AN ESTIMATION OF THE SINGULAR VALUES OF INTEGRAL OPERATOR WITH LOGARITHMIC KERNEL

Suzana Simić

Abstract

The present paper focuses on a problem of estimating the singular values of operators with the kernel of the form $k(x)=\log ^{\beta}(1 / x)$ and $\beta>0$. In the special case, when $\beta=1$ and kernel $k(x)=\log (1 / x)$, the exact asymptotic of singular values of operator is obtained in [5].

1. Introduction

Suppose \mathcal{H} is complex Hilbert space and T is a compact operator on \mathcal{H}. The singular values of the operator $T\left(s_{n}(T)\right)$ are the eigenvalues of the operator $\left(T^{*} T\right)^{1 / 2}\left(\right.$ or $\left.\left(T T^{*}\right)^{1 / 2}\right)$. The eigenvalues of $\left(T^{*} T\right)^{1 / 2}$ arranged in a decreasing order and repeated according to their multiplicity, form a sequence s_{1}, s_{2}, \ldots tending to zero.

Denote the set of compact operators on \mathcal{H} by C_{∞}.
The operator T is Hilbert-Schmidt one $\left(T \in C_{2}\right)$ if

$$
\sqrt{\sum_{n=1}^{+\infty} s_{n}^{2}(T)}=\|T\|_{2}<+\infty
$$

If $T \in C_{\infty}$ is an integral operator on $L^{2}(\Omega)$ defined by

$$
T f(x)=\int_{\Omega} k(x, y) f(y) d y
$$

then (see [7])

$$
\|T\|_{2}^{2}=\int_{\Omega} \int_{\Omega}|k(x, y)|^{2} d x d y
$$

Received May 15, 2006.
2000 Mathematics Subject Classification. Primary 47B10.

2. Main Result

Theorem 2.1. For the operator $A: L^{2}(0,1) \rightarrow L^{2}(0,1)$, defined by

$$
A f(x)=\int_{0}^{x} \log ^{\beta} \frac{1}{x-y} f(y) d y, \quad \beta>0
$$

we have, for the singular values $s_{n}(A)$ of the operator A, the inequalities

$$
c \frac{\log ^{\beta-1} n}{n} \leqslant s_{n}(A) \leqslant o\left(n^{-1 / 2}\right), \quad n \in \mathbb{N}
$$

where $c=$ const >0.

Proof. In the case when $\beta=1$ and kernel $k(x)=\log (1 / x)$ the exact asymptotic of singular values of the operator A is known (see [2]). In [9] M. Kac heuristically deduced the asymptotic formula for the eigenvalues of one unbounded operator (which appeared in the theory of thinly tab) and which is closely to operator $A+A^{*}$ in case $\beta=1$. In [8] H.M. Hogan and L.A. Sahnovič gave a strong proof of this asymptotic formula. The obtained asymptotic formula $s_{n}(A) \asymp c / n$ is according to inequalities for the generalized case.

Note that

$$
B f(x)=\left(A+A^{*}\right) f(x)=\int_{0}^{1} \log ^{\beta} \frac{1}{|x-y|} f(y) d y
$$

Let the function $\omega \in C_{0}^{\infty}(\mathbb{R})$ satisfies:

$$
0 \leqslant \omega \leqslant 1, \quad \omega(x)=1 \quad \text { for } \quad|x| \leqslant \varepsilon
$$

Define the operator $B_{0}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
B_{0} f(x)=\int_{0}^{1} \omega(|x-y|) \log ^{\beta} \frac{1}{|x-y|} f(y) d y
$$

From the previous we get that $B_{0} f=\int_{0}^{1} \widetilde{k}(x-y) f(y) d y$, where the kernel $\widetilde{k}(x)=\omega(|x|)(\log (1 /|x|))^{\beta}$. Consider the function

$$
H(x, y)=\sum_{n=-\infty}^{+\infty}[\widetilde{k}(x-y+4 n)-\widetilde{k}(x+y+4 n+2)], \quad x, y \in[-1,1]
$$

