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CONTRACTIVE AFFINE TRANSFORMATIONS OF
COMPLEX PLANE AND APPLICATIONS

Ljubǐsa M. Kocić and Marjan M. Matejić

Abstract. Some properties of affine automorphisms of complex plane C are
considered. Special stress is set on contractions C → C and applications in
creating fractal sets.

1. Introduction

Definition 1.1. Affine transformation f of the complex plane C is defined
by

f(z) = Az + Bz̄ + C,(1.1)

where z ∈ C, and A,B, C are complex constants. If C = 0, transformation
(1.1) is linear.

The set of all affine transformations given by (1.1) will be denoted by A.
It is known that A endowed with composition of maps (A, ◦), forms a non-
commutative group, having ratio (relation of collinear lengths) as invariance.

The following transformations from A deserve special attention:

Translation
ftr(z) = z + C, C ∈ C;(1.2)

Rotation (for angle θ anti-clockwise)

fθ(z) = eiθz or fθ(z) = eiθ+2Arg z z̄, θ 6= 0, θ ∈ R;(1.3)
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Homothety (or homogenous scaling)

fs(z) = sz, s 6= 1, s ∈ R;(1.4)

Stretch (or non-homogenous scaling)

ft(z) =
1 + t

2
z +

1− t

2
z̄, t 6= ±1, t ∈ R;(1.5)

Shear (or skew)

fu(z) =
(
1− i

u

2

)
z + i

u

2
z̄, u 6= 0, u ∈ R;(1.6)

Symmetries, regarding real axis, imaginary axis and coordinate origin are
given by

fx(z) = z̄, fy(z) = −z̄, fO(z) = −z,(1.7)

respectively.

Definition 1.2. Linear transform f(z) = Az + Bz̄ is unimodular if

| |A|2 − |B|2 | = 1.(1.8)

Unimodular affine transformations preserve area of planar figures being
transformed. These transformations (U , ◦) form a sub-group of (A, ◦). Typ-
ical representative of U is shear transform, given by (1.6).

Definition 1.3. Affine transform f(z) = Az + Bz̄ + C is orthogonal if

A = s
(√

1− a2 + ia
)

or B = s
(
b + i

√
1− b2

)
, a, b ∈ R,(1.9)

and s ∈ R, C is arbitrary. Note that both constants A and B have alternative
form seiθ, where s, θ ∈ R. Orthogonal transformations (O, ◦) have group
property and it is a sub-group of (A, ◦).

Lemma 1.1. Orthogonal transformations preserve inner product up to the
multiplicative constant.

Proof. The inner product in C is defined by

〈z1, z2〉 =
1
2
(z1z̄2 + z̄1z2).(1.10)



Contractive Affine Transformations of Complex Plane and Applications 67

Then,

2〈f(z1), f(z2)〉 = f(z1)f(z2) + f(z1)f(z2)
= seiθz1 · se−iθz̄2 + se−iθz̄1 · seiθz2

= s2(z1z̄2 + z̄1z2) = 2s2〈z1, z2〉,

i.e., 〈f(z1), f(z2)〉 = s2〈z1, z2〉.

Definition 1.4. Affine transform f(z) = Az+Bz̄+C is orthonormal (uni-
tary) if it is orthogonal and |s| = 1.

Translations (1.2), rotations (1.3) and symmetries (1.7) are orthonormal
transformations. Homothety (1.4), and combinations, like scaled transla-
tions, scaled rotations and scaled symmetries are orthogonal. Orthonormal
transformations (ON , ◦) is included in (A, ◦) as its sub-group. This is also
a sub-group of (U , ◦).

Orthogonal affine mappings preserve angles while orthonormal ones, be-
sides angles, preserve distances as well.

The last important subset of A is the set N of non-homogenous scaling
(1.5) (N , ◦) has structure of semigroup.

Here is hierarchy in the group (A, ◦):

Orthogonal =⇒ Affine transform ⇐= Unimodular
⇑ ⇑ ⇑

Orthonormal Non-homog. sc. Orthonormal

or
(O, ◦) ⊂ (A, ◦) ⊃ (U , ◦)
∪ ∪ ∪

(ON , ◦) (N , ◦) (ON , ◦)

2. Binary Decomposition of the Group (A, ◦)

Let
φ : z 7→ Az + Bz̄,(2.1)

be the linear part of transformation (1.1), so φ ∈ (A, ◦). Then, the following
decomposition theorem takes place:
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Theorem 2.1. φ = φ⊥ ◦ φ∆, where φ⊥ and φ∆ are orthogonal and non-
orthogonal component respectively given by

φ⊥(z) = seiθz, φ∆(z) =
(1 + t

2
− i

u

2

)
z +

(1− t

2
+ i

u

2

)
z̄,(2.2)

Proof. It is proved in Lemma 1.1 that φ⊥ is orthogonal since it preserves
inner product. On the other hand, φ∆(z) does not since 〈φ∆(z1), φ∆(z2)〉 =
1
2z1z2 which coincide with 〈z1, z2〉 if and only if z1 and z2 are real numbers.
Therefore, transformation φ∆ by no means can preserve orthogonality in
complex plane.

