a given initial vector, and m À 1. The main building block for the systolic
implementation of matrix vector iterations is a systolic array for matrix
vector multiplication. The computation task can be expanded either in
space, leading to series of cascaded linear systolic arrays performing pipelined
iterations, or in time leading to an iterative systolic structure with feedback
control [2]. A combination of the two approaches is possible, also.

In this paper we consider implementation of matrix vector iterations on
linear unidirectional systolic array (ULSA) for matrix vector multiplication

Received January 10, 2006
2000 Mathematics Subject Classification. 68M07, 68Q35.
∗The authors were supported in part by the Serbian Ministry of Science and Envi-

ronmental Protection (Project: #144034: Parallel Methods and Algorithms in Discrete
Mathematics).

87



88 E. I. Milovanović, M. P. Bekakos, I. Ž. Milovanović, T. Z. Mirković

with feedback connection. We give an explicit formulas to design ULSA
which is space optimal, i.e. has the optimal number od processing elements
(PE) for a given matrix dimension and minimal execution time for such
number of PEs. The iteration process (1.1) is implemented on the ULSA for
matrix vector multiplication in m iterations, such that ~x(t−1) represents input
for the computation of ~x(t), for t = 1, 2, . . . , m. Data schedule is defined such
that input time of t-th iteration is overlapped with computation of (t−1)-st
iteration, for t = 2, 3, . . . , m, reducing the overall computation time. The
efficiency of the proposed method is considered, also.

The problem of computing matrix vector iterations on the BLSA (bidi-
rectional linear SA) was considered in [1] and on the ULSA in [2]. However,
explicit formulas for the synthesis of these arrays are not given. In both
cases matrix A was a band matrix with band width less than the dimension
of matrix which enables obtaining space optimal arrays. If width of ma-
trix band is greater than matrix dimension or full matrix is considered than
obtained arrays are not space optimal.

2. Implementation of Matrix Vector Iterations on the ULSA

The space optimal ULSA that computes product of matrix A = (aik) of
order n × n and vector ~b = [b1 b2 . . . bn]T was designed in [3]. It consists
of Ω = n PEs and computes the matrix vector product ~c = A~b for time
Ttot = 3n − 2. An example of this array, for the case n = 4, is given in
Fig. 1.

Fig. 1: Data flow in the ULSA synthesized in [3]

In order to compute matrix vector iterations (1.1) on the ULSA from [3]
efficiently, we need to reorder data schedule. Namely, elements of vectors



Systolic Matrix Vector Iterations 89

~c and ~b enter the ULSA in mutually reverse order. Since, in the iterative
process elements of resulting vector ~x(t) form t-th iteration will appear as
inputs ~x(t−1) in the next iteration, it is desirable that both ~x(t) and ~x(t−1)

enter/leave the array in the same order. If opposite, we need to reorder
resulting elements ~x(t) before each new iteration. Second concerns the po-
sition of delay elements in the ULSA. Namely, there are two alternatives.
Either to first delay elements of ~b and then use it in the computation, or use
it first, then delay. The second solution is better since it will shorten the
total execution time for m − 1 time units, which in the case m À 1 is not
negligible.

In order to obtain equal data schedule for ~x(t) and ~x(t−1), i.e., ~c and ~b,
we will use matrix Î of order n× n defined by

Î =




0 · · · 0 1
0 · · · 1 0
...
1 · · · 0 0


 .

Matrix Î has some interesting properties which we will use to obtain desired
data schedule. First, Î · Î = I. Second, for each vector ~b = [b1 b2 . . . bn]T

and matrix A = (aik) of order n × n, the following equalities are valid:
~b∗ = Î~b = [bn bn−1 . . . b1]T , and A∗ = A · Î = (ai,n−k+1). In other words
vector ~b∗ and matrix A∗ are mirror symmetric to ~b and A, respectively.
According to this properties we have that

~c = A ·~b = (A · Î) · (Î ·~b).(2.1)

Now, denote with

PE 7→
[

x
y

]
, d 7→

[
x
y

]
, γ(·, ·, ·) 7→

[
x
y

]
,

γ ∈ {a, b, c}, (x, y) coordinates of the PEs, delay elements and data elements,
respectively.

According to the above properties we have

PE 7→
[

x
y

]
=

[
k + 1

1

]
,

d 7→
[

x
y

]
=

[
k + 3/2

1

]
,



90 E. I. Milovanović, M. P. Bekakos, I. Ž. Milovanović, T. Z. Mirković

a(i, 0, n− k + 1) 7→
[

x
y

]
=

[
k + 1

2− i− k

]
,(2.2)

b(0, 1, n− k + i) 7→
[

x
y

]
=

[
(3 + k − i)/2

1

]
,

c(i, 1, 0) 7→
[

x
y

]
=

[
2− i

1

]
,

for i = 1, 2, . . . , n, k = 1, 2, . . . , n, and

a(i, 0, t + n) ≡ a(i, 0, t) ≡ ait, b(0, 1, t + n) ≡ b(0, 1, t) ≡ bt.

