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SOME MODELS OF CAUSALITY AND WEAK SOLUTIONS
OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH

DRIVING SEMIMARTINGALES∗

Ljiljana Petrović and Dragana Stanojević

Abstract. In this paper we consider the stochastic differential equation

dXt = ut(X) dZt, X0 = x,

where Zt is semimartingale and ut(X) is a predictable functional. We show an
equivalence between some models of causality, introduced by Mykland [8] and
Petrović [10], and weak uniqueness (for weak solutions of stochastic differential
equations with driving semimartingales).

1. Introduction

In the first part of this paper we give various concepts of causality rela-
tionship between flow of information (represented by filtrations). Especially,
we give a generalization of a causality relationship “G is a cause of J within
H” which was first given in [8] and which is based on Granger’s definitions
of causality (see [2]).

In the second part we give some preliminaries on martingales and con-
sider some kinds of stochastic differential equations and existence of a weak
solution to these equations.

In the third part the causality concept is applied to regular solutions
of stochastic differential equations with driving semimartingales. Also, the
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equivalence between some models of causality and weakly uniqueness of reg-
ular solutions is shown.

2. Some Concepts of Causality

Let (Ω,F , P ) be an arbitrary probability space and let

F = {Ft, t ∈ T(⊆ R)}

be a family of sub-σ-algebras of F . Ft can be interpreted as the set of events
observed up to time t. F<∞ is the smallest σ-algebra containing all the Ft

(even if supT < +∞). So that, we have F<∞ =
∨

t∈T

Ft.

A filtration F = {Ft, t ∈ T} is a nondecreasing family of sub-σ-algebras
of F , i.e.such that

Fs ⊆ Ft, s ≤ t.

A probabilistic model for a time-dependent system is described by (Ω,F ,
Ft, P ), where (Ω,F , P ) is a probability space and {Ft, t ∈ T} is a “frame-
work” filtration, i.e.Ft are all events in the model up to and including time
t and Ft is a subset of F . We suppose that the filtration Ft satisfy the
“usual conditions”, which means that Ft is right continuous and each Ft is
complete.

Analogous notation will be used for filtrations H = {Ht}, G = {Gt} and
J = {Jt}.

Possibly the weakest form of causality can be introduced in the following
way.

Definition 2.1. It is said that H is submitted to G or that H is a sub-
filtration of G (and written as H ⊆ G) if Ht ⊆ Gt for each t.

It will be said that filtrations H and G are equivalent (and written as
H = G) if H ⊆ G and G ⊆ H.

A σ-algebra induced by stochastic process X = {Xt, t ∈ T} is given by
FX = {FX

t , t ∈ T}, where

FX
t = σ{Xu, u ∈ T, u ≤ t},

being the smallest σ-algebra with respect to which the random variables
Xu, u ≤ t are measurable. The process {Xt} is (Ft)-adapted if FX

t ⊆ Ft for
each t.
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On the probability space (Ω,F , P ) the process Z = {Zt, t ∈ T} is a
(Ft, P )-martingale if {Zt} is (Ft)-adapted and Zs = E(Zt|Fs) for all s ≥ t.

Definition 2.2. (compare with [12]) Let (Ω,F , P ) be a probability space
and F1, F2 and G arbitrary sub-σ-algebras from F . It is said that G is
splitting for F1 and F2 or that F1 and F2 are conditionally independent
given G (and written as F1 ⊥ F2|G) if

(∀A1) (A1 ∈ F1)(∀A2) (A2 ∈ F2) P (A1A2|G) = P (A1|G)P (A2|G).

The following results gives an alternative way of defining splitting.

Lemma 2.1. (see [10]) F1 ⊥ F2|G if and only if P (Fi|Fj
∨G) ⊆ G, for

i, j = 1, 2, i 6= j.

Corollary 2.1. ([10]) F1 ⊥ F2|G if and only if F ′1 ⊥ F ′2|G for all F ′i ⊆
Fi

∨G, i = 1, 2.

