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REDUCTION OF DECISION DIAGRAMS
BY DISJUNCTIVE SPECTRAL TRANSLATION IN THE

WALSH–HADAMARD DOMAIN

Milena Stanković and Suzana Stojković

Abstract. In this paper, we define a heuristic method for reduction of the
number of nodes in Binary decision diagrams representing the switching function
(BDDs). The method uses the disjunctive spectral translation in the Walsh–
Hadamard spectral domain to read information about possible reduction of nodes
in the original domain. It is based on the following assumption related to the
density of switching functions defined as the difference between the number of
zero and one values. In a BDD for a given function f , the reduction is possible if
in the truth-vector F for f there are some constant or mutually equal subvectors
of orders 2k, k < n − 1, where n is the number of variables. It is natural to
assume that for a function with high density, it is possible to reduce a larger
number of non-terminal nodes, since many equal values, 0 or 1, would produce
some constant subvectors in F. Thus, for such functions we can derive a BDD
with fewer non-terminal nodes. We determine the transformation of function in
original domain from the Walsh–Hadamard spectrum for f . Some experimental
results shows that for some classes of functions, the proposed method provides a
considerable reduction of nodes in BDDs.

1. Introduction

Binary decision diagrams (BDDs) are an efficient way for representation
of discrete functions, which has many applications in CAD systems for VLSI
design, signal processing, and related areas. BDDs are especially efficient
in representations and calculations with functions of a large number of vari-
ables, and thanks to that, they considerably extend applicability of those
method whose calculation complexity is a limiting factor in applications. In
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particular, BDDs permit efficient calculation of spectral transforms of large
functions [8]. Efficiency of methods based on BDDs considerably depends on
the size of BDDs, defined as the number of non-terminal nodes. Thus, reduc-
tion of the size of BDDs, which we denote as the minimization of BDDs, is a
very important task greatly discussed in many publications, see for example,
[1, 6].

The minimization of BDDs is usually performed by reordering variables
in the represented function f . However, this is an NP-complete problem, and
its exact solution is a very space and time demanding task. Therefore, many
heuristic algorithms are proposed for the reduction of the size of BDDs, see
for example a discussion of that problem in [2]. However, this is still an open
and challenging task.

In this paper, we propose a slightly different method. The BDD for a
given f is transferred into a smaller size BDD for another function f ′ derived
from f by some simple operations. Thus derived BDD for f ′ has reduced
size and preserves the complete information about the original function f .

2. BDDs and WDDs

A BDD for a given f is a directed acyclic graph derived by the reduction
of the Binary decision tree (BDT) for f .

Example 2.1. Fig. 2.1 shows the BDT for a switching function f(x1, x2, x3, x4)
given by the truth-vector F = [1001011010100101]T , and Fig. 2.2 shows the corre-
sponding BDD for f .

Fig. 2.1: BDT for f in Example 2.1.

Definition 2.1. (Levels) In a BDD for f , the i-th level consists of nodes to
which the same variable xi in f is assigned. The node at the first level is
the root node. The level n + 1 consists of the constant nodes.
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Fig. 2.2: BDD for f in Example 2.1.

Definition 2.2. (Paths in the BDT) A path in the BDT p = p1p2 · · · pi−1

from the root node to a node at the i-th level is a binary sequence of order
i− 1 consisting of labels at the edges in the considered path.

Definition 2.3. (Paths in the BDD) In the BDD, a path from the root node
to a node at the i-th level is a sequence p = p1p2 · · · pi−1, where pk equals the
label of the incoming edge to the node at the level k included in the path,
and pk = − if there is no node at the level k, the path is passing down.

Definition 2.4. (Subtrees) rm Each path p = p1p2 · · · pi−1 determines a
subtree rooted at the node at the level i where point this path.

In the application of the Walsh–Hadamard transform in switching theory,
the logic values 0 and 1 of a switching function f are often replaced by
integers 1, and −1, respectively.