Taking $\varphi_{n}(x)=\sin (n \pi(1+x) / 2)$ for $n \in \mathbb{N}$, the system of functions $\left\{\varphi_{n}\right\}_{n=1}^{+\infty}$ is an orthonormal basis of $L^{2}(-1,1)$. By a direct computation it will be proved (see [1]) that

$$
\int_{-1}^{1} H(x, y) \varphi_{n}(y) d y=\widehat{K}\left(\frac{n \pi}{2}\right) \varphi_{n}(x), \quad x \in[-1,1], n=1,2, \ldots
$$

where $\widehat{K}(\xi)=\int_{-\infty}^{+\infty} e^{i t \xi} \widetilde{k}(t) d t$.
The operator $\mathcal{K}: L^{2}(-1,1) \rightarrow L^{2}(-1,1)$, defined by

$$
\mathcal{K} f(x)=\int_{-1}^{1} H(x, y) f(y) d y
$$

is selfadjoint and $\left\{\lambda_{n}(\mathcal{K})\right\}_{n \geqslant 1}$ are its singular values. We have that

$$
\lambda_{n}(\mathcal{K})=\widehat{K}\left(\frac{n \pi}{2}\right)
$$

Since

$$
\begin{aligned}
\widehat{K}(\lambda) & =\int_{\mathbb{R}} e^{i \lambda t} \widetilde{k}(t) d t \\
& =\int_{\mathbb{R}} \cos \lambda t \omega(|t|)\left(\log \frac{1}{|t|}\right)^{\beta} d t+i \int_{\mathbb{R}} \sin \lambda t \omega(|t|)\left(\log \frac{1}{|t|}\right)^{\beta} d t
\end{aligned}
$$

then from $\int_{\mathbb{R}} \sin \lambda t \omega(|t|)(\log (1 /|t|))^{\beta} d t=0$, we get

$$
\begin{aligned}
\widehat{K}(\lambda) & =2 \int_{0}^{+\infty} \cos \lambda t \omega(t)\left(\log \frac{1}{t}\right)^{\beta} d t \\
& =2 \int_{0}^{+\infty} \frac{e^{i \lambda t}+e^{-i \lambda t}}{2} \omega(t)\left(\log \frac{1}{t}\right)^{\beta} d t \\
& =\int_{0}^{+\infty} e^{i \lambda t} \omega(t)\left(\log \frac{1}{t}\right)^{\beta} d t+\int_{0}^{+\infty} e^{i \lambda t} \omega(t)\left(\log \frac{1}{t}\right)^{\beta} d t
\end{aligned}
$$

The direct application of Theorem 1.11 from [6] to the function

$$
F(\lambda)=\int_{0}^{+\infty} e^{i \lambda x} \sum_{m=0}^{+\infty} c_{m} x^{\alpha_{m}-1}\left(\log \frac{1}{x}\right)^{\beta_{m}} d x
$$

we get

$$
F(\lambda)=c_{0} J\left(\alpha_{0}, \beta_{0}, \lambda\right)+o\left(\lambda^{-q}\right), \quad \text { for all } \quad q \in \mathbb{N}
$$

and

$$
J\left(\alpha_{0}, \beta_{0}, \lambda\right) \sim e^{i \alpha_{0} \pi / 2} \lambda^{-\alpha_{0}} \sum_{k=0}^{+\infty} c_{k}\left(\alpha_{0}, \beta_{0}\right)(\log \lambda)^{\beta_{0}-k} .
$$

Putting here $c_{0}=1, \alpha_{0}=1, \beta_{0}=\beta$, and

$$
f(t)=\omega(t)\left(\log \frac{1}{t}\right)^{\beta} \sim(-\log t)^{\beta}, \quad t \rightarrow 0+
$$

we have

$$
\begin{aligned}
F(\lambda) & =J(1, \beta, \lambda)+o\left(\lambda^{-q}\right) \\
& =e^{i \pi / 2} \lambda^{-1} \sum_{k=0}^{+\infty} c_{k}(1, \beta)(\log \lambda)^{\beta-k}=\frac{i}{\lambda} \sum_{k=0}^{+\infty} c_{k}(1, \beta)(\log \lambda)^{\beta-k} \\
& =\frac{i}{\lambda}\left(c_{0}(1, \beta)(\log \lambda)^{\beta}+c_{1}(1, \beta)(\log \lambda)^{\beta-1}+\cdots\right)
\end{aligned}
$$

