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REMARK ON ORTHOGONAL POLYNOMIALS INDUCED
BY THE MODIFIED CHEBYSHEV MEASURE OF THE

SECOND KIND∗

G. V. Milovanović, A. S. Cvetković, M. M. Matejić

Abstract. In this note we introduce a system of polynomials {P̂k} orthogonal
with respect to the modified Chebyshev measure of the second kind,

dλ̂(t) =
t + 1

2c + 1
c

t + 1
2c + 1

2c

√
1− t2 dt, t ∈ [−1, 1],

where c is a positive real number, and determine the coefficients in the corre-
sponding three-term recurrence relation for these polynomials in an analytical
form.

1. Introduction

In this note we investigate polynomials orthogonal with respect to the
moment functional

L(P ) =
∫ 1

−1
P (t)

t + 1
2c + 1

c

t + 1
2c + 1

2c

√
1− t2 dt, P ∈ P,(1.1)

where c ∈ R\{0}. The special case c = 1 has been considered in [4]. To make
it more clear, Figure 1 displays graph of the rational part of the weight
for c =

√
2. As c tends to 1, the singularity of the rational part tends
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Fig. 1: Graph of the rational part of the weight in (1.1)

to −1; when c passes 1, the singularity of the rational part goes back to
−∞. Completely symmetric situation appears for c < 0. Namely, we can
substitute c := −c, and after substitution t := −t, we get the same linear
functional. Therefore, in the rest of this paper we only consider the case
c > 0. Zero of the rational part is always bigger in modulus than the
singularity.

We consider the modified measure

dλ̂(t) =
t− γ

t− δ

√
1− t2 dt, t ∈ [−1, 1],

where γ = −1
2c− 1

c and δ = −1
2c− 1

2c . We pose the problem of determining
the recurrence coefficients α̂k = αk(dλ̂), β̂k = βk(dλ̂), from those of the
Chebyshev measure of the second kind, for which αk = 0, βk = 1/4 for all
k ∈ N and α0 = 0, β0 = π/2.

The existence of {P̂k} is granted, since dλ̂(t) is a positive measure on
[−1, 1] having finite moments of all orders

L(tk) =
∫ 1

−1
tk

t + 1
2c + 1

c

t + 1
2c + 1

2c

√
1− t2 dt, k ∈ N0.

The problem is solved in two steps. First, we consider the modification of
the Chebyshev measure of the second kind by the linear divisor, for which we
are using Algorithm 1 (see the next section). We get the coefficients α̃k and
β̃k. Then, we apply Algorithm 2 (see Section 3), which modifies by linear
factor, for computing the coefficients of the three-term recurrence relation
for the measure dλ̂(t), we finally get α̂k and β̂k for k ∈ N0.
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Similar measures, e.g. with the weight function (1 − t2)(1 − k2t2)−1/2,
k2 < 1, were studied in [9]. There is also a great number on results for the
so-called Szegő-Bernstein weight functions given by

w1(t) =
ρ(t)√
1− t2

, w2(t) = ρ(t)
√

1− t2, w3(t) = ρ(t)

√
1− t

1 + t
,

where ρ is a polynomial positive on the interval (−1, 1) (see [10], [2]). Similar
weight function

w(t) =
√

1− t2

1− µt2
, µ ≤ 1,

has also been studied in [6]. For the Chebyshev measure of the first kind
the same modification has been studied in [7]. Finally, in [1] one may find
similar results even when the supporting set has two disjoint components.

2. Linear Divisors

To begin with, we consider a linear divisor

dλ̃(t) =
1

t− δ

√
1− t2 dt, t ∈ [−1, 1], δ ∈ R \ [−1, 1],

where δ = −1
2c− 1

2c .
In order to be able to apply the modification (see Algorithm 1 given

below), we must have the value of the Cauchy integral

ρ0(δ) =
∫ 1

−1

1
δ − t

√
1− t2 dt, δ ∈ R \ [−1, 1].

