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ON AN OPTIMIZATION ALGORITHM FOR LC1

UNCONSTRAINED OPTIMIZATION

Nada I. Djuranović-Miličić

Abstract. In this paper an algorithm for LC1 unconstrained optimization prob-
lems is presented. The algorithm uses the second order Dini upper directional
derivative. It is proved that the algorithm is well-defined, as well as the conver-
gence of the sequence of points obtained by the algorithm to an optimal point.
An estimate of the rate of convergence is given, too.

1. Introduction

We consider the following LC1 problem of unconstrained optimization

min
{

f(x) | x ∈ D ⊂ Rn
}

,(1.1)

where f : D ⊂ Rn → R is a LC1 function on the open convex set D, that
means the objective function we want to minimize is continuously differen-
tiable and its gradient ∇f is locally Lipschitzian, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for x, y ∈ D

for some L > 0.
We shall present an iterative algorithm, a modification of the algorithm

from [3], for finding an optimal solution to problem (1.1) by generating the
sequence of points {xk} of the following form:

xk+1 = xk + αkdk, k = 0, 1, . . . , dk 6= 0,(1.2)

where the step-size αk and the directional vector dk are defined by the par-
ticular algorithms.
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2. Preliminaries

We shall give some preliminaries that will be used for the remainder of
the paper.

Definition 2.1. ([3]) The second order Dini upper directional derivative of
the function f ∈ LC1 at xk in the direction d ∈ Rn is defined to be

f ′′D(xk; d) = lim sup
λ↓0

[∇f(xk + λd)−∇f(xk)]
T d

λ
.

If ∇f is directionally differentiable at xk, we have

f ′′D(xk; d) = f ′′(xk; d) = lim
λ↓0

[∇f(xk + λd)−∇f(xk)]T d

λ
for all d ∈ Rn.

Lemma 2.1. ([3]) Let f : D ⊂ Rn → R be a LC1 function on D, where
D ⊂ Rn is an open subset. If x is a solution of LC1 optimization problem
(1.1), then:

f ′(x; d) = 0

and f ′′D(x; d) ≥ 0 for all d ∈ Rn.

Lemma 2.2. ([3]) Let f : D ⊂ Rn → R be a LC1 function on D, where
D ⊂ Rn is an open subset. If x satisfies

f ′(x; d) = 0

and f ′′D(x; d) > 0 for all d ∈ Rn \ {0}, then x is a strict local minimizer of
(1.1).

3. The Optimization Algorithm

At the k-th iteration the direction vector dk in (1.2) presents a solution
of the problem

min
{

Φk(d) | d ∈ Rn
}

,(3.1)

where Φk(d) = ∇f(xk)T d + 1
2f ′′D(xk; d), and the step-size αk is a number

satisfying
αk = qi(k), 0 < q < 1,
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where i(k) is the smallest integer from i = 0, 1, . . . such that

xk+1 = xk + qi(k)dk ∈ D

and
f(xk + qi(k)dk)− f(xk) ≤ −1

2
qi(k)σ(f ′′D(xk; dk))(3.2)

where σ : [0, +∞) → [0,+∞) is a continuous function satisfying δ1t ≤ σ(t) ≤
δ2t, 0 < δ1 < δ2 < 1.

We suppose that there exist constants c2 ≥ c1 > 0 such that

c1‖d‖2 ≤ f ′′D(x; d) ≤ c2‖d‖2(3.3)

for every d ∈ Rn. It follows from Lemma 3.1 in [3] that under the assumption
(3.3) the optimal solution of the problem (3.1) exists and that the sequence
{dk} is bounded.

Proposition 3.1. If the function f ∈ LC1 satisfies the condition (3.3),
then:

1) the function f is uniformly and, hence, strictly convex, and, conse-
quently;

2) the level set L(x0) = {x ∈ D : f(x) ≤ f(x0)} is a compact convex set;
3) there exists a unique point x∗ such that f(x∗) = minx∈L(x0) f(x).

Proof . 1) From the assumption (3.3) and the mean value theorem it
follows that for all x ∈ L(x0) there exists θ ∈ (0, 1) such that

f(x)− f(x0) = ∇f(x0)T (x− x0) +
1
2
f ′′D[x0 + θ(x− x0);x− x0]

≥ ∇f(x0)T (x− x0) +
1
2
c1‖x− x0‖2 > ∇f(x0)T (x− x0)

that is, f is uniformly and consequently strictly convex on L(x0).
2) From [2] it follows that the level set L(x0) is bounded. The set L(x0) is

closed because of the continuity of the function f ; hence, L(x0) is a compact
set. L(x0) is also (see [4]) a convex set.

3) The existence of x∗ follows from the continuity of the function f on
the bounded set L(x0). From the definition of the level set it follows that

f(x∗) = min
x∈L(x0)

f(x) = min
x∈D

f(x)

Since f is strictly convex it follows from [4] that x∗ is a unique minimizer.
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Lemma 3.1. ([3]) The following statements are equivalent:
1. d = 0 is a globally optimal solution of the problem (3.1);
2. 0 is the optimum of the objective function of the problem (3.1);
3. the corresponding xk is a stationary point of the function f .

Now we shall prove that there exists a finite i(k), i.e. since dk is defined
by (3.1), that the algorithm is well-defined.

Proposition 3.2. If dk 6= 0 is a solution of (3.1), then for any continuous
function σ : [0, +∞) → [0,+∞) satisfying δ1t ≤ σ(t) ≤ δ2t, 0 < δ1 < δ2 < 1
there exists a finite i∗(k) such that for all qi(k) ∈ (0, qi∗(k))

f(xk + qi(k)dk)− f(xk) ≤ −1
2
qi(k)σ(f ′′D(xk; dk))

holds.