Definition 2.5. (Walsh–Hadamard spectrum) For a function f given by the
truth-vector F = [f(0), . . . , f(2n−1)]T , in the (1,−1) coding, the Walsh–
Hadamard spectrum is defined as the vector R(n) = [R(0), . . . , R(2n − 1)]
determined by:

R(n) =
[

1 1
1 −1

]⊗n

F,

where ⊗ denotes the Kronecker product.

The elements of R(n) are the Walsh spectral coefficients. They are con-
veniently denoted by the indices of basic (Rademacher) Walsh functions
whose product determines the Walsh function in respect to which a Walsh
coefficient is calculated.
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Example 2.2. The Walsh–Hadamard spectrum for f in Example 2.1 is given by:

R(4)=[R0, R4, R3, R34, R2, R24, R23, R234, R1, R14, R13, R134, R12, R124, R123, R1234]
T

=[0, 0, 0, 0, 0,−8, 0,−8, 0, 0, 0, 0, 0, 8, 0, 8]T .

For a function f represented by a BDD, we calculate the Walsh-Hadamard
spectrum by performing at each node the addition and subtraction of the
subtrees rooted at the nodes where point the outgoing edges of the processed
node. In this way, the BDD for f is transformed into the WDD for f [7].

Example 2.3. Fig. 2.3 shows WDT for f in Example 2.1 and Fig. 2.4 shows
corresponding WDD.

Fig. 2.3: WDT for f in Example 2.1.

Fig. 2.4: WDD for f in Example 2.1.

3. Spectral Disjoint Translation

For a given f , the value of the Walsh coefficient R0 is equal to the density
of f , i.e., to the difference between the number of zero and one values in
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F. It follows, that for functions with the equal number of zeros and ones,
R0 = 0. The negative value of R0 shows that f has greater number of non-
zero elements, and conversely for the positive value of R0. This coefficient is a
measure of the correlation between f and the constants 1 and 0. Coefficients
of the first order (R1, R2, . . . Rn) shows the correlation of f with the switching
variables x1, x2, . . . , xn, while the coefficients of the higher orders Ri,j,...k

show the correlation between f and the modulo 2 sum (EXOR) of related
variables xi, xj , . . . xk.

It is known that some operations over f , denoted as spectral invariant
operations, change the order, but not the values of Walsh–Hadamard coeffi-
cients [3], [4]. The invariant operations are efficiently used in several tasks in
switching theory and applications, as for example in classification and circuit
realization of switching functions [3],[4]. In this paper, we use the disjunc-
tive spectral translation which is an spectral invariant operation defined as
follows.

Definition 3.1. (Disjunctive spectral translation) Disjunctive spectral tran-
slation of switching function f with respect to the index is defined as a
mapping f → f ′ given by

f ′(x1, x2, . . . , xn) = xi ⊕ f(x1, xn, . . . , xn).

In spectral domain, the spectrum Rf ′(n) for f ′ is generated by the per-
mutation of spectral coefficients in Rf (n), such that

R′
i = R0 and R′

0 = Ri

R′
ij = Rj and R′

j = Rij ,

for each index j different from i.
In a WDD, the disjunctive spectral translation with respect to variable

xi permutes the pairs of subtrees determined by the paths p1p2 · · · pi−10 and
p1p2 · · · pi−11. In the BDD, the EXOR operation (xi ⊕ f) complements the
values in the constant nodes in the all subtrees determined by the paths
p1p2 · · · pi−11. It follows that we can generate the BDD for f ′ from the BDD
for f by complementing values in the corresponding constant nodes.

Example 3.1. Fig. 3.1 shows transformation of the BDT for f in Example 1 into
the BDT for f ′ determined by the disjunctive spectral translation with respect to
the variable x2. The transformation consists of the complementation of the subtrees
determined by the paths 01 and 11.