The communication links in the ULSA are implemented along the propaga-
tion vectors

∆ =
[

~e 2
b ~e 2

a ~e 2
c

]
=

[
1/2 0 1

0 1 0

]
.(2.3)

Data schedule in the ULSA synthesized according to (2.2) and (2.3) at
the beginning of the computation, for the case n = 4, is depicted in Fig. 2.

Fig. 2: Data flow in the ULSA synthesized according to (2.2) and (2.3) for n = 4

Table 1 shows the complete, step by step, diagram for computing matrix
vector iterations on the ULSA for the case n = 3 and m = 3.



Systolic Matrix Vector Iterations 91

Clk PE1 d PE2 d PE3 d

1 0 := 0 + 0 · x
(0)
1

2 0 := 0 + 0 · x
(0)
2 x

(0)
1

3 x
(1)
1 := 0 + a13x

(0)
3 x

(0)
2 0 := 0 + 0 · x

(0)
1

4 x
(1)
2 := 0 + a21x

(0)
1 x

(0)
3 x

(1)
1 := x

(1)
1 + a12x

(0)
2 x

(0)
1

5 x
(1)
3 := 0 + a32x

(0)
2 x

(0)
1 x

(1)
2 := x

(1)
2 + a23x

(0)
3 x

(0)
2 x

(1)
1 := x

(1)
1 + a11x

(0)
1

6 0 := 0 + 0 · x
(1)
1 x

(0)
2 x

(1)
3 := x

(1)
3 + a31x

(0)
1 x

(0)
3 x

(1)
2 := x

(1)
2 + a22x

(0)
2 x

(0)
1

7 0 := 0 + 0 · x
(1)
2 x

(1)
1 0 := 0 + 0 · x

(0)
2 x

(0)
1 x

(0)
3 := x

(1)
3 + a33x

(0)
3 x

(0)
2

8 x
(2)
1 := 0 + a13x

(1)
3 x

(1)
2 0 := 0 + 0 · x

(1)
1 x

(0)
2 0 := 0 + 0 · x

(0)
1 x

(0)
3

9 x
(2)
2 := 0 + a21x

(1)
1 x

(1)
3 x

(2)
1 := x

(2)
1 + a12x

(1)
2 x

(1)
1 0 := 0 + 0 · x

(0)
2 x

(0)
1

10 x
(2)
3 := 0 + a32x

(1)
2 x

(1)
1 x

(2)
2 := x

(2)
2 + a23x

(1)
3 x

(1)
2 x

(2)
1 := x

(2)
1 + a11x

(1)
1 x

(0)
2

11 0 := 0 + 0 · x
(2)
1 x

(1)
2 x

(2)
3 := x

(2)
3 + a31x

(1)
1 x

(1)
3 x

(2)
2 := x

(2)
2 + a22x

(1)
2 x

(1)
1

12 0 := 0 + 0 · x
(2)
2 x

(2)
1 0 := 0 + 0 · x

(1)
2 x

(1)
1 x

(2)
3 := x

(2)
3 + a33x

(1)
3 x

(1)
2

13 x
(3)
1 := 0 + a13x

(2)
3 x

(2)
2 0 := 0 + 0 · x

(2)
1 x

(1)
2 0 := 0 + 0 · x

(1)
1 x

(1)
3

14 x
(3)
2 := 0 + a21x

(2)
1 x

(2)
3 x

(3)
1 := x

(3)
1 + a12x

(2)
2 x

(2)
1 0 := 0 + 0 · x

(1)
2 x

(1)
1

15 x
(3)
3 := 0 + a32x

(2)
2 x

(2)
1 x

(3)
2 := x

(3)
2 + a23x

(2)
3 x

(2)
2 x

(3)
1 := x

(3)
1 + a11x

(2)
1 x

(1)
2

16 0 := 0 + 0 · x
(3)
1 x

(2)
2 x

(3)
3 := x

(3)
3 + a31x

(2)
1 x

(2)
3 x

(3)
2 := x

(3)
2 + a22x

(2)
2 x

(2)
1

17 0 := 0 + 0 · x
(3)
2 x

(3)
1 0 := 0 + 0 · x

(2)
2 x

(2)
1 x

(3)
3 := x

(3)
3 + a33x

(2)
3 x

(2)
2

18 x
(4)
1 := 0 + a13x

(3)
3 x

(3)
2 0 := 0 + 0 · x

(3)
1 x

(2)
2 0 := 0 + 0 · x

(2)
1 x

(2)
3

19 x
(4)
2 := 0 + a21x

(3)
1 x

(3)
3 x

(4)
1 := x

(4)
1 + a12x

(3)
2 x

(3)
1 0 := 0 + 0 · x

(2)
2 x

(2)
1

20 x
(4)
3 := 0 + a32x

(3)
2 x

(3)
1 x

(4)
2 := x

(4)
2 + a23x

(3)
3 x

(3)
2 x

(4)
1 := x

(4)
1 + a11x

(3)
1 x

(2)
2

21 0 := 0 + 0 · 0 x
(3)
2 x

(4)
3 := x

(4)
3 + a31x

(3)
1 x

(3)
3 x

(4)
2 := x

(4)
2 + a22x

(3)
2 x

(3)
1

22 0 := 0 + 0 · 0 0 0 := 0 + 0 · x
(3)
2 x

(3)
1 x

(4)
3 := x

(4)
3 + a33x

(3)
3 x

(3)
2