Since $\widehat{K}(\lambda)=F(\lambda)+\overline{F(\lambda)}$, then, from the previous relation, it follows

$$
\begin{aligned}
\widehat{K}(\lambda) & =\frac{i}{\lambda}\left(c_{0}(1, \beta)(\log \lambda)^{\beta}+c_{1}(1, \beta)(\log \lambda)^{\beta-1}+\cdots\right) \\
& -\frac{i}{\lambda}\left(\overline{c_{0}(1, \beta)}(\log \lambda)^{\beta}+\overline{c_{1}(1, \beta)}(\log \lambda)^{\beta-1}+\cdots\right) .
\end{aligned}
$$

By Theorem 1.11 from [6] we obtain

$$
c_{k}(1, \beta)=(-1)^{k} \sum_{s=0}^{k}\binom{k}{s} \Gamma^{(s)}(1)\left(\frac{i \pi}{2}\right)^{k-s}
$$

where $\Gamma(\cdot)$ is Euler Gamma function. For $k=0$ we have $c_{0}(1, \beta)=\Gamma(1)=1$, and for $k=1$ we obtain

$$
\begin{aligned}
c_{1}(1, \beta) & =(-1) \sum_{s=0}^{1}\binom{1}{s} \Gamma^{(s)}(1)\left(\frac{i \pi}{2}\right)^{1-s} \\
& =(-1)\left[\binom{1}{0} \Gamma(1) \frac{i \pi}{2}+\binom{1}{1} \Gamma^{\prime}(1)\right]=-\left(\frac{i \pi}{2}+\Gamma^{\prime}(1)\right) .
\end{aligned}
$$

Then, it follows immediately from these relations that

$$
\widehat{K}(\lambda)=\frac{i}{\lambda}\left(c_{1}(1, \beta)-\overline{c_{1}(1, \beta)}\right)(\log \lambda)^{\beta-1}+O\left(\frac{(\log \lambda)^{\beta-2}}{\lambda}\right),
$$

so that

$$
\widehat{K}(\lambda) \sim \frac{i}{\lambda}\left(2 i \operatorname{Im}\left(c_{1}(1, \beta)\right)(\log \lambda)^{\beta-1}=-\frac{2}{\lambda}\left(-\frac{\pi}{2}\right)(\log \lambda)^{\beta-1}\right.
$$

The last relation implies

$$
\widehat{K}(\lambda) \sim \frac{\pi}{\lambda}(\log \lambda)^{\beta-1}, \quad \lambda \rightarrow+\infty
$$

thus, according to the method exposed in [3], we have that

$$
\begin{equation*}
s_{n}\left(B_{0}\right) \sim \frac{\pi}{n}(\log n)^{\beta-1}, \quad n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Since

$$
B f=\int_{0}^{1} \log ^{\beta} \frac{1}{|x-y|} f(y) d y
$$

and

$$
B_{0} f=\int_{0}^{1} \omega(|x-y|) \log ^{\beta} \frac{1}{|x-y|} f(y) d y
$$

we have that $B=B_{0}-\bar{B}$, where \bar{B} is the operator with kernel $\bar{k}(t) \in C^{\infty}(\mathbb{R})$. By Theorem about a gowning of the singular values of the operator with smooth kernel (see [7]) we have that the operator $\bar{B} \in C_{p}$, for every $p>0$, so for its singular values we get $s_{n}(\bar{B})=o\left(n^{-1 / p}\right)$. From this and relation (2.1), according to Theorem of Ky-Fan (see [7]) we have

