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ORTHONORMAL DECOMPOSITION OF FRACTAL
INTERPOLATING FUNCTIONS

Ljubǐsa M. Kocić and Sladjana Spasić

Abstract. In this paper an orthonormal decomposition of affine plane transfor-
mation is applied on Iterated Function Systems that define fractal interpolating
functions.

1. Introduction

Affine automorphisms seem to be the most elementary dynamic elements
in Nature. By iterations of affinity any nonlinearity can be achieved. The
simplest example is Horner algorithm which builds up polynomials by re-
peating affine functions. Of course, this process needs one extra dimension
besides the dimension of automorphism domain - dimension of time where
iterations take place. Many life processes like cells growing and multiplying,
tissues forming, neural connections, cortical signals etc., are being product
of iterated affinities and can be model and study by using IFS approach [1],
[4]. Here, we examine contractive affine transforms of real plane and their
application in analyzing fractal functions.

Affine transformation of the real plane R2 → R2 is defined by

w : x 7→ Ax + b, A =
(

a b

c d

)
, b =

(
e

f

)
,(1.1)

where x =
(

x

y

)
and a, b, c, d, e, f ∈ R. If b = 0, transformation (1.1) is

linear. The set of all affine transformations (1.1) will be denoted by A.
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Regarding composition of mappings, the set A forms a noncommutative
group (A, ◦).

Linear transformation (1.1) is orthogonal if it preserves orthogonality of
vectors, i.e. if xTy = 0 implies w(x)T w(y) = 0. In this case, matrix A is
orthogonal, i.e. it satisfies

AT A = ρ2I, ρ ∈ R.

If ρ = 1, w as well as A are orthonormal . The subset O ⊂ A of orthogonal
affine transforms forms orthogonal subgroup (O, ◦) of the group (A, ◦), while
(ON , ◦) is orthonormal or unitary subgroup of (O, ◦).

If matrix A of the affine transformation (1.1) is unimodular , i.e. if it
satisfies |detA| = 1, one gets another subset of the set A, i.e. also a subgroup
(U , ◦) of the group (A, ◦), which is called unimodular subgroup. It is easy to
see that (ON , ◦) ⊂ (U , ◦).

In constructive theory of fractal sets an important issue is contraction
property of affine mappings (see Section 3). But, it is as well important
to distinguish orthogonal part of the mapping from non-orthogonal one. It
is important since orthogonal affine mappings preserve angles - crucial geo-
metric elements in constructions like so called initiator-generator ones. On
the other hand, non-orthogonal mappings define other geometric parameters
like stretch or shear.

So, the set of affine transformations can be expressed as the union A =
O ∪ O′ of orthogonal affine mappings O and O′ which is complement of O
plus identity mapping. In other words, O ∩O′ = {x 7→ Ix}.

Theorem 1.1. (Orthogonal Decomposition) The linear transformation
w(x) = Ax, where A is non-orthogonal 2× 2 matrix, can be decomposed as

w(x) = w⊥(w∆(x)) = A⊥A∆x,(1.2)

where A⊥ is orthogonal and A∆ is non-orthogonal or unit matrix.

Proof. The proof is trivial if A is orthogonal, and then A∆ = I. Other-
wise, suppose that A = A⊥A∆ is non-orthogonal and that A⊥ is its orthogo-
nal component. Then A⊥ satisfies (eventually multiplied by scalar constant)
matrix equation XT X = I, i.e., it coincide (up to the scalar constant) with

(
p −q
−q −p

)
,

(
p −q
q p

)
,

(
p q
−q p

)
,

(
p q
q −p

)
,(1.3)
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where p2 + q2 = 1, p, q ∈ R. Matrices (1.3) are unitary matrices, so they
satisfy |det X| = 1 and accordingly they are regular and X−1 = XT . Since
transposition is closed operation over the set (1.3) the same is valid to the
inversion operation. Now, if A∆ = I then A = A⊥ which is a contradiction.
If A∆ is non-orthogonal then from A = A⊥A∆ it follows A∆ = A⊥A, which,
in combination with (1.3), yields

(A∆)T A∆ =
(

a2 + c2 ab + cd
ab + cd b2 + d2

)
.

Thus, A∆ is non-orthogonal, since if it is, it will be a2 + c2 = 1, b2 + d2 =
1, ab + cd = 0. The solution of this nonlinear system gives the following
configurations for A:

( −d −√1− d2

−√1− d2 d

)
,

(
d

√
1− d2

−√1− d2 d

)
,

( −d
√

1− d2√
1− d2 d

)
,

(
d −√1− d2√

1− d2 d

)
,

which is (up to the sign) identical with (1.3). So, A must be orthogonal
which again is a contradiction.