Remark 2.1. Note that φ∆(z) is composition of stretch (1.5) and shear (1.6)
transformation. In fact,

ft(fu(z)) =
1
2
[
(1+t)fu(z)+(1−t)fu(z)

]
=

1
2
[
(1+t)−iu

]
z+

1
2
[
(1−t)+iu

]
z = φ∆(z).

But, fu(ft(z)) =
(
1 − iu

2

)
ft(z) + iu

2 ft(z) = φ∆(z). Thus, φ∆(z) = (ft ◦ fu)(z) =
(fu ◦ ft)(z). Also, since f(z) = φ(z) + C, the final decomposition form of (1.1) is

f(z) = seiθ
[(1 + t

2
− i

u

2

)
z +

(1− t

2
+ i

u

2

)
z̄
]

+ C,(2.3)

where C ∈ C defines translation.

Definition 2.1. Real parameters s, θ, t and u will be called decomposition
parameters of affine transformation (1.1).

Theorem 2.2. For given A and B in (1.1) decomposition parameters are
given by

s =
√

(A + B)(Ā + B̄) sgn (A + B + Ā + B̄)

θ = −i tan−1
(A + B − Ā− B̄

A + B + Ā + B̄

)
,(2.4)

t =
detA

(A + B)(Ā + B̄)
, u = i

(AB̄ −BĀ)
(A + B)(Ā + B̄)

.

Proof. According to Theorem 2.1, φ(z) = Az + Bz̄, where

A =
s

2
[(1 + t) cos θ + u sin θ] + i

s

2
[(1 + t) sin θ − u cos θ],

B =
s

2
[(1− t) cos θ − u sin θ] + i

s

2
[(1− t) sin θ + u cos θ],
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or

A =
s

2
eiθ(1 + t− iu), B =

s

2
eiθ(1− t + iu).(2.5)

The result (2.4) obtains by conjugating (2.5) and solving derived set of four
nonlinear equations.

Now, on the basis of Theorem 2.2, one can classify affine transformations
in C plane in terms of decomposition parameters as follows:

f(z) s θ t u A B C

translation 1 0 1 0 1 0 C 6= 1

rotation 1 θ 6= 1 1 0 eiθ 0 0

homothety s 6= 1 0 1 0 s 0 0

stretch 1 0 t 6= 1 0 (1 + t)/2 (1− t)/2 0

shear 1 0 1 u 6= 1 1− iu/2 iu/2 0

symmetry-x 1 0 −1 0 0 1 0

symmetry-y −1 0 −1 0 0 −1 0

symmetry-O 1 π 1 0 −1 0 0

3. Contractions C→ C

Using the inner product defined by (1.10) one may to define metric in C
in the usual way, d(z1, z2) =

√
〈z1, z2〉. Now (C, d) is a metric space.

Definition 3.1. Transformation of the metric space (C, d) into itself is
contraction if and only if

d(f(z1), f(z2)) < d(z1, z2),

for all z1, z2 ∈ C.

Theorem 3.1. The map (1.1) is contraction provided |A|+ |B| < 1, or

|s|(
√

(1 + t)2 + u2 +
√

(1− t)2 + u2) < 2.(3.1)

Proof. Let z1 and z2 (z1 6= z2) be two complex numbers. Then we have

|f(z2)− f(z1)| = |Az2 + Bz̄2 + C −Az1 −Bz̄1 − C|
= |A(z2 − z1) + B(z̄2 − z̄1)|
≤ (|A|+ |B|)|z2 − z1| < |z2 − z1|.
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So, |A|+|B| < 1 implies contractivity of (1.1). Now, from (2.5) and Theorem
2.2, it follows that (1.1) is contraction if

|A|+ |B| = |s|
(∣∣∣ 1 + t

2
− i

u

2

∣∣∣ +
∣∣∣ 1− t

2
+ i

u

2

∣∣∣
)

= |s|
(√

(1 + t)2 + u2 +
√

(1− t)2 + u2
)
· 1
2

< 1

or (3.1).
The main application of contractive mapping in C is to produce self-affine

fractal sets. Let

{(C, d), f1, . . . , fn}, n ≥ 2(3.2)

be Iterated Function System (IFS) defined in metric space (C, d), and let
each fk be a contraction in (C, d).