Table 1: Step by step diagram for computing matrix vector iteration
x(t) = Ax(t−1), t = 1, 2, . . . m on the ULSA for the case n = 3 and m = 4

3. Performance Analysis

According to (2.2) we conclude that ULSA consists of Ω = n PEs, which
is optimal number for a given dimension of matrix A.

Computation time for one iteration on the ULSA is ttot = tin+texe+tout =
3n − 2, where tin = n − 1 is the initialization time, texe = 2n − 1 is active
computation time and tout = 0 is output time. The important property of the
proposed data schedule is that initialization time of the t-th iteration (i.e.,
x(t)) is overlapped with active computation time of the (t − 1)-st iteration
(i.e., x(t−1)), for t = 1, 2, . . . ,m. Having this in mind, the time needed to
compute x(m) on the ULSA is

Ttot = tin + (m− 1)texe = m(2n− 1) + n− 1 = (2m + 1)n−m− 1.

The efficiency of the array depends on the relation between number of iter-
ations m and matrix dimension n. The values of the efficiency for various
m and n are summarized in Table 2. From Table 2 we conclude that for
some fixed m the efficiency decreases as n increases. However, reducing of
the efficiency is not a substantial, and all values are grouped around 0.5
even for relatively small n (n ≥ 50) and m ≥ 20. Therefore, it is convenient
to consider a realization of the matrix vector iterations (1.1) on the fixed



92 E. I. Milovanović, M. P. Bekakos, I. Ž. Milovanović, T. Z. Mirković

size ULSA. If n is fixed on some constant value the efficiency increases as m
increases. The efficiency is greater than 0.5 for all m ≥ n− 1. However, for
n ≥ 10 the efficiency is around 0.5 regardless to the number of iterations m.

mn 2 5 10 50 100 1000 n → +∞
1 0.50 0.38 0.36 0.34 0.34 0.33 0.33
5 0.62 0.51 0.49 0.46 0.46 0.45 0.45
10 0.65 0.53 0.50 0.48 0.48 0.48 0.48
50 0.66 0.55 0.52 0.50 0.50 0.50 0.50
100 0.66 0.55 0.52 0.50 0.50 0.50 0.50
1000 0.67 0.55 0.53 0.50 0.50 0.50 0.50

m → +∞ 0.67 0.55 0.53 0.51 0.50 0.50 0.50

Table 2: Efficiency of the ULSA for various m and n

R EF E RE N CE S

1. K. G. Margaritis, D. J. Evans: Folding techniques for systolic iterations.
Parallel Algorithms Appl. 7 (1995), 87–105.

2. D. J. Evans, K. G. Margaritis: Systolic designs for eigenvalue-
eigenvector computations using matrix powers. Parallel Comput. 14 (1990),
77–88.

3. I. Ž. Milovanović, E. I. Milovanović, M. P. Bekakos: Synthesis of
a unidirectional systolic array for matrix-vector multiplication. Math. Com-
put. Modelling 43, 5-6 (2006), 612–619.

Faculty of Electronic Engineering
Department of Computer Science
P.O. Box 73
18000 Nǐs, Serbia
ema@elfak.ni.ac.yu (E.I. Milovanović)

Faculty of Electronic Engineering
Department of Mathematics
P.O. Box 73
18000 Nǐs, Serbia
igor@elfak.ni.ac.yu (I.Ž. Milovanović)

Faculty of Science and Mathematics
Department of Mathematics

38220 Kosovska Mitrovica, Serbia