Decomposition (1.2) can be refined by introducing some important ele-
ments of the group (A, ◦). So, an orthogonal transformation which generally
is not unitary is homogenous scaling given by the matrix

As =
(

s 0
0 s

)
, s 6= 0.(1.4)

Elements of the orthonormal subgroup (ON , ◦) are translation, symmetries
and rotation. Translation and symmetries (group of symmetries) are defined
by the matrix set (1.3) for q = 0. The matrix of rotation obtains by setting
p = cos θ in the second matrix of (1.3)

Aθ =
(

cos θ − sin θ
sin θ cos θ

)
, 0 ≤ θ < 2π.(1.5)

On the other hand, non-homogenous scaling (stretch), is a non-orthogonal
mapping defined by the matrix

At =
(

1 0
0 t

)
, t 6= 0, ±1.(1.6)
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Also, an important element of the affine group, skew (shear) transformation,
given by the matrix

Au =
(

1 u
0 1

)
, u ∈ R,(1.7)

belongs to the unimodular group (U , ◦), and it is not orthonormal.

2. Refined Decomposition of the Group (A, ◦)

Let x 7→ Ax be linear part of transformation (1.1) and therefore a mem-
ber of (A, ◦). Then, decomposition (1.2) has refinement according to the
following theorem:

Theorem 2.1. Matrix A =
(

a b

c d

)
can be decomposed as

A = AsAθAtAu,(2.1)

where matrices As, Aθ, At and Au are given by (1.4), (1.5), (1.6) and (1.7)
respectively and decomposition parameters s, θ, u and t are given by

s = sgn a
√

a2 + c2, θ = tan−1
( c

a

)
, u =

ab + cd

a2 + c2
, t =

det A

a2 + c2
.(2.2)

Proof. Multiplying matrices from the right side of (2.1) one gets
(

a b
c d

)
=

(
s cos θ su cos θ − st sin θ
s sin θ st cos θ + su sin θ

)
,

which gives the nonlinear system

a = s cos θ, c = s sin θ,

b = s(u cos θ − t sin θ), d = s(t cos θ + u sin θ).(2.3)

From the first row of (2.3) one gets

a/c = tan θ, s2 = a2 + c2.(2.4)

By substituting (2.4) in the second row of (2.3), the linear system on (t, u)
obtains: −ct + au = b and at + cu = d which gives t and u as in (2.2). Now,
it yields from (2.4) θ = tan−1(c/a), −π/2 < θ < π/2. Since s may change
the sign, the product AsAθ = sAθ represents scaled rotation for θ ∈ [0, 2π]
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(sometimes called spiral similarity) so, s = sgn a
√

a2 + c2. In this manner,
(2.2) obtains as the unique solution for decomposition parameters.

Besides (2.1) there are other decompositions of A being made by per-
mutations of factors Aθ, Au and At. We found (2.1) is the simplest among
them. In [2] decomposition A = AsAtAuAθ is mentioned, but it is slightly
more complicated than (2.1).

Remark 2.1. Note that Theorem 1.1 can be obtained from Theorem 2.1 by setting
A⊥ = AsAθ and A∆ = AtAu. Accordingly,

A⊥ = s

(
cos θ − sin θ
sin θ cos θ

)
, s 6= 0; A∆ =

(
1 u
0 t

)
, (t , u) 6= (±1, 0),

or

A⊥ = s

(
cos θ sin θ
sin θ − cos θ

)
, s 6= 0; A∆ =

(
1 u
0 t

)
, (t , u) 6= (±1, 0).

3. Contractions in R2

An important class of fractal sets in R2 can be roughly defined as invariant
sets for collection of affine contractions (1.1) (see [3]). So, it is interesting to
examine contractivity conditions for different components in decomposition
(2.1). Let ‖· ‖ denotes any vector norm. Then, norm of the matrix A defined
by

‖A‖ = sup
‖x ‖=1

‖Ax ‖ = sup
x

‖Ax ‖
‖x ‖ ,

is called matrix norm inducted by vector norm ‖ · ‖ with properties ([5])

‖λA‖ = |λ|‖A‖, λ ∈ R, ‖Ax ‖ ≤ ‖A‖‖x ‖, ‖A1A2‖ ≤ ‖A1‖‖A2‖.