Lemma 2.1. The value of the Cauchy integral is

ρ0(δ) =
∫ 1

−1

1
δ − t

√
1− t2 dt = (

√
δ2 − 1 + δ)π.

Proof. Using the second Euler’s substitution
√

1− t2 = 1 + mt, we get

t = − 2m

1 + m2
, dt =

2(m2 − 1)
(1 + m2)2

dm .

Now, it follows
∫

1
δ − t

√
1− t2 dt = −2

∫
(m2 − 1)2

(δm2 + 2m + δ)(1 + m2)2
dm,
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which can be solved as an integral of the rational function. Now, we get

(m2 − 1)2

(δm2 + 2m + δ)(1 + m2)2
=

δ

1 + m2
− 2m

(1 + m2)2
+

1− δ2

δm2 + 2m + δ
.

The rest of the proof is now obvious.
Before proving the next theorem, Algorithm 1 is presented and is going

to be used to prove Theorem 1. Both Algorithms 1 and 2 can be found, for
example, in [5, p. 123–129].

Algorithm 1 (Modification by a linear divisor)
Initialization:

α̃0 = δ − β0

ρ0(δ)
, β̃0 = −ρ0(δ), q0 = − β0

ρ0(δ)
.(2.1)

Continuation: For k = 1, 2, . . . , n− 1 do

ek−1 = αk−1 − δ − qk−1,(2.2)
β̃k = qk−1ek−1,

qk = βk/ek−1,(2.3)
α̃k = qk + ek−1 + δ.(2.4)

Theorem 2.1. The coefficients of the three-term recurrence relation for
the measure

dλ̃(t) =
1

t + c
2 + 1

2c

√
1− t2 dt, t ∈ [−1, 1],

are
α̃0 = − 1

2c
, α̃k = 0 for k ≥ 1

and
β̃0 =

π

c
, β̃k =

1
4

for k ≥ 1.

Proof. The coefficients α̃0 and β̃0 are computed directly from (2.1). Also,
it is useful to compute the coefficients α̃1 and β̃1 as the basis of mathematical
induction. Using Algorithm 1, for k = 1 we get

α̃1 = 0, β̃1 =
1
4
.
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The rest of the proof follows using an induction argument. Thus, let the
statement be true for k and we need to prove it for k + 1. Combing (2.2)
and (2.4) we get

α̃k = 0 = qk + ek−1 + δ = qk − δ − qk−1 + δ,

wherefrom it follows
qk = qk−1.(2.5)

Now, from (2.4) we get

α̃k+1 = qk+1 + ek + δ = qk+1 − δ − qk + δ = qk+1 − qk.

Using (2.3), it follows

qk+1 =
1

4ek
,

and from (2.5)
ek = ek−1.(2.6)

Finally, we get

α̃k =
1

4ek−1
− qk = qk − qk = 0.

From (2.5) and (2.6), it follows

β̃k+1 = qkek = qk−1ek−1 =
1
4
.

This completes the proof.

3. Linear Factors

Let us consider a linear factor

dλ̂(t) = (t− γ)dλ̃(t), t ∈ [−1, 1], γ ∈ R \ [−1, 1],

where γ = −1
2c− 1

c .
Before presenting Algorithm 2, we have to stress that in this algorithm

we use already computed coefficients α̃k and β̃k to get the coefficients of the
three-term recurrence relation for the measure dλ̂(t), α̂k and β̂k, for k ∈ N0.
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Algorithm 2 (Modification by a linear factor)

Initialization:
e−1 = 0.

Continuation: For k = 0, 1, . . . , n− 1 do

qk = α̃k − ek−1 − γ,(3.1)
β̂k = (α̃0 − γ)β̃0 if k = 0,

β̂k = qkek−1 if k > 0,(3.2)
ek = β̃k+1/qk,(3.3)
α̂k = γ + qk + ek.(3.4)

Theorem 3.1. The coefficients of the three-term recurrence relation for
the measure

dλ̂(t) =
t + c

2 + 1
c

t + c
2 + 1

2c

√
1− t2 dt, t ∈ [−1, 1],

are

α̂k = − Apqk

(1 + pqk)(1 + pqk+1)
, k ∈ N0,(3.5)

and

β̂k =
(1 + pqk−1)(1 + pqk+1)

4(1 + pqk)2
, k ∈ N,(3.6)

where

A =
c4 + 4

c(2 + c2 +
√

c4 + 4)
, p =

√
c4 + 4− c2

√
c4 + 4 + c2

, q =
2 + c2 −√c4 + 4
2 + c2 +

√
c4 + 4

.