Fig. 3.2 shows WDT for the function f ′ = x2 ⊕ f .
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Fig. 3.1: BDT for f ′ = x2 ⊕ f .

Fig. 3.2: WDT for f ′ = x2 ⊕ f .

It is obvious, that by a repeated spectral disjunctive translation, each
Walsh coefficient can be translated into the position of R0.

4. Minimization of BDDs

In this section, we present a heuristic method for reduction of the size of
BDDs, which is based on the following properties and an assumption.

1. Property 1. Since R0 shows the density of f , it follows that for
R0 > 0, f has greater number of ones than zeros. The conversely is
true for R0 < 0.

2. Property 2. The Walsh coefficient with the largest absolute value
may be permuted with R0 by a repeated application of the disjunctive
spectral translation performed over the WDD for f .

3. Property 3. The number of disjoint spectral translations for this
permutation is smaller if in the WDD for f , the path from the root
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node to the constant node showing the coefficient with the largest
absolute value consists of the smaller number of 1−edges.

4. Assumption 1. Given two functions f and g by the BDT(f) and
BDT(g). In many cases, if R0(f) > R0(g), then we can perform a
larger number of node reductions in BDT(f) than in the BDT(g).

From these considerations, the following procedure for minimization of
BDDs can be formulated.

Procedure for reduction of BDDs

1◦ Generate BDD for f .

2◦ Generate WDD for f by performing the Walsh-Hadamard transform
over the BDD for f .

3◦ In WDD for f , determine the path p = p1p2 · · · pn−1pn with the mini-
mum number of ones, to the constant node showing the Walsh coeffi-
cient with the largest absolute value.

4◦ For each i, determined by pi = 1 in the path p, perform in the BDD for
f the complementation of constant nodes in the all subtrees determined
by paths s1s2 · · · si−11, where s1, s2, · · · , si−1 ∈ 0, 1.

The proposed procedure will be explained and illustrated by the following
example.

Example 4.1. We have:

1◦ For f , in Example 2.1, we generate a BDD. That BDD is shown in Fig. 2.1.

2◦ We generate the WDD as shown at Fig. 2.3. The corresponding spectrum is:

R = [0, 0, 0, 0, 0,−8, 0,−8, 0, 0, 0, 0, 0, 8, 0, 8]T .

3◦ In WDD for f , the constant node with the value −8 shows the Walsh coeffi-
cient with the largest absolute value. The path p = 01 − 1 is the path with
the minimum number of 1−edges from the root node to the constant nodes
with the value −8.

4◦ In the path p, the values 1 are at the positions 2 and 4, and thus, we perform
the spectral disjoint translation with respect to the variables x2 and x4. It
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follows that in the original domain, we generate the BDDs for functions de-
rived from f by this spectral operation. Fig. 3.1 shows BDD for the function
f ′ = x2 ⊕ f . After that translation the spectrum R is transformed in:

R′ = [0,−8, 0,−8, 0, 0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0]T .

Fig. 3.2 shows BDD for f ′′ = x4 ⊕ f ′ = x4 ⊕ x2 ⊕ f .
After that translation the spectrum R′ is transformed in:

R′′ = [−8, 0,−8, 0, 0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0]T .

From the BDD for f ′′, we easily read f by the EXOR with x2 and x4. It may
be noted that the BDD for f (Fig. 2.1) has 7 non-terminal nodes, while BDD for
f ′′ (Fig. 3.2) has just two non-terminal nodes. Thus, in this example, the proposed
algorithm performed a considerable reduction of the size of the BDD.

5. Experimental Results

We have developed a programming package in C consisting of a library of
programming modules performing particular steps in the proposed procedure
for minimization of BDDs. Then, we have performed a series of experiments
intended to estimate the rate of reduction of the BDDs which we can achieve
by using this procedure.

Table 5.1 shows some experimental results for optimization of BDDs for
some mcnc benchmark functions. For multi-output functions, each output is
considered as a separate function, and the Table 5.1 shows the average value
of the achieved reduction over all the outputs. In this table, Nin denotes the
number of input variables, and Nout denotes the number of outputs.