$$
s_{n}(B) \sim \frac{\pi}{n}(\log n)^{\beta-1}, \quad n \in \mathbb{N}
$$

On the other side, from some properties of the singular values, we obtain

$$
s_{2 n}(B) \leqslant s_{n}(A)+s_{n}\left(A^{*}\right)=2 s_{n}(A)
$$

i.e.,

$$
s_{n}(A) \geqslant \frac{c_{1}}{2} \frac{(\log n)^{\beta-1}}{n}
$$

where c_{1} is a constant independent of n.
According to

$$
\int_{0}^{1} \int_{0}^{1}|k(x-y)|^{2} d x d y<+\infty
$$

A is a Hilbert-Schmidt operator and we have

$$
s_{n}(A)=o\left(n^{-1 / 2}\right)
$$

Remark 2.1. From this inequalities we can see that when $\beta>0$ this operator does not belong to the class C_{p}, for $0<p<1$.

Remark 2.2. Let us consider the kernels

$$
k_{i}(x)=\left(\log \frac{1}{x}\right)^{\beta}\left(1+r_{i}(x)\right), \quad i=1,2
$$

with $r_{i} \in C^{3}[0,1], \frac{d^{k} r_{i}}{d x^{k}}(0)=0$ for $k \in\{0,1,2\}$, and the operators

$$
A_{i} f(x)=\int_{0}^{x} k_{i}(x-y) f(y) d y
$$

Then from [2] we have

$$
\lim _{n \rightarrow+\infty} \frac{s_{n}\left(A_{1}\right)}{s_{n}\left(A_{2}\right)}=1
$$

Consider the case $k_{1}(x)=(\log (1 / x))^{\beta}(1+r(x))$ and $k_{2}(x)=(\log (1 / x))^{\beta}$. Knowing the corresponding asymptotic formula for the operator A_{2}, with the kernel k_{2}, we know this and for the operator A_{1} with the kernel k_{1}.

Remark 2.3. Increasing order of singular values for the operator A is not found, because the upper estimate

$$
s_{n}(A) \leqslant c_{2} \frac{\log ^{\beta-1} n}{n} \quad(c \text { is independent on } n)
$$

in not obtained. An open problem is to find the exact asymptotic of singular values of the operator $A: L^{2}(0,1) \rightarrow L^{2}(0,1)$, defined by

$$
A f(x)=\int_{0}^{x} \log ^{\beta} \frac{1}{x-y} f(y) d y, \quad \beta>0
$$

REFERENCES

1. M. Dostanić: An estimation of singular values of convolution operators. Proc. Amer. Math. Soc. 123 (1995), 1399-1409.
2. M. R. Dostanić and D. Z. Milinković: Asymptotic behavior of singular values of certain integral operators. Publ. Inst. Math. (Beograd) (N.S.) 60 (74) (1996), 83-98.
3. M. R. Dostanić: Exact asymptotic behavior of the singular values of integral operators with the kernel having singularity on the diagonal. Publ. Inst. Math. (Beograd) (N.S.) 60 (74) (1996), 45-64.
4. M. Dostanić: Some estimates of the remainder in the expressions for the eigenvalue asymptotics of some singular integral operators. Mat. Vesnik 49 (1997)), 129-137.
5. M. Dostanić: Spectral properties of the operator of Riesz potential type. Proc. Amer. Math. Soc. 126 (1998), 2291-2297.
6. M. V. Fedorok: Asymptotic of Integrals and Series. Nauka, Moscow, 1987 (Russian).
7. I. C. Gohberg and M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators. Nauka, Moscow, 1965 (Russian).
8. H. M. Hogan and L. A. Sahnovič: Asymptotic behavior of the spectrum of a singular integrodifferential operators. Diff. Equations 20 , 8 (1984), 1444-1447.
9. M. Kac, Sbornik perevodov "Mathematika", 1, 2 (1957), 95-124 (Russian)

Faculty of Science
Department of Mathematics and Informatics
P.O. Box 60

34000 Kragujevac, Serbia

```
suzanasimic@kg.ac.yu
```