Proof. First, we prove that

ek =
2 + c2 −√c4 + 4

4c

1 + pqk

1 + pqk+1
, k ∈ N0,(3.7)

wherefrom the rest of the statement of this theorem follows directly. The
proof is given by induction. For k = 0 from (3.7) we have e0 = c/(2+2c2) that
we can also obtain from Algorithm 2, putting k = 0. So, let the statement
be true for k − 1. From (3.1) and (3.3) it follows

ek =
1/4
qk

= − 1
4(ek−1 + γ)

.(3.8)
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Using elementary calculus we get

−4
(2 + c2 −√c4 + 4

4c
· 1 + pqk−1

1 + pqk
− c

2
− 1

c

)
=

4c

2 + c2 −√c4 + 4
· 1 + pqk+1

1 + pqk
.

The term on the right side of the previous equation is 1/ek, which is
exactly stated in (3.8).

From (3.2) and (3.3) it follows

β̂k = qkek−1 =
β̃k+1

ek
ek−1 =

1
4

ek−1

ek
,

which is exactly (3.6).

Now, (3.5) is a direct consequence of (3.4) and (3.7).

4. Explicit Expression for Polynomials P̂n

Using the following two theorems we give explicit expression for the poly-
nomial system {P̂n}.

Theorem 4.1. The polynomial system orthogonal with respect to the mea-
sure dλ̃(t) is given by

P̃k(x) = Uk(x)− α̃0Uk−1(x),

where α̃0 = −1/(2c) and Un is the Chebyshev polynomial of the second kind,
defined by (see [8])

Un(cos θ) =
sin(n + 1)θ

sin θ
, n ∈ N0.

Proof. The statement is true for k = 1 and k = 2. Indeed, we have

P̃1(x) = (x− α̃0)P̃0(x) = x− α̃0 = U1(x)− α̃0U0(x)

and

P̃2(x) = (x− α̃1)P̃1(x)− β̃1P̃0(x) = x(U1(x)− α̃0U0(x))− β1U0

= xU1(x)− β1U0(x)− α̃0xU0(x) = U2(x)− α̃0U1(x).
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Let the statement be true for k − 1 and k, and we need to prove it for
k + 1. Then, we have

P̃k+1(x) = (x− α̃k)P̃k(x)− β̃kP̃k−1(x)
= (x− α̃k)(Uk(x)− α̃0Uk−1(x))− β̃k(Uk−1(x)− α̃0Uk−2(x))
= (xUk(x)− β̃kUk−1(x))− α̃0(xUk−1(x)− βkUk−2(x))
= Uk+1(x)− α̃0Uk(x).

Finally, we can express directly our polynomial system {P̂n}, using Che-
byshev polynomials of the second kind {Un}.

Theorem 4.2. Let dλ̃(t) be quasi-definite and γ = −1
2c − 1

c be such that
P̃k(γ) 6= 0 for k ∈ N. Let dλ̂(t) = (t − γ)dλ̃(t). Then dλ̂(t) is also quasi-
definite and polynomials {P̂n} are the monic formal orthogonal polynomials
with respect to dλ̂(t), and can be expressed in the form

P̂n(t, γ) =
P̃n+1(t)− P̃n+1(γ)

P̃n(γ)
P̃n(t)

t− γ

=
Un+1(t)− α̃0Un(t)− Un+1(γ)− α̃0Un(γ)

Un(γ)− α̃0Un−1(γ)
(Un(t)− α̃0Un−1(t))

t− γ
.

Proof. The proof of this theorem is a consequence of Theorem 1.55 from
[5, p. 38].
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