Table 5.2 shows the results of the minimization of BDDs for all the out-
puts in 5xp1. In this table, N is the number of non-terminal nodes in the
BDD before the transformation, p is the path in the WDD for 5xp1 with the
minimum number of ones to the constant node showing the Walsh coefficient
with the largest absolute value, Ni is the number of non-constant nodes in
the BDD after the i-th spectral translation.

The performed experiments show that for the most of functions, we get
a considerable reduction of more than 40% of nodes in the BDD for f .
However, for Alu4, the procedure produced the BDD with the increased
number of non-terminal nodes. It is believed that this is a consequence
of removing some nodes at the upper levels which in the BDD for f may
be shared, while permutation by disjoint spectral translation may destroy
the corresponding isomorphic subtrees. We believe that a combination of
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Table 5.1: Reduction of BDDs by disjoint spectral translation.

Function Nin Nout Reduction ratio (in %)
2of4 4 1 12.5
5xp1 7 10 41.5
Add2 4 3 44.9
Alu4 14 8 -8.7
Bw 5 28 6.2

Duke2 22 29 0
Rd84 8 4 33.3
Rd53 5 3 25

spectral disjoint translation and linear spectral translation may be useful to
overcome this problem. The further investigations will be devoted to such
considerations.

6. Function Realization from Minimized BDDs

The proposed method for minimization of BDDs may be useful in func-
tion realization from BDDs. It is known that a BDD for f can be directly
mapped into a multiplexer network. Since the proposed procedure provides
a minimized BDD for f ′ assigned to f by the disjoint spectral translation in
a unique way, the realization of f through the BDD for f ′ is possible. The
price for using BDD for f ′ instead the BDD for f is small a consists of ad-
ditional EXOR circuits to get f from f ′. However, the saving of multiplexer
modules may be considerable. It is equal to achieved reduction of the num-
ber of nodes in the BDD for f and f ′. The same consideration applies to the
small dept circuit synthesis from BDDs [5]. The method will be illustrated
by the following example.

Example 6.1. Fig. 6. shows the multiplexer network for realization of f in Ex-
ample 2.1 derived from the BDD for f . Fig. 6. shows the network for realization of
f derived from the BDD for f ′′. The effects of the minimization are obvious.
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Table 5.2: Reduction of BDD for 5xp1

output N p N1 N2 N3

1 14 0000110 11 11
2 22 0000011 18 19
3 23 1000101 23 16 16
4 16 1100010 14 14 11
5 11 0110001 8 8 6
6 9 1011000 5 3 3
7 5 -10-000 2
8 3 –11000 1 0
9 1 —1000 0
10 9 0000000

Fig. 6.1: BDD for f ′ = x2 ⊕ f . Fig. 6.2: BDD for f ′′ = x4 ⊕ f ′.

7. Closing Remarks

In this paper, we have proposed a heuristic method for reduction of
the size of BDDs by using the disjoint spectral translation in the Walsh–
Hadamard domain. A given function is considered in the spectral domain,
and we perform a permutation of spectral coefficients such that the Walsh–
Hadamard coefficient with the largest absolute value is shifted into the po-
sition of the first Walsh–Hadamard coefficient. This permutation in the
spectral domain, assigns to f a function f ′ whose BDD has fewer nodes
than the BDD for f . The relation between f and f ′ is simple and it is
expressed in terms of EXOR with switching variables involved into the per-
formed spectral disjoint translation over f . Thus, we can easily determine
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Fig. 6.3: Realization of f by MUX(2× 1) from BDD for f .

Fig. 6.4: Realization of f form BDD for f ′′.

f from the BDD for f ′.
The experimental results show that the proposed method produces con-

siderable reductions for many functions used in practice. Thus, the proce-
dure may be a good basis for the design methods from BDDs.
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