Let λi(M) denotes i-th eigenvalue of the matrix M of the type n×n. Spectral
norm, defined by

‖A‖ = max
i

{√
λi(AAT )

}
(3.1)

is induced by Euclidean vector norm ‖x ‖ = (xTx )1/2. The spectral norm of

A =
(

a b

c d

)
is given by

‖A‖2 =
a2 + b2 + c2 + d2 +

√
(a2 + b2 + c2 + d2)2 − 4 (detA)2

2
.(3.2)
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Theorem 3.1. Let A∆ = AtAu, where At and Au are given by (1.6) and
(1.7). Then,

‖A∆‖ ≥ 1.(3.3)

Proof. Since, by (3.2)

‖A∆‖ =
1√
2

√
1 + t2 + u2 +

√
(1− t2 + u2)2 − 4t2,(3.4)

and

(1 + t2 + u2)2 − 4t2 = (1 + t2 + u2)2 + 4t2u2 ≥ (1− t2 + u2)2,

it follows that

1 + t2 + u2 +
√

(1 + t2 + u2)2 − 4t2 ≥ 1 + t2 + u2 +
√

(1− t2 + u2)2 ≥ 2.

Remark 3.2. Graph of the function (t, u) 7→ ‖A∆‖ defined by (3.4), shown in
Figure 1 (left) illustrates inequality (3.3).

Theorem 3.2. Affine transformation x 7→ sAθA
∆x + b is a contraction if

|s| < 1
‖A∆‖ ,(3.5)

where A∆ =
(

1 u

0 t

)
, t 6= 0.

Proof. Let B∆ = A∆/‖A∆‖. It follows from Theorem 2.1 that ‖B∆‖ = 1
and (2.1) becomes A = sAθA

∆ = s‖A∆‖AθB
∆, whereupon

‖A‖ ≤ |s|‖A∆‖‖Aθ‖‖B∆‖ = |s|‖A∆‖.

So, the condition |s| < 1/‖A∆‖ is sufficient for x 7→ sAθA
∆x + b to be

contraction.

Note that on our notation, by using (3.4) inequality (3.5) becomes

s2 <
2

1 + t2 + u2 +
√

(1 + t2 + u2)2 − 4t2
.

Here we come to the main result.
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Theorem 3.3. (Normalized decomposition) Any real matrix A =
(
a b
c d

)
can

be decomposed as A = kAθA∆ where Aθ is rotation matrix (1.5) for angle
θ = tan−1(c/a) and

k = sgn a
√

p(a2 + c2),

p = 1
2

(
q(a2 + c2) +

√
q2(a2 + c2)2 − 4 (detA)2

)
,

q = 1 +
(ab + cd)2

(detA)2
+

(detA)2

(a2 + c2)2
,(3.6)

A∆ =
√

p

p(a2 + c2)

(
a2 + c2 (detA)2

0 ab + cd

)
.

Moreover, ‖A‖ = |k| =
√

p(a2 + c2).

Proof. By Theorem 2.1 decomposition (2.1) takes place, A∆ = AtAu

and decomposition parameters s, θ, u and t are given by (2.2). Then, in
virtue of (3.4) one yields

‖A∆‖2 = 1
2

(
q(a2 + c2) +

√
q2(a2 + c2)2 − 4 (det A)2

)
= p,

and where

q = 1 +
(ab + cd)2

(detA)2
+

(detA)2

(a2 + c2)2
.

Define normalized matrix A∆ = A∆/‖A∆‖ =
√

p A∆/p, which, after sub-
stitutions gets the form (3.6). Obviously, ‖A∆‖ = 1. On the other hand,
since the spectral norm (3.1) is unitary invariant (see [6]) it holds ‖A‖ =
|k|‖AθA∆‖ = |k|‖A∆‖ = |k|.
Example 3.1. Let A =

(
2.1 0.8
−1.7 1.1

)
. Theorem 3.3 gives k = 2.70308 (numbers are

rounded-off on six decimals) and

Aθ =
(

0.777245 0.629198
−0.629198 0.777245

)
, A∆ =

(
0.999547 −0.0260156

0 0.502512

)
.

It is not difficult to see that Aθ satisfies AT
θ Aθ = Iε, where Iε differs from the unit

matrix for the amount that decreases as numerical precision increases. In other
words Aθ is orthonormal in a given tolerance. The same is with ‖A∆‖ = 1.

Figure 1 (right) illustrates this example as follows: Let Γ be a centered unit
circle in R2. Linear transformation x 7→ Ax maps Γ into an ellipse A(Γ). On the
other hand, the image of Γ under homothety x 7→ kIx is the circle kΓ (the biggest
circle in Figure 1 (right)). Clearly, x 7→ Aθx maps Γ into itself, while x 7→ A∆x

maps Γ into ellipse with semi-axes being parallel to the coordinate axes.
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Fig. 1: Illustration of Theorem 3.1 (left) and Theorem 3.3 (right)

4. Applications on Fractal Interpolating Functions

Among many possible applications of Theorem 3.3 we choose issue of
interpolating functions.