The intuitively plausible notion of causality is given in [10]. Let J, G and
H be arbitrary filtrations. We can say that “G is a cause of J within H” if

J<∞ ⊥ Ht|Gt(2.1)

because the essence of (2.1) is that all information about J<∞ that gives
Ht comes via Gt for arbitrary t; equivalently, Gt contains all information
from the Ht needed for predicting J<∞. According to Corollary 2.1, (2.1) is
equivalent to J<∞ ⊥ Ht

∨Gt|Gt. The last relation means that condition G ⊆
H does not represent essential restriction. Thus, it is natural to introduce
the following definition of causality between families of Hilbert spaces.

Definition 2.3. ([10]) It is said that G is a cause of J within H relative
to P (and written as J |< G;H;P) if J<∞ ⊆ H<∞, G ⊆ H and if J<∞
is conditionally independent of Ht given Gt for each t, i.e.J<∞ ⊥ Ht|Gt for
each t, (i.e.(∀A ∈ J<∞) P (A|Ht) = P (A|Gt).

If there is no doubt about P , we omit “relative to P”.
Intuitively, J |< G;H means that, for arbitrary t, information about J<∞

provided by Ht is not “bigger” than that provided by Gt. The meaning of
this interpretation will be specified in Lemma 2.2.

A definition, analogous to Definition 2.3 was first given in [8]; however,
the definition from [8] contains also the condition J ⊆ H (instead of J<∞ ⊆
H<∞) which does not have intuitive justification. Since Definition 2.3 is
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more general than the one given in [8], all results related to causality in
the sense of Definition 2.3 will be true and in the sense of the Hilbert space
version of the definition from [8], when we add the condition J ⊆ H to them.

If G and H are such that G |< G;H, we shall say that G is its own
cause within H (compare with [8]). It should be mentioned that the notion
of subordination (as introduced in [11]) is equivalent to the notion of being
one’s own cause, as defined here.

If G and H are such that G |< G;G
∨

H (where G
∨

H is a family
determined by (G∨H)t = Gt

∨Ht), we shall say that H does not cause G.
It is clear that the interpretation of Granger–causality is now that H does
not cause G if G |< G;G

∨
H (see [8]). Without difficulty, it can be shown

that this term and the term “H does not anticipate G” (as introduced in
[12]) are identical.

We shall give some properties of causality relationship from Definition
2.3 which will be needed later.

Lemma 2.2. (compare with [10]) J |< G;H if and only if J<∞ ⊆ H<∞,
G ⊆ H and P (J<∞|Ht) = P (J<∞|Gt) for each t.

Lemma 2.3. ([8]) In the measurable space (Ω,F) let the filtrations H =
{Ht}, G = {Gt} and J = {Jt} be given and let P and Q be probability

measures on F satisfying Q ¿ P with
dQ

dP
as H<∞-measurable. Then

J |< G;H; P implies J |< G;H; Q.

3. Stochastic Differential Equations With Driving
Semimartingales

We consider the following stochastic differential equation

dXt = ut(X) dZt

X0 = x,

}
(3.1)

where the driving process Z = {Zt, t ∈ [0,+∞)} is m-dimensional semi-
martingale (Z0 = 0) and the coefficient ut(X) is n × m-dimensional pre-
dictable functional (in the sense of [7]).

Jacod and Memin (in [3] and [4]) have studied the existence and unique-
ness of solutions of the equation (3.1) by introducing extensions of the given



Some Models of Causality and Weak Solutions . . . 107

probability space. On that new space they proved the existence of proba-
bility measure for which there exist a solution-process X. Such a measure
they called the solution measure, but it is also known as a weak solution.

Lebedev (in [6]) generalized the main results from [3] and [4] and proved
the existence of weak solution (in the strict sense) for the equation which is
more general than equation (3.1), involving random measures. He introduced
a slightly different notion of weak solution and established conditions for
regularity.

Another approach of the same matter was introduced by Mykland in [9].
Actually, he found conditions in a term of causality for Zt, under which the
equation (3.1) would have a regular weak solution.