Proof . According to Lemma 9.3 from [1] and from the definition of dk it
follows that for xk+1 = xk + tdk, t > 0 we have

f(xk+1)− f(xk) ≤ t∇f(xk)T dk +
L

2
t2‖dk‖2

≤ −t
1
2
f ′′D(xk; dk) +

L

2
t2‖dk‖2

≤ − t

2δ2
σ(f ′′D(xk; dk)) +

L

2
t2‖dk‖2.

(3.4)

If we choose t = σ(f ′′D(xk; dk))/(L‖dk‖2) and put in (3.4), we get

f(xk+1)− f(xk) ≤ 1
2

δ2 − 1
δ2

σ2(f ′′D(xk; dk))
L‖dk‖2

= −K

2
tσ(f ′′D(xk; dk)),

since (δ2−1)/δ2 = −K < 0. Taking qi∗(k) = [Kt]/q, i.e. i∗(k) = logq([Kt]/q)
we have that the claim of the theorem holds for all qi(k) ∈ (0, qi∗(k)).

Convergence theorem. Suppose that f ∈ LC1 and that the assumption
(3.3) holds. Then for any initial point x0 ∈ D, xk → x̄, as k → +∞, where
x̄ is a unique minimal point.

Proof . If dk 6= 0 is a solution of (3.1), it follows that Φk(dk) ≤ 0 = Φk(0).
Consequently, we have by the relation (3.3) that

∇f(xk)T dk ≤ −1
2
f ′′D(xk; dk) ≤ −1

2
c1‖dk‖2 < 0.
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From the above inequality it follows that the vector dk is a descent direction
at xk, i.e. from the relations (3.2) and (3.3) we get

f(xk + qi(k)dk)− f(xk) ≤ −1
2
qi(k)σ(f ′′D(xk; dk)) ≤ −1

2
qi(k)δ1f

′′
D(xk; dk)

≤ −1
2
qi(k)c1‖dk‖2

for every dk 6= 0. Hence the sequence {f(xk)} has the descent property, and,
consequently, the sequence {xk} ⊂ L(x0). Since L(x0) is by the Proposition
3.1 a compact convex set, it follows that the sequence {xk} is bounded.
Therefore there exist accumulation points of the sequence {xk}.

Since ∇f is by assumption continuous, then, if ∇f(xk) → 0, k → +∞,
it follows that every accumulation point x̄ of the sequence {xk} satisfies
∇f(x̄) = 0. Since f is by the Proposition 3.1 strictly convex, there exists a
unique point x̄ ∈ L(x0) such that ∇f(x̄) = 0. Hence, the sequence {xk} has
a unique limit point x̄ – and it is a global minimizer. Therefore we have to
prove that ∇f(xk) → 0, k → +∞.

There are two cases to consider:

a) The set of indices {i(k)} for k ∈ K1, is uniformly bounded above by
a number I.

Because of the descent property, it follows that all points of accumulation
have the same function value and

f(x̄)− f(xk) =
+∞∑

k=0

f(xk+1)− f(xk) ≤
+∞∑

k=0

−1
2
qi(k)σ(f ′′D(xk; dk))

≤ −1
2
qIδ1

∑

k∈K1

f ′′D(xk; dk) ≤ −1
2
qIc1

∑

k∈K1

‖dk‖2.

Since f(x̄) is finite, it follows that ‖dk‖ → 0 = d̄, k → +∞, k ∈ K1.

By Lemma 2.1 it follows that d̄ = 0 is a globally optimal point of the prob-
lem (3.1) and, that the corresponding accumulation point x̄ is a stationary
point of the objective function f , i.e. ∇f(x̄) = 0. From the Proposition 3.1
it follows that x̄ is a unique optimal point.

b) There is a subset K2 ⊂ K1 such that limk→+∞ i(k) = +∞. By the
definition of i(k), we have for k ∈ K2 that

f(xk + qi(k)−1dk)− f(xk) > −1
2
qi(k)−1σ(f ′′D(xk; dk)).(3.5)
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Suppose that x̄ is an arbitrary accumulation point of {xk}, but not a sta-
tionary point of f . Then, from Lemma 2.1 it follows that the corresponding
direction vector d 6= 0. Now, dividing both sides in the expression (3.5) by
qi(k)−1 and using limk→+∞ qi(k)−1 = 0, k ∈ K2, we get

∇f(x̄)T d̄ > −1
2
σ(f ′′D(x̄; d̄)) > −1

2
δ2f

′′
D(x̄; d̄) > −1

2
f ′′D(x̄; d̄).

But, from the property of the iterative function Φk, we have

∇f(x̄)T d̄ ≤ −1
2
f ′′D(x̄; d̄).

Therefore, we get a contradiction.

Convergence rate theorem. Under the assumptions of the previous theo-
rem we have that the following estimate holds for the sequence {xk} generated
by the algorithm.

f(xn)− f(x̄) ≤ µ0

[
1 + µ0

1
η2

n−1∑

k=0

f(xk)− f(xk+1)
‖∇f(xk)‖2

]−1

, n = 1, 2, . . .

where µ0 = f(x0) − f(x̄), and diamL(x0) = η < +∞ since by Proposition
3.1 it follows that L(x0) is bounded.

Proof . The proof directly follows from the Theorem 9.2, page 167, in
[1].

4. Conclusion

In this paper we present a modification of the algorithm given in [3]. We
prove that the algorithm is well-defined as well as the convergence of the
algorithm by the original proofs. The estimate of the rate of convergence
directly follows from [1].
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