Let f(S) = {f(z) : z ∈ S} and W (S) = ∪n
i=1fi(S), S ⊂ C be Hutchin-

son operator [3]. According to [3] there exists a compact set K ⊂ C
such that W (K) = K. In other words, the sequence K0 (arbitrary finite
set), K1,K2, . . . where Ki = W ◦i(K0), i = 1, 2, . . . converge towards K,
limm→+∞W ◦m(K0) = K. The set K is known as attractor of the IFS which
is called hyperbolic (3.2).

In order to make fractal constructions easier, it is advisable to have tri-
angle to triangle transformation expressed in terms of coefficients A, B and
C of (1.1).

Let two triangles T1 = {z1, z2, z3 | zi 6= zj , i 6= j} and T2 = {w1, w2, w3 |
wi 6= wj , i 6= j} be given in the complex plane, and let f : T1 → T2. Then,
we have:

Theorem 3.2. Transformation f : T1 → T2 is contraction provided

|w1(z̄2 − z̄3) + w2(z̄3 − z̄1) + w3(z̄1 − z̄2)|
|w1(z2 − z3) + w2(z3 − z1) + w3(z1 − z2)|+

< |(z3 − z2)z̄1 + (z1 − z3)z̄2 + (z2 − z1)z̄3|.
Proof. Transformation f which maps T1 into T2 is determined by the

coefficients

A =
w1(z̄2 − z̄3) + w2(z̄3 − z̄1) + w3(z̄1 − z̄2)
z1(z̄2 − z̄3) + z2(z̄3 − z̄1) + z3(z̄1 − z̄2)

,

B =
w1(z3 − z2) + w2(z1 − z3) + w3(z2 − z1)
z1(z̄2 − z̄3) + z2(z̄3 − z̄1) + z3(z̄1 − z̄2)

,(3.3)

C =
w1(z2z̄3 − z3z̄2) + w2(z3z̄1 − z1z̄3) + w3(z1z̄2 − z2z̄1)

z1(z̄2 − z̄3) + z2(z̄3 − z̄1) + z3(z̄1 − z̄2)
,
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which can be derived by solving the system of equations f(zk) = wk, k =
1, 2, 3. From Theorem 3.1 and (3.3) one gets the claim of this theorem.

Since fractal constructions are affine invariant, in the sense that trans-
forming the initial position of triangular configuration will result in trans-
formation of the whole figure, one can restrict himself on special position of
starting triangles, say by taking z1 = 0, z2 = 1, z3 = i and w1 = 0, w2 = h,
w3 = p + iq. Let this special triangle be denoted by T ∗1 and T ∗2 respectively.
Then one has the following consequence of Theorem 3.2.

Corollary 3.1. Transformation f : T ∗1 → T ∗2 with special choice as above
is contraction in C if

p2 + (1− h2)q2 < 1− h2, |h| < 1.(3.4)

In this case

A =
1
2
(h + q − ip), B =

1
2
(h− q + ip), C = 0.(3.5)

Proof. The formula (3.5) can be obtained from (3.3) by substituting
z1 = 0, z2 = 1, z3 = i, w1 = 0, w2 = h, w3 = p + iq. From (3.1), f is
contraction C→ C if

h2 + p2 + q2 +
√

p2 + (h + q)2 < 2

wherefrom, by algebraic transformations one gets

p2 + (1− h2)q2 < 1− h2.(3.6)

Equality in (3.6) gives an ellipse in (p, q)−coordinate system with half-axes
a =

√
1− h2, b = 1. So, the solution of (3.6) is the open subset of C bounded

by ellipse p2 + (1− h2)q2 = 1− h2.

Many important fractal constructions, especially all “classic” construc-
tions like Koch, Peano, Sierpinski, Cesaro, etc., can be considered as attrac-
tors of the IFS (3.2) that consists of orthogonal affine contractions f(z) =
seiθz +C. These self-similar fractal constructions are known under the com-
mon name Initiator-Generator method [5]. This method assumes pair of
geometric objects Initiator and Generator. Usually, Initiator is linear seg-
ment, say {0, 1} and Generator is a polygonal line {L1, L2, . . . , Ln} ⊂ C.
Then,

fk(z) = ske
iθkz + Ck : {0, 1} → Lk, k = 1, . . . , n.(3.7)
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Theorem 3.3. Let S be an IFS (3.2) where mappings are given by (3.7).
Then, S is hyperbolic if |Lk| < 1, k = 1, . . . , n, and fk may be one of the
following mappings

z 7→ ∆wkz + wk,(3.8)

z 7→ −∆wkz + wk+1,(3.9)

z 7→ ∆wkz̄ + wk,(3.10)

z 7→ −∆wkz̄ + wk+1,(3.11)

where Lk = {wk, wk+1}, ∆wk = wk+1 − wk, and k = 1, 2, . . . , n.