For the stochastic differential equation (3.1) (Ω,F ,Ft, P, X,Zt) is a reg-
ular weak solution if:

1. µ(A) = P (Z ∈ A) coincides with a predetermined measure on the
function space on which Z takes values,

2. Xt and Zt satisfy (3.1),

3. Zt is its own cause within F = {Ft} relative to P .

The solution is regular in the sense of [9].

The regular solution is weakly unique [9] if for every regular solution
(Ω,F ,Ft, P, Xt, Zt) of the equation (3.1) there is no measure Q on FX,Z

t so
that (Ω,FX,Z

<∞ ,FX,Z
t , Q,Xt, Zt) is a regular solution of (3.1).

The object of this paper is to give some conditions for the weak uniqueness
(in a sense of [9]) of solution of the equation (3.1).

4. Main Results

Let (Ω,F ,Ft, P ), t ∈ T = [0, +∞) be a filtered probability space with
{Ft} right continuous and complete.

Let H be a set of right continuous modifications of the (Ft, P )-martingales
P (A|FZ

t )

H = {Mt, Mt = P (A|FZ
t ), A ∈ FZ

<∞}.(4.1)

The following result will be an intermediate step in the proof of next theorem.

Theorem 4.1. Let (Ω,F ,Ft, P ), be a filtered probability system with filtra-
tion F = {Ft}. Let FZ = {FZ

t } be a subfiltration of {Ft} (i.e., FZ
t ⊆ Ft for
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each t). Right continuous modifications of the set H are (Ft)-martingales if
and only if Zt is its own cause within F = {Ft} relative to P , i.e.,

FZ |< FZ ;F; P

holds.

Proof. Let H be of the form (4.1). Then,

∀Mt ∈ H E(M∞|Ft) = Mt, t ∈ T

and

∀A ∈ FZ
<∞ E(P (A|FZ

<∞)|Ft) = Mt, for all Mt ∈ H, t ∈ T.

If IA denotes indicator function of A ∈ FZ
<∞, it is FZ

<∞-measurable, so that
we have

∀A ∈ FZ
<∞ P (A|Ft) = P (A|FZ

t).

Because of FZ
t ⊆ Ft, the last relation means that Zt is its own cause within

F = {Ft} relative to P , i.e.

FZ |< FZ ;F; P

holds.
Conversely, let FZ |< FZ ;F; P holds. We need to prove that

Mt = P (A|FZ
t ), A ∈ FZ

<∞

is (Ft)-martingale.
According to Lemma 2.2, from FZ |< FZ ;F;P it follows that

∀A ∈ FZ
<∞, P (A|Ft) = P (A|FZ

t ).

If IA is the indicator of A, it is bounded and FZ
<∞-measurable, so that

E(E(IA|FZ
<∞)|Ft) = E(IA|FZ

t ).(4.2)

Since P (A|FZ
<∞) = M∞ we have

E(M∞|Ft) = E(IA|FZ
t ).(4.3)

Now from (4.2) and (4.3) it follows that

∀A ∈ H<∞ Mt = E(M∞|Ft), t ∈ T.

So that we proved that the elements of H are (Ft)-martingales.

The following theorem gives the conditions under which solution of equa-
tion (3.1) is weakly unique.
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Theorem 4.2. Every weak solution of stochastic differential equation (3.1)
is weakly unique if and only if (Xt, Zt) is its own cause within F = {Ft}
relative to P .

Proof. Suppose that a weakly unique solution of equation (3.1) exists.
Then, if (Ω,F ,Ft, P, Xt, Zt) and (Ω,FX,Z

<∞ ,FX,Z
t , P, Xt, Zt) are two weak so-

lutions, we have

FZ |< FZ ;F; P and FZ |< FZ ;FX,Z ;Q.(4.4)

Since the solutions of (3.1) are weakly unique, we have P = Q on FX,Z
<∞ . So

that from (4.4) we have
FZ |< FZ ;FX,Z ; P.(4.5)

If H is of the form (4.1), Mt are right continuous and according to (4.4)
and (4.5) they are (FX,Z

t , P )-martingales and (Ft, P )-martingales, so that

∀Mt ∈ H E(M∞ | FX,Z
t ) = Mt, t ∈ T,

∀A ∈ FZ
<∞ E(P (A | FZ

<∞) | FX,Z
t ) = Mt, t ∈ T.