With the interpolation set of data Y = {(xi, yi)}n
i=0, (xi+1 > xi), and

the vector of vertical scaling factors d = (d1, . . . , dn), one can associate the
hyperbolic IFS (see [1]) σ(Y,d) = {R2; w1, . . . , wn}, where each wi is an
affine transformation R2 → R2 given by

wi(x) =
(

ai 0
ci di

)
x +

(
ei

fi

)
, x ∈ R2, i = 1, . . . , n.(4.1)

where

ai =
∆xi−1

xn − x0
, ci =

∆yi−1

xn − x0
− di

yn − y0

xn − x0
,

ei = xi − aixn, fi = yi − cixn − diyn.(4.2)

Attractor of the IFS σ(Y,d) is graph of a continuous function passing
through data Y called fractal interpolating function ([1]). Theorem 3.3 can
be applied on analyzing contractions (4.1). Immediate consequence of it is

Corollary 1. Normalized decomposition of contractive mappings wi de-
fined by (4.1) and (4.2) (i = 1, . . . , n) is given by

ki =
√

2
2

αiβi, (Aθ)i =
1
αi

(
ai − ci

ci ai

)
, (A∆)i =

√
2

βiα2
i

(
α2

i cidi

0 aidi

)
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where

αi =
√

a2
i + c2

i ,

βi =

√√√√
1 +

d2
i +

√
a4

i + 2a2
i (c

2
i − d2

i ) + (c2
i + d2

i )2

a2
i + c2

i

.

Example 4.1. The interpolating data

{(0, 0), (1/3, 1/2), (2/3, 1/2), (1, 1)}

associated with vertical scaling factors d = (1/2, 0, 1/2) will give famous devil
staircase function that is attractor of the IFS with three contractions each associated
with one subinterval of the interpolating mesh. The corresponding IFS, given by
(4.1) and (4.2) in this case will be

w1(x) =
(

1/3 0
0 1/2

)
x +

(
0
0

)
;

w2(x) =
(

1/3 0
0 0

)
x +

(
1/3
1/2

)
;(4.3)

w3(x) =
(

1/3 0
0 1/2

)
x +

(
2/3
1/2

)
;

By Corollary 1 and with accepting ordered triple notation {ki, (Aθ)i, (A∆)i} for
our decomposition, one has

w1, w3 :
{

1
2
,

(
1 0
0 1

)
,

(
2/3 0

0 1

)}
,

w2 :
{

1
3
,

(
1 0
0 1

)
,

(
1 0
0 0

)}
.

with translation vectors as in (4.3). The k-parameters show exact value of contrac-
tions: 1/2 for w1 and w3, which is not clear from (4.3). Also, the ratio of scaling
along x and y axis for w1 and w3 is evident from (4.3).

Example 4.2. The setting

Y = {(0, 0), (1/2, 1/2), (1, 1)}

and d = (1/2, 1/2) results in so called Takagi function (also Knopp function [5])
given by the IFS

w1(x) =
(

1/2 0
1/2 1/2

)
x +

(
0
0

)
, w2(x) =

(
1/2 0
−1/2 1/2

)
x +

(
1/2
1/2

)
.
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On the other hand, Corollary 1 decompositions give

w1 :

{
1
2

√
1
2
(3 +

√
5),

√
2

2

(
1 −1
1 1

)
,

1√
3 +

√
5

(
2 1
0 1

)}
,

w2 :

{
1
2

√
1
2
(3 +

√
5),

√
2

2

(
1 1
−1 1

)
,

1√
3 +

√
5

(
2 −1
0 1

)}
,

where the translation vectors remains the same. In this case, contraction factor of

both mappings is 1
2

√
1
2 (3 +

√
5) ≈ 0.809 which can not be concluded from the IFS.

Also, from normalized decomposition of w1 and w2, one reveals rotation component
for +π/4 resp. −π/4 counter-clockwise, the transformation element which is not
evident from the IFS. The matrices (A∆)1 and (A∆)2 gives information of stretch
ratio, which is twice as big in x-direction, and that the normalized shear in w1 is
+1 and in w2 is −1 which speaks about symmetry of the Takagi function graph.

5. Conclusion

Affine transformation w of R2 plane can be decomposed into two main
sub-transformations, orthogonal and non-orthogonal. The orthogonal one
can be further split into (homogeneous) scaling, defined by parameter s
and orthonormal transform (parameter θ). The non-orthogonal component
consists of non-homogeneous scaling (parameter t) and skew transform (pa-
rameter u). By normalization of non-orthogonal component one gets de-
composition that comprises three components: Homogeneous scaling that
“bears” contractivity of w, one orthonormal and one non-orthogonal com-
ponent having unit norm. Decomposition parameters s, θ, t, u may help
in analyzing Iterative Function Systems for constructing fractal sets, in the
sense of dominance of one or two parameters over the others, revealing dif-
ferent symmetries in the IFS and other features. Two examples are given of
this analysis, both involving fractal interpolating functions.
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