Proof. There are four ways to map {0, 1} orthogonally to Lk: a) {0, 1}
to {wk, wk+1}; b) {0, 1} to {wk+1, wk}; c) substitute z with z̄ and apply a),
and d) substitute z with z̄ and apply b). Thus, the form of fk will be Az+C
with A = wk+1 − wk, C = wk or A = wk − wk+1, C = wk+1 in the cases
a) and b) respectively. By substituting z → z̄ the symmetry transform of
the C-plane is performing although preserving the segment {0, 1}, and then
map c) gives Az̄ + C where A and C are the same as in the case a), so
A = wk+1−wk, C = wk, while in the case d) it is A = wk−wk+1, C = wk+1.
So, this explains equations (3.8)–(3.11). In all cases |A| = |∆wk| = |Lk| < 1
is sufficient condition for all fk to be orthogonal contractions in C, thereby
making IFS a hyperbolic one.

Theorem 3.3 is a formal extension of the above mentioned Initiator-
Generator method. By varying each mapping in orthogonal affine (hyper-
bolic) IFS for some old-known fractals, one may contribute with variety of
new forms. To illustrate this, let us consider some examples.

4. Examples

Here we give five examples.
Example 4.1 (von Koch curve). One of the oldest constructions that later turned
out to be the fractal construction goes back to Helge von Koch [4]. It consists of
four contractive mappings that are orthogonal (t = 1, u = 0) so that, accordingly
to Theorem 3.3 one gets:

f1(z) =
1
3
z, f2(z) =

1
6
(1 + i

√
3)z +

1
3
,

f3(z) =
1
6
(1− i

√
3)z +

1
6
(3 + i

√
3), f4(z) =

1
3
z +

2
3
.

All these maps are contractions, so IFS is hyperbolic. The attractor of this IFS is
known as Koch’s curve (Figure 1 (left-top)).
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Fig. 1: Von Koch curve and its modification (top) and Sierpinski triangle and
modification (bottom)

Example 4.2 (Variation on Koch curve). If z in any of fi from Example 4.1 be
replaced by z one gets symmetric mapping. More precise, if fi(z) maps (0, 1) into
(w1, w2), fi(z) will do the same but with the complex plane being flipped around
the real axis. So, the IFS give by

f1(z) =
z

3
, f2(z) =

1
6
(1 + i

√
3)z +

1
3
,

will produce fractal curve that is quite different from classic von Koch curve (Figure
1 (right-top)).

Example 4.3 (Peano curve). The attractor of the following IFS:

f1(z) =
1
3
z, f2(z) =

1
3
(iz + 1), f3(z) =

1
3
(z + 1 + i),

f4(z) =
1
3
(−iz + 2 + i), f5(z) =

1
3
(−z + 2), f6(z) =

1
3
(−iz + 1),

f7(z) =
1
3
(z + 1− i), f8(z) =

1
3
(z + 2− i), f9(z) =

1
3
(z + 2),

is known as Peano’s curve [6]. Note that in this case, all four possibilities offered
by Theorem 3.3 leaves the attractor unchanged.

Example 4.4 (Sierpinski curve). This is attractor (Figure 1 (left-bottom)) of the
IFS given by the following mappings:

f1(z) =
1
4
(1 + i

√
3)z, f2(z) =

1
4
(2z + 1 + i

√
3),

f3(z) =
1
4
((1− i

√
3)z + 3 + i

√
3).
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Note that f1 and f3 are of the type (3.8) and f2 of the (3.10).

Example 4.5 (Variation on Sierpinski curve). If f2 in the Sierpinski IFS from
previous example is replaced by f2(z) = 1

4 (2z̄ + 1 + i
√

3) (type (3.10)) and f3 by
f3(z) = 1

4 ((1 − i
√

3)z + 3 + i
√

3) (type (3.8)) the attractor dramatically changes
into the form given in Figure 1 (right-bottom).

5. Conclusion

Using complex plane in studying fractal constructions is not a new idea.
Some hints and particular examples are given in almost all ”classics” of
fractal themes ([5], [1], etc). But, somehow it lacks a systematic study of
such simple thinks like affine automorphisms of complex plane. Here, we
tried to fill this gap by mentioning some basic stuff about this issue, like
classification of affine mappings, its group and the refinement on subgroups
as well as their relations. Further, we offer decomposition of affine mappings
C → C on orthogonal and non-orthogonal sub-mappings. Then, we discuss
metric properties of these mappings and establish sufficient conditions for
contractivity. After this, we apply such a theory on more concrete collections
of contractive mappings known as IFS’s like an extended Initiator-Generator
method (Theorem 3.3). Finally, some examples of classic fractal sets are used
to demonstrate possibility of their variations based on Theorem 3.3.
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