For ∀A ∈ FZ
<∞, IA is the indicator of A, it is bounded and FZ

<∞-measurable,
and

E(E(IA | FZ
<∞) | FX,Z

t ) = P (A | FZ
t ), t ∈ T,

E(IA | FX,Z
t ) = P (A | FZ

t ), t ∈ T,

so that
∀A ∈ FZ

<∞ P (A | FX,Z
t ) = P (A | FZ

t ).

So that, the elements of H can be represented in form

H = {Mt; Mt = P (A | FX,Z
t ), A ∈ FX,Z

<∞ }.

According to Theorem 4.1, FZ |< FZ ;F; P means that the elements of H are
(Ft)-martingales, so that

∀Mt ∈ H E(M∞ | Ft) = Mt, t ∈ T,

∀A ∈ FX,Z
<∞ E(P (A | FX,Z

<∞ ) | Ft) = P (A | FX,Z
t ), t ∈ T.

Following the proof as in previous case, we get

∀A ∈ FX,Z
<∞ P (A | Ft) = P (A | FX,Z

t ).



110 Lj. Petrović and D. Stanojević

Now, since FX,Z
t ⊆ Ft, t ∈ T we get

FX,Z |< FX,Z ;F; P.

Conversely, let
(Ω,F ,Ft, P, Xt, Zt)

be a weak solution of the stochastic differential equation (3.1), than we have

FZ |< FZ ;F; P

so that
∀A ∈ FZ

<∞ P (A | FZ
t ) = P (A | Ft).

On the other hand, by the assumption of the theorem, (Xt, Zt) is its own
cause within F = {Ft} relative to P , i.e.FX,Z |< FX,Z ;F; P so that

∀A ∈ FX,Z
<∞ P (A | FX,Z

t ) = P (A | Ft).

Now, it follows that

∀A ∈ FZ
<∞ P (A | FZ

t ) = P (A | FX,Z
t )

or
FZ |< FZ ;FX,Z ;P.(4.6)

If, also (Ω,FX,Z
<∞ ,FX,Z

t , Q,Xt, Zt) is a weak solution, then it will be

FZ |< FZ ;FX,Z ; Q,(4.7)

or
∀A ∈ FZ

<∞ Q(A | FZ
t ) = Q(A | FX,Z

t ).

According to [4] from (4.6) and (4.7) it follows that Q ∼ P on FX,Z
<∞ (also

Q ∼ P on F0 because of completeness).

Theorem 4.3. Weak solution of equation (3.1) satisfies that

FX |< FX,Z ;F; P

if set H of the form (4.1), where Mt are right continuous modifications of
martingales, also contains martingales of the form

Mt = P (A | FX,Z
t ), ∀A ∈ FX

∞.
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Proof. Let (Ω,F ,Ft, P, Xt, Zt) be a weak solution. Then FZ |< FZ ;F; P
holds. It is obvious that the elements of H are martingales relative to
filtration {Ft}. We supposed that the martingales Mt also have a form
Mt = P (A | FX,Z

t ), A ∈ FX
<∞, and they are (Ft)-martingales, so

H ′ = {Mt; Mt = P (A | FX,Z
t ), A ∈ FX

<∞},

∀Mt ∈ H ′ E(M∞ | Ft) = Mt,

∀A ∈ FX
<∞ E(E(IA | FX,Z

<∞ ) | Ft) = Mt, t ∈ T.

IA is obviously FX
<∞-measurable and (FX

<∞) ⊆ (FX,Z
<∞ ). So that, IA is FX,Z

<∞ -
measurable. Now it follows that

∀A ∈ FX
<∞ E(IA | Ft) = Mt, t ∈ T

or
∀A ∈ FX

<∞ P (A | FX,Z
t ) = P (A | Ft).
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